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Abstract

Attention-based architectures have become ubiq-
uitous in machine learning. Yet, our understand-
ing of the reasons for their effectiveness remains
limited. This work proposes a new way to under-
stand self-attention networks: we show that their
output can be decomposed into a sum of smaller
terms—or paths—each involving the operation
of a sequence of attention heads across layers.
Using this path decomposition, we prove that self-
attention possesses a strong inductive bias towards
“token uniformity”. Specifically, without skip con-
nections or multi-layer perceptrons (MLPs), the
output converges doubly exponentially to a rank-1
matrix. On the other hand, skip connections and
MLPs stop the output from degeneration. Our ex-
periments verify the convergence results on stan-
dard transformer architectures.

1. Introduction

The attention mechanism (Bahdanau et al., 2015) was ini-
tially developed to better learn long-range sequential knowl-
edge, and found effective use in transformer networks
(Vaswani et al., 2017). Since then, attention-based architec-
tures have permeated across data domains machine learning
applications, such as in natural language processing (Devlin
et al., 2018), speech recognition (Luo et al., 2020), and com-
puter vision (Ramachandran et al., 2019; Bello et al., 2019).
As such, it is vital to develop tools to understand the inner
workings of transformers and attention in general, both to
shed light on existing models, and to design more effective
future models.

This work provides new insights about the operation and
inductive bias of networks built by stacking multiple self-
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attention layers. Surprisingly, we find that pure self-
attention networks (SANs), i.e., transformers with skip con-
nections and multi-layer perceptrons (MLPs) disabled, lose
expressive power doubly exponentially with respect to net-
work depth. More specifically, we prove that the output
converges with a cubic rate to a rank one matrix that has
identical rows. While we derive the convergence bounds
in part by using properties of stochastic matrices, our re-
sults go beyond what one would expect based on standard
results. In particular, by leveraging the cascading effects
of specifically stacking self-attention modules, we show ex-
ponentially faster convergence than what standard theory
prescribes. Furthermore, while previous studies have con-
sidered the rank of individual self-attention matrices (Wang
et al., 2020; Katharopoulos et al., 2020; Cordonnier et al.,
2020b), our results are the first to address conditions under
which the entire network converges to rank one.

This raises the question, why do transformers work? Our
analysis indicates that skip connections play a key role in
mitigating rank collapse, and MLPs can slow down the
convergence by increasing their Lipschitz constant. We
characterize these counteracting forces by proving upper
bounds of this convergence behavior under SAN architec-
tural variants that resemble transformers. Our results reveal
a previously unknown vital utility of skip connections, be-
yond facilitating optimization and gradient flow (He et al.,
2016a; Balduzzi et al., 2018).

In the process, we develop a new path decomposition to
study self-attention networks. Namely, we decompose a
SAN into a linear combination of weakly-interdependent
paths, where each ‘path’ corresponds to a deep single-head
SAN. Intuitively, one can view the self-attention heads in
each layer of the original network as different gateways, and
a path follows a sequence of gateway choices, one gateway
per layer (Figure 1). Coupled with the rank collapse analysis,
our results suggest that deep SANs with skip connections
should rely more on short paths.

Our main contributions are as follows: (1) We present a
systematic study of building blocks of the transformer, re-
vealing opposing impacts between self-attention and the
counteracting forces: skip connections and MLP, in con-
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tributing and preventing a rank collapse in transformers. As
a corollary, this reveals a previously unknown vital effect
of skip connections beyond facilitating optimization. (2)
We propose a new method for analyzing SANs via a path
decomposition, revealing SANs as an ensemble of shallow
networks. (3) We verify our theory with experiments on
common transformers architectures.1

Notation. In this work, bold-face letters denote vec-
tors (lower-case) and matrices (upper-case). We denote
the `1, `∞-composite norm of a matrix X as ‖X‖1,∞ =√
‖X‖1‖X‖∞. We note that `1,∞ is not a proper norm

as it does not satisfy the triangle inequality, though it is
absolutely homogeneous and positive definite. We also use
the shorthand notation [H] = (1, · · · , H).

