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Abstract
Persistence diagrams (PDs) are the most com-
mon descriptors used to encode the topology of
structured data appearing in challenging learn-
ing tasks; think e.g. of graphs, time series or
point clouds sampled close to a manifold. Given
random objects and the corresponding distribu-
tion of PDs, one may want to build a statisti-
cal summary—such as a mean—of these random
PDs, which is however not a trivial task as the
natural geometry of the space of PDs is not lin-
ear. In this article, we study two such summaries,
the Expected Persistence Diagram (EPD), and its
quantization. The EPD is a measure supported
on R2, which may be approximated by its em-
pirical counterpart. We prove that this estimator
is optimal from a minimax standpoint on a large
class of models with a parametric rate of conver-
gence. The empirical EPD is simple and efficient
to compute, but possibly has a very large sup-
port, hindering its use in practice. To overcome
this issue, we propose an algorithm to compute
a quantization of the empirical EPD, a measure
with small support which is shown to approxi-
mate with near-optimal rates a quantization of the
theoretical EPD.

1. Introduction
Topological data analysis (TDA) is a modern field in data
science which has found a variety of succesful domains
of application such as material science (Saadatfar et al.,
2017; Buchet et al., 2018), cellular data (Cámara, 2017),
social graph classification (Zhao & Wang, 2019; Carrière
et al., 2020), shape analysis (Li et al., 2014; Carrière et al.,
2015) to name a few. It provides a machinery to encode the
topological properties (such as the presence of connected
components, loops, cavities, etc.) of a structured object in a
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multi-scale fashion. Relying on persistent homology theory
(Edelsbrunner et al., 2000; Zomorodian & Carlsson, 2005;
Edelsbrunner & Harer, 2010), its main output is a descriptor
called a persistence diagram (PD): it is a discrete measure∑
i∈I δxi (roughly, a set of points) supported on the open

half-plane Ω = {(t1, t2) ∈ R2, t2 > t1}, where each point
xi of the PD accounts in a quantitative way for the presence
of a topological feature in a given object. The space of PDs,
D, is equipped with an optimal partial transport metric
OTp, where 1 ≤ p ≤ ∞, which shares similarities with
the so-called Wasserstein metric Wp used in the optimal
transport literature (Villani, 2008; Santambrogio, 2015).

Statistics with PDs. In applications, one is generally led to
consider a sample of several PDs, say µ1, . . . , µn, encoding
the topology of some underlying phenomenon generating
the different observations. Assuming that these PDs are
sampled i.i.d. according to some underlying distribution P ,
it is natural to search for some characteristic quantities to
describe P . As the space of PDs (D,OTp) is not a vector
space, but only a metric space, even building elementary
statistics is a difficult task. For instance, approximating
Fréchet means (a.k.a. barycenters) of a sample of PDs with
respect to OTp metrics requires to develop specific tech-
niques (Turner et al., 2014; Lacombe et al., 2018; Vidal
et al., 2019), while their exact computation is intractable.
An alternative is to embed the PDs in a Hilbert or Banach
space, using explicit vectorizations (Bubenik, 2015; Adams
et al., 2017) or implicit through kernel methods (Reining-
haus et al., 2015; Carrière et al., 2017), then using standard
statistical and learning tools. However, such embeddings
do not preserve the metric structure of the space of PDs
(Bubenik & Wagner, 2020; Wagner, 2021) nor the inter-
pretability of PDs. In comparison, the expected persistence
diagram (EPD) E(P ) of a distribution P of PDs lies in a
natural metric extension of the space of PDs while its em-
pirical counterpart can be computed faithfully. Originally
introduced in (Divol & Chazal, 2019), the EPD is a measure
on Ω which associates to each set A ⊂ Ω the expected num-
ber of points which belongs to A in the random diagrams
µ ∼ P . The properties of this object were studied in (Divol
& Chazal, 2019; Divol & Lacombe, 2020).

Contributions. We consider the situation where one has
access to a n-sample of PDs µ1, . . . , µn following some
(unknown) law P . A natural way to estimate the EPD of P
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Figure 1. Čech filtration on a 2D point cloud in dimension D = 1 (recording loops) and the corresponding PD.

is to consider its empirical counterpart, which simply reads
µn := 1

n (µ1 + · · · + µn). By leveraging techniques from
optimal transport theory, we show in Section 3 that µn ap-
proximates E(P ) at the parametric rate n−1/2 with respect
to the loss OTpp under non-restrictive assumptions, and that
it is optimal from a minimax perspective. In practice, the
support of the measure µn is obtained as the union of the
support of each diagram and tends to be very large if n� 1,
hindering the use of this empirical descriptor in applications.
To overcome this issue, we propose in Section 4 an online
algorithm to compute a quantization of the empirical EPD
and show that—provided a good initialization—the output
of our algorithm approximates a quantization of the EPD
at an appropriate rate. For the sake of conciseness, proofs
have been deferred to the supplementary material along with
code to reproduce our experiments.