2. Attention doubly exponentially loses rank

We start by studying self-attention networks (SANs) built
exclusively out of multi-head self-attention layers. We prove
that SANs converge exponentially (with depth) to a rank-1
matrix that makes all tokens identical.

Our analysis in §2.1 relies on an unconventional way to
express the output of a multi-head SAN as a sum of single-
head networks. We refer to the latter as paths, where each
path is denoted by a sequence of attention heads. Intuitively,
one can view the attention heads in a transformer layer
as different gateways, and a path follows a sequence of
gateway choices, one gateway per layer (see Figure 1). A
proof sketch of why rank collapse occurs is given in §2.2,
whereas the main rank collapse result is presented in §2.3.

2.1. The path decomposition argument

LetX be a n× din input tensor consisting of n tokens. An
SAN is built out of L multi-head self-attention layers, each
having H heads. The output of the h-th self-attention head
can be written as

SAh(X) = PhXWV,h + 1b>V,h,

whereWV,h is a din× dv value weight matrix and the n×n
row-stochastic matrix Ph is given by

Ph = softmax
(
d
− 1

2

qk (XWQ,h + 1b>Q,h)(XWK,h + 1b>K,h)
>)

= softmax(d−
1
2

qk (XWQK,hX
> + 1b>Q,hW

>
K,hX

>)),

where the key and query weight matricesWK,h andWQ,h

are of size din × dqk, whereasWQK,h =WQ,hW
>
K,h. The

1Our code is publicly available at https://github.com/
twistedcubic/attention-rank-collapse.

softmax operates independently on each row of its input.
We obtain the final equation by noting that softmax is shift-
invariant and disregarding terms that provide a constant
contribution across rows (Cordonnier et al., 2020b).

The output of each SAN layer is formed by concatenating
the individual outputs of all H attention heads (along the
last dimension) and linearly projecting them onto a subspace
of appropriate size:

SA(X) = 1[b>O,1, · · · , b>O,H ]+

[SA1(X), · · · ,SAH(X)] [W>
O,1, · · · ,W>

O,H ]>

=
∑

h∈[H]

PhXWh + 1b>O,

where we setWh =WV,hW
>
O,h and bO =

∑
h bO,h and

[H] = [1, . . . ,H].

LetX l be the output of the l-th layer and fixX0 =X . As
is common practice, we let all layers consist of the same
number of heads.

Excluding biases 1b>O,h, the SAN output is given by

XL =
∑

h∈[H]

PL
h X

L−1WL
h

=
∑

h∈[H]

PL
h

( ∑
h′∈[H]

PL−1
h′ XL−2WL−1

h′

)
WL

h

=
∑

hL,hL−1∈[H]2

PL
hL
PL−1

hL−1
XL−2WL−1

hL−1
WL

hL
,

which, after unrolling the recursion backwards, yields:

XL =
∑

h1,...,hL∈[H]L

(PL
hL
· · ·P 1

h1
)X (W 1

h1
· · ·WL

hL
).

The above equations have a clear interpretation if we think of
the SAN as a directed acyclic graph, with nodes correspond-
ing to self-attention heads and directed edge connecting
heads of consecutive layers.

We formalize this intuition in the following:

Theorem 2.1 (Path decomposition of SAN). The output of
a depth L self-attention network with H heads per layer
(including biases and skip connections) is given by

SAN(X) =
∑

path∈([H]∪{0})L
PpathXWpath + 1b>, (1)

where Ppath = PL
hL
· · ·P 1

h1
is an input-dependent stochas-

tic matrix, whereas Wpath = W 1
h1
· · ·WL

hL
and b do not

depend on the input.

https://github.com/twistedcubic/attention-rank-collapse
https://github.com/twistedcubic/attention-rank-collapse
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Figure 1: Two paths in a deep Self-Attention Network (SAN) with H heads and L layers. At each layer, a path can go through one of the
heads or bypass the layer. Adding an MLP block after each attention layer forms the transformer architecture.

Proof. The proof follows from the fact that the set of
row-stochastic matrices is closed under multiplication (i.e.,
PL

hL
· · ·P i

hi
is row-stochastic) and, moreover, for any row-

stochastic matrix P , we have P 1 = 1.

Each of the terms in (1) then describes a path across heads
of different layers:

path = (h1, . . . , hL), where hl ∈ (0, 1, . . . ,H).

There are a total of (H + 1)L such paths, where each path
has length equal to the number of nonzero indices on that
path. The path decomposition thus describes the action of a
multi-head SAN as the combination of simpler single-head
networks. To gain intuition on path interdependence, it
helps to split the operations performed into two types: those
that act across tokens (multiplication from left) and those
that apply independently on each token (multiplication from
right). As seen, though paths can interact through token
mixing (since Ppath matrices jointly depend on X), token-
wise operations are independent. We can also notice that
biases are not particularly meaningful: their total contribu-
tion amounts to the single term 1b> independently of the
number of layers or heads used.

In the following, we show that each path converges rapidly
(as a function of length) to a rank-1 matrix with identical
rows. This convergence is so dominant so that adding more
layers to the SAN does not help: though the number of paths
is increased exponentially, each path degenerates doubly
exponentially, leading also to a rank-1 output.

2.2. Convergence of single-head SAN

Before tackling the full SAN, it is instructive to consider the
behavior of each path separately. We examine, in particular,

how the residual

res(X) =X − 1x>, where x = argminx‖X − 1x>‖

changes during the forward pass.

As the following theorem shows, the residual norm of
a single path converges to zero surprisingly quickly with
respect to its length (doubly exponential with a cubic rate):
Theorem 2.2. For any single-head SAN consisting of L
layers with ‖W l

QK‖1‖W l
V ‖1,∞ ≤ β, without skip connec-

tions, we have that

‖res(SAN(X))‖1,∞ ≤
(

4β√
dqk

) 3L−1
2

‖res(X)‖3
L

1,∞, (2)

which amounts to a doubly exponential convergence to a
rank-1 matrix.

Note that the bound in Eq 2 guarantees ‖res(SAN(X))‖1,∞
convergence for all inputs of small residual whenever 4β <√
dqk. In practice, our experiments imply that the region for

convergence is much greater.

The identified cubic rate of convergence is significantly
faster than what would be expected when analyzing products
of stochastic matrices (linear rate). As a rule of thumb, to
achieve a decline of three orders of magnitude, say from
1000 to 1, one could expect a linear rate of convergence
to require roughly a dozen iterations, whereas a cubic rate
can do so in just two or three iterations. The reason why
we get a cubic rate is that the rank of attention matrices
depends also on the rank of the input. As we show, the
self-attention heads mix tokens faster when formed from a
low-rank matrix. This phenomenon becomes stronger as we
build deeper SANs, leading to a cascading effect.

Proof sketch. To analyze how the formation of Ph is af-
fected by the rank of the input, we start by writing X =
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1x> + R for R = res(X) and expanding the attention
matrix accordingly:

XWQKX
> =

(
1x> +R

)
WQK

(
1x> +R

)>
Invoking once more the shift-invariance property of the
softmax operator, the above equation can be simplified to

Ph = softmax(R
WQK√
dqk
R> + 1r>),

for some appropriate r. Observe that if the matrix within
the softmax was 1r>, then Ph would also degenerate to a
rank-1 matrix: softmax(1r>) = 1 q> and the convergence
would happen instantly.

The proof builds on this observation by showing that if
E = R

WQK√
dqk
R> is small then Ph is almost rank-1:

‖Ph − 1q>‖ ≤ 2 ‖D 1 q>‖,

where D is diagonal and Dii = maxj |δ>i E(δj − δj′)|.
Thus, we have

PhX = Ph(1x> +R) = 1x> + softmax(1r> +E)R

and, moreover, ‖res(PhX)‖ ≤ 2 ‖D1 q>R‖. The proof
concludes by bounding the above term and applying the
argument recursively over successive layers.

2.3. Exponential convergence for attention networks

We now move on to analyze the convergence of SANs with
multiple heads per layer.

Our main result is as follows:

Theorem 2.3. In a depth-L and width-H self-attention net-
work without skip connections, let ‖W l

QK,h‖1‖W l
h‖1,∞ ≤

β for all heads h ∈ [H] and layers l ∈ [L], then:

‖res(SAN(X))‖1,∞ ≤

(
4β H√
dqk

) 3L−1
2

‖res(X)‖3
L

1,∞,

which amounts to a doubly exponential rate of convergence.