Related Work. Divol & Chazal (2019) show that under
mild assumptions the EPD is a measure with density sup-
ported on the half-plane Ω, and propose an estimation pro-
cedure of the EPD based on kernel density estimation. How-
ever, they defined convergence in terms of L2 metrics be-
tween densities instead of the more natural diagram met-
ric OTp considered in this work and did not exhibit rates
of convergence. In optimal transport literature, the study
of convergence rates between a measure and its empirical
counterpart for the Wasserstein distance Wp dates back to
(Dudley, 1969), while more recent papers (Singh & Póc-
zos, 2018; Fournier & Guillin, 2015; Kloeckner, 2020; Lei
et al., 2020) provide tight controls of the convergence rate
of the quantity W p

p . There are however two main differ-
ences between this line of results and our framework. First,
despite both being optimal transport metrics, there exist
key differences between the metric OTp and the Wasser-
stein metric Wp (see Section 2). Furthermore, we are not
in the common situation where one observes i.i.d. realiza-
tions X1, . . . , Xn in Ω and considers the empirical measure
1
n (δX1 + · · ·+ δXn) but in the more general setting where
one observes measures µ1, . . . , µn on Ω following some law
P and considers the distance between the expected measure
E(P ) and its empirical counterpart 1

n (µ1 + · · ·+ µn).

The problem of quantization of measures, namely approxi-
mating a given measure with another measure with support

of fixed size, has been studied in depth when those measures
are supported on Rd equipped with its natural Euclidean
geometry, see for instance (Graf & Luschgy, 2007; Fischer,
2010; Levrard et al., 2015; Bourne et al., 2018). In the
context of PDs, where the quantization problem is gener-
ally referred to as computing codebooks or bag-of-words
(Zieliński et al., 2018; 2020), existing methods propose to
quantize PDs running a k-mean algorithm on the diagram
points. The intuition that points in a diagram that are close
to the boundary ∂Ω of the half-plane Ω represent less im-
portant topological features is taken into account through
the introduction of weight functions, requiring to introduce
an important hyper-parameter whose choice is unclear in
general. Our approach differs from the latter on two aspects:
first, we do not quantize a single diagram (should it be a
superposition of diagrams as in (Zieliński et al., 2020)) but
work in an online fashion with a sequence of observed dia-
grams. Second, we work with the standard diagram metric
OTp. In doing so, we directly take the boundary ∂Ω into
account in the formulation of our problem without needing
to introduce a weight function. Our quantization algorithm
significantly builds on (Chazal et al., 2021, Alg. 2). The
main difference is that Chazal et al. intend to quantize a
measure with respect to the 2-Wasserstein distance on Rd,
while we work with the metric OTp on Ω ⊂ R2. This
change of perspective introduces some specificities in our
problem and allows us to derive results more suited to the
context of persistence diagrams. Furthermore, while stan-
dard algorithms work with p = 2, we propose a simple
variation to encompass the case p = +∞, central in TDA
as one retrieves the so-called bottleneck distance.

2. Background
Persistence diagrams (PDs). Let X be a topological
space and let f : X → R be a real-valued continu-
ous function. The sublevel sets of (X, f) are defined as
Ft := {w ∈ X, f(w) < t}. As the scale parameter t
increases from−∞ to +∞, one observes a nested sequence
of sets called the filtration of X by f . Given a fixed dimen-
sion D, persistent homology (see (Edelsbrunner & Harer,
2010) for an introduction) provides tools to record the scales
at which a topological feature (a connected component for
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D = 0, a loop for D = 1, a cavity for D = 2, etc.) appears
or disappears in the sublevel sets. For instance, a loop (one-
dimensional topological component) might appear at some
scale t1 (its birth time) in the sublevel set Ft1 , and disappear
(“get filled”) at some scale t2 > t1. One says that the loop
persists over the interval [t1, t2]. This results in a collection
of intervals1—each of them accounting for the presence of
a topological feature recorded in the filtration process—that
can be encoded as a multiset supported on the open half-
plane Ω = {x = (t1, t2), t2 > t1} ⊂ R2, or, equivalently,
as a locally finite discrete measure Dgm(f) :=

∑
i δxi ,

where δxi denotes the Dirac mass located at xi ∈ Ω.
Of particular interest is the case where X = Rd, and
f : w ∈ Rd 7→ dist(w,A) is the distance function to A
a compact subset of Rd (for instance a point cloud), see
Figure 1. The corresponding diagram, called the Čech per-
sistence diagram of A, will be denoted by Dgm(A).