The bound guarantees convergence of SAN(X) to rank one
when 4βH <

√
dqk. Our experiments show that this is

a rather pessimistic estimate, as, in practice, we observe
widespread convergence of output to rank-1.

Remark 1. Implications for Xformers. There has been
a surge of architectural variants –that we collectively re-
fer to as Xformers– aimed to improve the vanilla trans-
former (Vaswani et al., 2017) by reducing the quadratic

self-attention complexity. The rank collapse result of Theo-
rem 2.3 carries interesting implications for these architec-
tures. One such variant relies on low-rank or kernel-based
approximations to the full attention matrix (Katharopoulos
et al., 2020; Wang et al., 2020; Choromanski et al., 2020),
in which case the paths likely converge even faster to rank
one due to the imposed low-rankness. Another variant only
computes a subset of the attention matrix entries using par-
ticular patterns (Zaheer et al., 2020; Child et al., 2019), such
as random patterns, in which case one expects the paths to
converge more slowly, as randomization tends to increase
the rank of the output.

3. Mechanisms that counteract convergence

Our findings raise a pertinent question—why do attention-
based networks work in practice if attention degenerates to
a rank-1 matrix doubly exponentially with depth? Aiming
to obtain a deeper understanding, we focus on the trans-
former architecture (Vaswani et al., 2017) and expand our
analysis by incorporating the three important components of
transformers that SANs lack: skip connections, multi-layer
perceptrons, and layer normalization.

We adopt a methodical approach where the modifications to
the SAN architecture are introduced one at a time. For each
case, we re-derive the convergence bounds and discuss the
observed effect.

3.1. Skip connections are crucial

A simple modification to the path decomposition argument
for SAN suffices to take into account skip connections.
Specifically, we indicate the event that a path has skipped a
layer by setting h = 0 on the corresponding notation:

XL =
∑

h∈[H]∪{0}

PL
h X

L−1WL
h

= . . .

=
∑

h1,...,hL∈([H]∪{0})L
(PL

hL
· · ·P 1

h1
)X (W 1

h1
· · ·WL

hL
),

where we have fixed P0 = I andW0 = I .

As observed, skip connections dramatically diversify the
path distribution. Denote by Pl the set of paths of length l.
With skip connections enabled, we have

|Pl| =
(
L

l

)
H l

paths of length l (whereas before we had only length L
paths). We hypothesize that it is the presence of short paths
that stops SAN from degenerating to rank-1. While we
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can derive an upper bound for the residual similar to above
(which we do in the Appendix for completeness) such an up-
per bound is vacuously large. Indeed, it is more informative
to have a lower bound on the residual, to align with prac-
tice, where SANs with skip connections do not suffer rank
collapse. We present the following simple lower bound:

Claim 3.1. Consider a depth-L and width-H self-attention
network with skip connections. There exist infinitely many
parameterizations for which res(XL) ≥ res(X). The pre-
ceding holds even for L→∞ and β arbitrarily small.

The proof is elementary. By the path decomposition, there is
always a path that skips all layers, i.e. the path with length
0, preserving the residual. It then follows that, for any
parametrization that renders the contribution of the SAN
layers orthogonal to the input, we will have res(XL) ≥
res(X). A simple example of such a parametrization can be
recovered by setting W l

V = 0 for every l ∈ [L], in which
case ‖res(XL)‖ = ‖res(X)‖.

A tight lower bound to the residual in the presence of skip
connections is highly nontrivial, and we pose it as an open
challenge to the community.

Remark 2. SANs as ensembles of shallow networks. It
can be deduced from Theorem 2.3 that SANs with skip
connections enabled heavily rely on short paths (since the
residual rapidly declines as the path length becomes larger).
In other words, SANs behave like ensembles of shallow
single-head self-attention networks. The phenomenon was
previously identified for ResNets (Veit et al., 2016b) (though
the latter study didn’t study the rank-collapse phenomenon).
Here, the components of this ensemble are inter-dependent,
as each attention head participates in many paths of different
lengths. Experimental results in §4 support this implication.
The supplementary material also provides a study of the path
length distribution across several common architectures.