Metrics for PDs. Let ‖ · ‖ be the Euclidean norm and
let spt(µ) denote the support of a measure µ. Let ∂Ω :=
{(t, t), t ∈ R} be the diagonal (which is also the boundary
of Ω), and Ω := Ω t ∂Ω. Given 1 ≤ p < ∞, and two
measures µ, ν supported on Ω, one can define the distance
between µ and ν using an optimal partial transport metric:

OTp(µ, ν) := inf
π∈Adm(µ,ν)

(∫∫
Ω×Ω

‖x− y‖pdπ
) 1
p

, (2.1)

where Adm(µ, ν) is the set of measures supported on
Ω× Ω whose first (resp. second) marginal coincides with µ
(resp. ν) on Ω (note in particular that π is not constrained
on ∂Ω × ∂Ω). The definition is extended to p = ∞ by re-

placing
(∫∫

Ω×Ω
‖x− y‖pdπ

) 1
p

by sup{‖x− y‖, (x, y) ∈
spt(π)}, and the distance OT∞ is called the bottleneck
distance, central in TDA due to its strong stability prop-
erties (Cohen-Steiner et al., 2007; Chazal et al., 2016).
Let ‖x − ∂Ω‖ = (t2 − t1)/

√
2 be the persistence of a

point x = (t1, t2) ∈ Ω, that is its distance to the di-
agonal ∂Ω. The space (Mp,OTp) of persistence mea-
sures is defined as the space of (non-negative) Radon mea-
sures µ supported on Ω that have finite total persistence,
i.e. Persp(µ) :=

∫
‖x − ∂Ω‖pdµ(x) < ∞ (this condition

ensures that OTp is always finite). Note that the distance
OTp is not only defined for PDs (elements of D), but for
measures on Ω with arbitrary support, therefore making it
possible to define a similarity notion between a PD and a
more general measure such as an EPD, a crucial aspect of
this work.

The metrics OTp are similar to the Wasserstein distances
used in optimal transport (Santambrogio, 2015, Ch. 5): for
σ, τ two measures having the same total mass on a metric

1In the greatest generality, there may be some intervals of
the form [t1,+∞). In the following, such intervals are simply
discarded if ever present.

space (S, ρ), the distance Wp,ρ(σ, τ) is defined as the infi-

mum of
(∫
S2 ρ(x, y)pdπ(x, y)

)1/p
over all transport plans

π between σ and τ , i.e. measures on S × S which have
for first (resp. second) marginal σ (resp. τ ). When ρ is the
Euclidean distance we write Wp instead of Wp,ρ. Despite
those similarities, there is however a crucial difference be-
tween the Wasserstein distance and the OTp distance: the
constraints in (2.1) only involves the marginals on Ω, allow-
ing us to transport mass to and from the boundary of the
space ∂Ω. It makes, in particular, the distance OTp between
measures of different total masses well-defined. The metrics
OTp were introduced by Figalli & Gigli (2010) as a way to
study the heat equation with Dirichlet boundary conditions,
but Divol & Lacombe (2020) observed that these metrics
actually coincide with the standard metrics used to compare
persistence diagrams (Edelsbrunner & Harer, 2010, Ch. 8).

Expected persistence diagrams. Let P be a probability
distribution supported on (Mp,OTp). Let E(P ) be the
measure defined by, for A ⊂ Ω compact,

E(P )(A) := EP [µ(A)], (2.2)

where µ ∼ P , and µ(A) is the (random) number of points
of µ that belongs to A. This deterministic measure, called
the expected persistence diagram (EPD) of P , was intro-
duced in (Divol & Chazal, 2019) were authors proved that,
under mild assumptions, it admits a density with respect
to the Lebesgue measure on Ω. Importantly, the EPD is a
persistence measure but not a PD in general.

3. Minimax Estimation of the EPD
Let P be a distribution of PDs, and E(P ) be its EPD. Given
a n-sample µ1, . . . , µn of law P , the empirical EPD is de-
fined as µn := 1

n

∑
i µi. In this section, we control the

distance OTpp(µn,E(P )) under moment assumptions on
the underlying law P . Note that, according to (Divol &
Lacombe, 2020, Thm. 3.7) and the law of large numbers,

µn
OTp−−−→ E(P ) almost surely under the minimal assump-

tion that EP [Persp(µ)] < ∞ (see Lemma 3 in the supple-
mentary material). Our goal here is to understand the rate at
which this convergence holds.

Let AL be the `1-ball in R2 centered at (−L/
√

8, L/
√

8) of
radiusL/

√
2. For 0 ≤ q ≤ ∞ andL,M > 0, we letMq

L,M

be the set of measures µ ∈Mq which are supported on AL,
with Persq(µ) ≤ M . Let PqL,M be the set of probability
distributions which are supported onMq

L,M . It is known
that persistence diagrams belong to the set Mq

L,M under
non-restrictive assumptions. Namely, we have the following
result.

Lemma 1 (Cohen-Steiner et al. (2010)). Let X be a d-
dimensional compact Riemannian manifold, and let f :
X → R be a Lipschitz continuous function. Then, for
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every q > d, Dgm(f) belongs to Mq
L,M for some L, M

depending on X , q and the Lipschitz constant of f .

In particular, for q > 0, no constraints on the total number
of points of the persistence diagram are imposed. This is
particularly interesting in applications, where the number
of points in PDs is likely to be large, while their total per-
sistence Persq may be moderate, see e.g. (Divol & Polonik,
2019) for asymptotics in the case of the Čech persistence
diagrams of large samples on the cube.

Theorem 1. Let 1 ≤ p < ∞ and 0 ≤ q < p. Let P ∈
PqL,M and let µ1, . . . , µn be a n-sample from law P . If µn
is the associated empirical EPD, then,

E[OTpp(µn,E(P ))] ≤ cMLp−q
(

1

n1/2
+
ap(n)

np−q

)
, (3.1)

where c depends on p and q, and ap(n) = 1 if p > 1, log(n)
if p = 1.

In particular, if p ≥ q + 1/2, we obtain a parametric rate
of convergence of n−1/2. This is always the case if q = 0,
i.e. if we assume that all the diagrams sampled according
to P have less than M points. According to Lemma 1, it is
also the case if µi = Dgm(fi) for some random 1-Lipschitz
functions fi : X → R, whereX is a d-dimensional compact
Riemannian manifold with p > d+ 1/2.

From a statistical perspective, it is natural to wonder if
better estimates of E(P ) exist. A possible way to answer
this question is given by the minimax framework. Let P be
a set of probability distributions onMp. The minimax rate
for the estimation of E(P ) on P is

Rn(P) := inf
µ̂n

sup
P∈P

E[OTpp(µ̂n,E(P ))], (3.2)

where the infimum is taken over all possible estimators
of E(P ). An estimator attaining the rate Rn(P) (up to a
constant) is called minimax, i.e. an estimator is minimax
on the class P if it has the best possible risk uniformly on
this class. We show that the empirical EPD µn is a minimax
estimator on PqL,M as long as p ≥ q+1/2. The case p =∞
is discussed in Remark 1 (supplementary material).

Theorem 2. Let 1 ≤ p < ∞ and q ≥ 0, L,M > 0. One
has, for some c depending on p and q,

Rn(PqL,M ) ≥ cMLp−qn−1/2. (3.3)

As the EPD E(P ) is known to have a smooth density in a
wide variety of settings (Divol & Chazal, 2019), it could
be expected (likewise it is the case in density estimation
(Tsybakov, 2008)), that one could make use of this regularity
to obtain substantially faster minimax rates on appropriate
models. Surprisingly enough, using results from statistical
optimal transport theory, we show that whatever regularity is

assumed on the EPD, no estimators can perform better than
the empirical EPD µn for the OTp loss (from a minimax
perspective). Let Bsp′,q′ be the set of functions Ω → R in
the Besov space of parameters s ≥ 0 and 1 ≤ p′, q′ ≤
∞, see (Härdle et al., 2012) for an introduction to Besov
spaces; note that this formalism encompasses all Ck classes.
Consider the modelPq,sL,M,T of probability distributions P ∈
PqL,M whose EPD E(P ) belongs to Bsp′,q′ with associated
norm smaller than T/M .

Theorem 3. Let 1 ≤ p < ∞, q, s ≥ 0, L,M, T > 0 and
1 ≤ p′, q′ ≤ ∞. One has

Rn(Pq,sL,M,T ) ≥ cMLp−qn−1/2, (3.4)

where c depends on s, p′, q′, p, q and T .

The proof of Theorem 3 is based on a similar result appear-
ing in (Weed & Berthet, 2019), where minimax rates of
estimation with respect to the Wasserstein distance Wp are
given for smooth densities on the cube.

Remark 1. In the usual problem of estimating a measure
thanks to a n-sample with respect to the Wasserstein dis-
tance, it has been noted several times (Trillos & Slepčev,
2015; Weed & Berthet, 2019; Divol, 2021) that this prob-
lem becomes significantly easier if the measure has a lower
bounded density on its domain. In particular, it is known
that the risk for the W p

p loss of the empirical measure at-
tains the faster rate n−p/2 (instead of n−1/2) under this
hypothesis. If such a result is likely to hold for the OTpp
loss under similar hypothesis, requiring that the EPD has a
lower bounded density on some bounded domain U in Ω ap-
pears to be unreasonable. Indeed, this would imply that the
density exhibits a sharp change of behavior at the boundary
of U , whereas the density of the EPD is known to be typi-
cally smooth on Ω (Divol & Chazal, 2019). Whether there
exists a more realistic assumption on the EPD for which the
rate of convergence of the empirical EPD is n−p/2 remains
an open question.

4. Quantization of the EPD
This section consists of two steps. In Section 4.1, we in-
troduce and study the problem of quantizing persistence
measures with respect to the metric OTp, proving in par-
ticular the existence of optimal quantizers in general. Sec-
tion 4.2 provides an online algorithm specifically designed
to quantize EPD based on a sequence of observed diagrams
µ1, . . . , µn and provide theoretical guarantees of conver-
gence.

4.1. Quantization for Persistence Measures

Let µ ∈ Mp be a persistence measure and k be a fixed
integer. The goal of the quantization problem is to build a
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Figure 2. Example of partition V1(c), . . . , Vk+1(c) for a given
codebook c.

measure ν =
∑k
j=1mjδcj supported on a set of k points

c = (c1, . . . , ck) called a codebook (while the (cj)js are
called centroids) that approximates µ in an optimal way.
Existing works (including previous works in the TDA lit-
erature) treat this problem over the space of probability
measures equipped with the Wasserstein metric Wp over
Rd. Here, we use the metric OTp instead, more suited
to PDs, leading to benefits discussed in Remark 2 be-
low. Our problem consists in minimizing the quantity
((m1, c1), . . . , (mk, ck)) 7→ OTp

(∑
jmjδcj , µ

)
where

mj ∈ R+ and cj ∈ Ω. However, we show in Lemma 2
below that—as in the standard problem using the metric
Wp—this problem can be reduced to an optimization prob-
lem on the codebook c ∈ Ωk only. To that aim, we introduce
a notion of Voronoï tesselation relative to a codebook c, with
the subtlety that points closer to the diagonal ∂Ω define a
specific cell, see Figure 2 for an illustration.

Definition 1. Let c = (c1 . . . ck) ∈ Ωk and denote by
convention ck+1 := ∂Ω, so that in particular ‖x−ck+1‖ :=
‖x− ∂Ω‖. Define for 1 ≤ j ≤ k + 1,

Vj(c) :={x ∈ Ω, ∀j′ < j, ‖x− cj‖ ≤ ‖x− cj′‖
and ∀j′ > j, ‖x− cj‖ < ‖x− cj′‖},

N(c) :={x ∈ Ω, ∃j < j′ such that x ∈ Vj(c)

and ‖x− cj‖ = ‖x− cj′‖}.

(4.1)

Observe that V1(c), . . . , Vk+1(c) form a partition of Ω.

Remark 2. The difference between our approach and pre-
vious ones (in particular (Chazal et al., 2021)) lies in the
presence of the “diagonal cell” Vk+1(c). This cell intro-
duces parabolic-shaped boundaries which slightly change
the geometry of our problem. However, it has two major
benefits. First, it enables a natural geometric identification

of points close to the diagonal (which play a specific role
in TDA) through the cell Vk+1 and we do not “waste” cen-
troids (cj)

k
j=1 to encode them. Second, our approach does

not require the introduction of a weight function (that artifi-
cially lowers the mass of points close to the diagonal), as
typically done; removing the dependency on an important
hyper-parameter.

The following lemma states that given a persistence measure
µ and a codebook c = (c1, . . . , ck), it is always optimal to
set mj = µ(Vj(c)).
Lemma 2. Let c = (c1, . . . , ck). Let µ̂(c) :=∑k
j=1 µ(Vj(c))δcj . Let ν =

∑k
j=1mjδcj for some

m1, . . . ,mk ≥ 0. Then OTp(µ̂(c), µ) ≤ OTp(ν, µ).

Therefore, quantizing µ boils down to the choice of the
codebook c. Formally, given a persistence measure µ to be
quantized, a parameter 1 ≤ p < ∞ and an integer k, the
quantization problem in the space of persistence measures
consists in minimizing Rk,p : Ωk → R defined for c ∈ Ωk

by

Rk,p(c) := OTp(µ̂(c), µ)

=

k+1∑
j=1

∫
Vj(c)

‖x− cj‖pdµ(x)

 1
p

,
(4.2)

To alleviate notations, we write Rk instead of Rk,p when
the parameter p does not play a significant role. The value
Rk(c) is called the distortion achieved by c. Let R∗k :=
infc∈Ωk Rk(c) and let Ck := arg minc∈Ωk Rk(c) be the
set of optimal codebooks. Note that R∗k = 0 if (and only if)
|spt(µ)| ≤ k. From now on, we assume that µ has at least
k points in its support.

We can now state the main result of this subsection: the
existence of an optimal codebook c∗ for any persistence
measure inMp. This result shares key ideas with (Graf &
Luschgy, 2007, Thm 4.12), although we replace the assump-
tion of finite p-th moment of the measure to be quantized
by the assumption of finite total persistence Persp(µ) <∞,
more natural in TDA (µ may even have infinite total mass
in our setting).
Proposition 4 (Existence of minimizers). The set of optimal
codebooks Ck is a non-empty compact set. Furthermore, if
c∗ ∈ Ck, then, for all 1 ≤ j 6= j′ ≤ k, µ(Vj(c

∗)) > 0 and
c∗j 6= c∗j′ .
Corollary 1. The following quantities are positive:

Dmin := inf
c∗∈Ck,1≤j 6=j′≤k+1

‖c∗j − c∗j′‖,

mmin := inf
c∗∈Ck,1≤j≤k

µ(Vj(c
∗)).

(4.3)

Computational aspects. One could consider to numeri-
cally solve the quantization problem (4.2) deriving optimiza-
tion algorithms based on their counterpart in the optimal
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Algorithm 1 Online quantization of EPDs
Input: A sequence µ1, . . . , µn, integer k, parameter p.
Preprocess: Divide indices {1, . . . , n} into batches
(B1, . . . , BT ) of size (n1, . . . , nT ). Furthermore, divide
(Bt)t into two halves B(1)

t and B(2)
t .

Set µ(α)
t := 2

nt

∑
i∈B(α)

t
µi for 1 ≤ t ≤ T, α ∈ {1, 2}.

Init: Sample c(0)
1 . . . c

(0)
k from the diagrams.

for t = 0, . . . , T − 1 do
c(t+1) = Up(t, c

(t), µ
(1)
t+1, µ

(2)
t+1) using (4.4)

end for
Output: The final codebook c(T ).

transport literature (Cuturi & Doucet, 2014), see (Lacombe,
2020, §7.2) for instance. However, using such techniques to
quantize empirical EPDs would not be satisfactory for two
reasons. First, the empirical EPD has in general a large num-
ber of points, hindering computational efficiency. Second,
we want to leverage the fact that we observe a sequence of
diagrams µ1, . . . , µn, and not only their sum, to design an
online algorithm that remains tractable with large sequences
of large diagrams.

4.2. Quantization of an Empirical EPD

In Algorithm 1, we propose an online algorithm—adapted
from (Chazal et al., 2021, Alg. 2) to the context of PDs and
with arbitrary p > 1 instead of p = 2—that takes a sequence
of observed PDs µ1, . . . , µn (a n-sample of law P ) and
outputs a codebook (c1, . . . , ck) aiming at approximating
E(P ). The algorithm relies on an update function Up for
p > 1 defined as

Up(t, c, µ, µ
′) := c−

(
µ(Vj(c))
µ′(Vj(c)) (cj − vp(c, µ)j)

)
j

t+ 1
, (4.4)

where vp(c, µ)j is the p-center of mass of µ over the cell
Vj(c):

vp(c, µ)j := arg min
y

(∫
Vj(c)

‖y − x‖pdµ(x)

) 1
p

. (4.5)

When p = 2, one simply has v2(c, µ)j =
∫
Vj(c)

x dµ(x)
µ(Vj(c))

and if in addition µ = µ′, the update (4.4) simplifies to

cj 7→
t

t+ 1
cj +

1

t+ 1

∫
Vj(c)

x
dµ(x)

µ(Vj(c))
,

so that roughly speaking, we are pushing cj toward the
usual center of mass of µ over the cell Vj(c), similar to
what is done when using the Lloyd algorithm to solve the
k-means problem (Lloyd, 1982). More generally, (4.4) can
be understood as pushing cj toward the point that would
decrease the distortion Rk,p over the cell Vj(c) the most,

using a step-size (or learning rate) 1
t+1 . There is no closed-

form for vp for p 6= 2, though standard convex solvers may
be used (Gonin, 1989). When p = +∞, a central situation
in TDA as it means working with the bottleneck distance
OT∞, computing v∞ boils down to get the center of the
smallest enclosing circle of Vj(c) ∩ spt(µ). When µ is a
discrete measure (e.g. an empirical EPD), this problem can
be solved in linear time with respect to the number of points
of µ that belong to Vj(c) (Megiddo, 1983).

Note that in Algorithm 1, the split of batches Bt =

(B
(1)
t , B

(2)
t ) is only required for technical considerations

(see the supplementary material and (Chazal et al., 2021)).
In practice, this algorithm can be used without further as-
sumptions and empirically, using Bt = B

(1)
t = B

(2)
t yields

substantially similar results. We provide a theoretical analy-
sis of Algorithm 1 in the case p = 2, in particular through
Theorem 5 which states that this algorithm is nearly opti-
mal as a way to quantize E(P ), provided the initialization
is good enough. As in Section 3, we consider a proba-
bility distribution P ∈ PpL,M . For t > 0 and A ⊂ Ω,
we let At := {x ∈ Ω, ∃a ∈ A, ‖x − a‖ ≤ t} be the
t-neighborhood of A.

Definition 2 (Margin condition). Let c∗ be an optimal quan-
tizer of E(P ). We say that P satisfies a margin condition of
parameter λ > 0 and radius r0 at c∗ if, for all t ∈ [0, r0],
one has E(P )(N(c∗)t) ≤ λt.

Margin-like conditions on optimal codebook are standard in
quantization literature (Tang & Monteleoni, 2016; Levrard,
2018). Informally, it indicates that the EPD concentrates
around k poles, aside from the mass that is distributed close
to the diagonal ∂Ω; the smaller the λ, the more concen-
trated the measure. Note that this condition holds as long
as the E(P ) has a bounded density (although with possibly
large λ), a property which is satisfied in a large number of
situations, see (Divol & Chazal, 2019).

The following theorem states that given a n-sample of law
P , Algorithm 1 outputs in T = n

log(n) steps a codebook c(T )

that approximates (in expectation) an optimal codebook c∗

for E(P ) at rate log(n)
n , to be compared with the optimal rate

of 1
n (Levrard, 2018, Prop. 7). It echoes (Chazal et al., 2021,

Thm. 5) with the difference that, thanks to the diagonal cell
Vk+1, we require a uniform bound on the total persistence
of the measures rather than a uniform bound on their total
mass, a more natural assumption in TDA.

Theorem 5. Let p = 2. Let P ∈ P2
L,M and let c∗ be

an optimal codebook for E(P ). Assume that P satisfies a
margin condition at c∗ with parameters r0 large enough
and λ small enough (with respect toDmin,mmin, L andM ).
Let µ1, . . . , µn be a n-sample of law P and B1, . . . , BT be
equally sized batches of length C1 log(n). Finally, let c(T )

denote the output of Algorithm 1. There exists R0 > 0 such
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Figure 3. From left to right. (a) Empirical EPD µn with n = 103. (b) Histogram of the empirical EPD on a 50× 50 grid. (c) EPD E(P )
of P , displayed on the same grid. (d) Distance OTp

p(µn,E(P )) for p = 2 for different values of n in log-log scale (mean and standard
deviation over 100 runs). A linear regression shows a convergence rate of order n−0.58, close to the theoretical rate of n−1/2 indicated by
Theorem 1.

that if ‖c(0) − c∗‖ ≤ R0, then

E‖c(T ) − c∗‖2 ≤ C2(log n)/n,

where C1, C2 and R0 are constants depending on
p, L,M, k,Dmin and mmin.

5. Numerical Illustrations
We now provide some numerical illustrations that showcase
our different theoretical results and their use in practice.
Throughout, PDs are computed using the Gudhi library
(Maria et al., 2014) and OTp distances are computed build-
ing on tools available from the POT library (Flamary et al.,
2021). See the supplementary material for further imple-
mentation details and complementary experiments.

Convergence rates for the empirical EPD. We first show-
case the rate of convergence of Theorem 1. There are only
few cases where explicit expressions for the EPD of a pro-
cess are known. For instance, for Čech PDs based on a
random sample of points, the corresponding EPD is known
in closed-form only if the sample is supported on R (Divol
& Polonik, 2019, Rem. 4.5). We therefore first consider a
simple setting where an explicit expression can be derived.
Let X be a set of N triangles T1, . . . , TN , where N is uni-
form on {1, . . . , 20}. We let f : X → R be a random
piecewise constant function, which is equal to Ui,j on the
jth edge of the triangle Ti, where the variables (Ui,j) are
i.i.d. uniform variables on [0, 1].

Furthermore, the function f is equal to maxj=1,2,3 Ui,j+Vi
on the inside of the triangle Ti, where the Vis are indepen-
dent, independent from the Ui,js, and follow a Beta distri-
bution β(1, 3). Let P be the distribution of the associated
random PD. Let rec be the rectangle [r1, r2]× [s1, s2] for
r1 ≤ r2 ≤ s1 ≤ s2. Then,

E(P )(rec) = 30

∫ r2

r1

t2P(s1− t ≤ V ≤ s2− t)dt, (5.1)

where V ∼ β(1, 3). In practice, we compute E(P ) on a
discretization of [0, 1]× [0, 2] through a grid of size 50×50.
Meanwhile, we sample empirical EPDs µn for 10 ≤ n ≤
103. In order to estimate OTpp(µn,E(P )), we also turn
these EPDs into histograms on the same grid, and then
compute the OTp distance between two histograms. See
Figure 3 for an illustration which showcases in particular
the expected rate n−1/2.

We also exhibit the convergence of the empirical EPD in a
more usual setting for the TDA practitioner. Namely, we
build a random point cloud X with 103 points sampled on
the surface of a torus with outer radius r1 = 5 and inner
radius r2 = 2, and then consider the corresponding random
Čech diagram for the 1-dimensional homology (loops, see
Section 2). Given n realizations of X, we compute the
empirical EPD µn, where n ranges from 10 to nmax =
1000. As no closed-form for the corresponding EPD is
known, we use as a proxy the empirical EPD based on a
sample of size 2nmax, and then showcase in Figure 5 the
convergence of OTpp(µn, µ2nmax

) at rate n−1/2.

Quantization of the EPD. We now illustrate the behavior
of Algorithm 1 using p = 2 and p = ∞ (referred to as
“OT2” and “OT∞”, respectively) and compare it to two nat-
ural alternatives. (Chazal et al., 2021, Alg. 2) is essentially
the same algorithm without the “diagonal cell” Vk+1(c);
as such, centroids are dramatically influenced by points
close to the diagonal which are likely to be abundant in
standard applications of TDA. It is referred to as “W2” in
our illustrations, as it relies on quantization with respect
to the Wasserstein distance with p = 2. The second al-
ternative, referred to as “weighted codebook”, is the one
proposed in (Zieliński et al., 2020), which can be summa-
rized in the following way: consider the empirical EPD µn
built on top of observations µ1, . . . , µn (that is, concate-
nate the diagrams), and then subsample N points in the
support of the empirical EPD, with the subtlety that the
probability of choosing a point x ∈ spt(µn) depends on a
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Figure 4. From left to right: (a) The quantization output for the different approaches considered with k = 2. As our approach accounts for
the diagonal through the cell Vk+1, our codebooks retrieve the two clusters present in the EPD, while other approaches have one centroid
used to account for the mass close to the diagonal. (b,c) The average distortion Rk,p over 10 runs for the different methods, with p = 2
and p = +∞.
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Figure 5. Convergence for p = 1, 2, 4, 6, each exhibiting a rate
∼ n−1/2.

weight function w : Ω → R+. Typical choices for w are
of the form w(x) = min

(
max

(
0, (‖x−∂Ω‖q−λ)

θ−λ

)
, 1
)

for
some parameters (λ, q, θ); the goal being to favor sampling
points far from the diagonal. Zieliński et al. propose, in
practice, to sample N = 104 points and to set q = 1, while
λ and θ are the 0.05 and 0.95 quantiles of the distribution
of {‖x− ∂Ω‖q, x ∈ spt(µn)}, respectively. We use these
parameters in our experiments. One then runs the Lloyd
algorithm (k-means) on the set of N points that have been
sampled to obtain a quantization of the empirical EPD.

We compare the different approaches in the following exper-
iment. We randomly sample a point cloud X of size m on
the surface of a torus with radii (r1, r2), where m, r1, r2
are random variables that respectively follow a Poisson dis-
tribution of parameter m ∈ N, a uniform distribution over
[r1−ε, r1+ε] and a uniform distribution over [r2−ε, r2+ε].
We use m = 2, 000, ε = 0.1, r1 = 5 and r2 = 2 in our
experiments. Given such a random point cloud X, we
build the Čech persistence diagram of its 1-dimensional
features, denoted by µ, leading to a distribution P of PDs.

We then build a n-sample µ1, . . . , µn with n = 100 and, for
k ∈ {1, . . . , 5}, compute the different codebooks returned
by the aforementioned methods, using batches of size 10 for
OT2,OT∞ and W2. All algorithms are initialized in the
same way: we select the k points of highest persistence in
the first diagram µ1. To compare the quality of these code-
books, we evaluate their distortion (4.2) with p = 2 and
p = ∞. As we do not have access to the true EPD E(P ),
we approximate this quantity through its empirical coun-

terpart R̂k,p(c) :=
(∫

Ω
min1≤j≤ck+1

‖x− cj‖pdµn(x)
) 1
p ,

with R̂k,∞(c) = maxx∈spt(µn) minj ‖x− cj‖. Results are
given in Figure 4. Interestingly, when p = 2 our approach
is on a par with the weighted codebook approach, but be-
comes substantially better when evaluated with p =∞, that
is using the bottleneck distance which is the most natural
metric to handle PDs.

We perform another experiment on the ORBIT5K dataset
(Adams et al., 2017, §6.4.1), a benchmark dataset in TDA
made of 5 classes with 1000 observations each (split into
70%/30% training/test) representing different dynamical
systems, turned into PDs through Čech filtrations. For each
class i ∈ {1, . . . , 5}, we compute a 2-quantization ν(i) us-
ing our OT2 algorithm and a 3-quantization ζ(i) using the
standard W2 approach as in (Chazal et al., 2021), i.e. with-
out the diagonal cell Vk+1 (but with an additional centroid).
We then build two simple classifiers: the predicted class
assigned to a test diagram µ is arg mini{OT2(µ, ν(i))}
(resp. (µ, ζ(i))). Our OT2 classifier achieves a decent test
accuracy of 61%. Advanced (kernels, deep-learning) meth-
ods in TDA reach between 72% and 87% of accuracy (Car-
rière et al., 2020, Table 1); but we stress that our classifier
is extremely simple (we summarize a whole training class
by a measure with only k = 2 points!), showcasing that our
quantizations summarize the training PDs in an informative
way. More importantly, the W2 classifier (with k = 3) only
achieves 50% of test accuracy even though benefiting from
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Figure 6. (Left) Two observations of the ORBIT5K dataset from two different classes (whose dynamics depend on a parameter r, see
(Adams et al., 2017) for details). (Right) The empirical EPD (orange) observed for these two classes and the corresponding quantization
obtained using our OT2 algorithm with k = 2 and the W2 algorithm (Chazal et al., 2021) with k = 3. As we account for the diagonal in
a natural geometric way in our formulation, our quantization reflects the structure of the empirical EPD in a better way. This is especially
striking in the case r = 4.1 (most right plot) where a centroid for the W2 algorithm is deviated to a peculiar position due to the presence
of few points close to the diagonal. Such points belong to the diagonal cell Vk+1 in our setting.

an additional centroid, illustrating the importance of prop-
erly accounting for the diagonal as done in our approach.

6. Conclusion
This work is dedicated to the estimation of expected per-
sistence diagrams, for which we prove that they are ap-
proximated, for the natural diagram metrics OTp, by their
empirical counterpart in an optimal way from a minimax
perspective. We then introduce and study the quantization
problem in the space of persistence diagrams, proving re-
sults of independent interest. Finally, we introduce an online
algorithm to estimate a quantization of the EPD with theo-
retical guarantees. Interestingly, our algorithm can handle
the case p =∞, central in TDA, and has the advantage of
not requiring hyper-parameters to account for the peculiar
role played by the diagonal. We illustrate our results in
numerical experiments and our code will be made publicly
available. We believe that this work offers new perspectives
to handle sample of PDs in practice and that it strengthens
our understanding of statistical properties of PDs in random
settings.

Aknowledgements. Authors thank Clément Levrard for
thoughtful discussions.
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