3.2. Multi-layer perceptrons (MLPs) help

We now study how using an MLP affects the residual. In
particular, we focus on SANs with layers written as

X l+1 = fl

 ∑
h∈[H]

PhX
lWh

 .

Note that, to keep the notation compact, we use fl to denote
both the MLP as well as the output bias.

In our subsequent analysis, we use λl,1,∞ to denote the Lip-
schitz constant of fl with respect to `1,∞ measure. Note
that, though finding the exact constant can be NP-hard even
for shallow MLPs (Scaman & Virmaux, 2018), since fl

comprises of linear transformations with Lipschitz non-
linearities, fl is generally Lipschitz.

Corollary 3.2 (SAN with MLP). Consider a depth-
L and width-H SAN with MLP. Moreover, let
‖W l

QK,h‖1‖W l
h‖1,∞ ≤ β for all h ∈ [H] and l ∈ [L] and

fix λl,1,∞ ≤ λ. We then have that

‖res(XL)‖1,∞ ≤

(
4β H λ√

dqk

) 3L−1
2

‖res(X)‖3
L

1,∞, (3)

which amounts to a doubly exponential rate of convergence.

As seen, though the effect of MLP is less drastic than that of
skip connections, the convergence rate in Cor 3.2 can be con-
trolled by the Lipschitz constants λf,1,∞ of the MLPs: the
more powerful the MLPs are the slower the convergence be-
comes. This reveals a tug-of-war between the self-attention
layers and the the MLPs, which due to their non-linearity
can increase the rank. §4 shows that indeed MLPs counter-
act convergence in experiments.

However, while increasing the Lipschitz constants slows
down residual convergence, it carries the side effect of mak-
ing the MLPs more sensitive to input perturbations, and
thus is often associated with less robust models (Cranko
et al., 2018). Furthermore, larger Lipschitz constants pose
greater challenges to model optimization, as they lead to
larger gradient variance.

3.3. Layer normalization plays no role

Layer normalization is accomplished by rescaling and shift-
ing the input across the feature dimension:

LN(SA(X)) = LN

 ∑
h∈[H]

PhXWh + 1b>O


=

( ∑
h∈[H]

PhXWh + 1b>O − 1b>LN

)
D−1LN ,

where bLN is the mean of each column SA(X) and DLN

is a diagonal matrix with entries corresponding to the (pos-
sibly scaled or shifted) standard deviation of each column
SA(X).

By setting W̃h =WhD
−1
LN and b̃O = bO−bLN , the above

is re-written as

LN(SA(X)) =
∑

h∈[H]

PhXW̃h + 1b̃>O,

which is identical to the equation before layer normalization
was applied, though now W̃h and b̃O are input dependent.
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Since right multiplication cannot increase the rank of a
matrix, we conclude that layer normalization does not slow
down the convergence.

4. Experiments

Our experiments first test the rank collapse results in sev-
eral well-known transformers architectures (Section 4.1).
We then visually illustrate the inductive bias of some ar-
chitectural variants of transformers with a toy example in
§4.2. Additional results can be found in the supplementary
material.

4.1. Rank collapse in real architectures

To verify our theoretical predictions, we examine the
residual of three well-known transformer architectures:
BERT (Devlin et al., 2018), Albert (Lan et al., 2019), and
XLNet (Yang et al., 2019). Figure 2 plots the relative resid-
ual ‖res(SAN(X l)‖1,∞/‖SAN(X l)‖1,∞, of each layer’s
output before and after the networks have been trained. To
compute these ratios we ran the network on 32 samples of
128 tokens excerpts of biographies from Wikipedia (Lebret
et al., 2016) and display the mean and standard deviation.

The experiments confirm that, as soon as the skip connec-
tions are removed, all networks exhibit a rapid rank collapse.
Though MLPs do not seem to help in the mitigation of con-
vergence, we caution that the observation is not an accurate
portrayal of how trained transformers behave: removing the
skip connections introduces a drastic distribution shift in the
MLP input. We expect that the convergence will slow down
if the network is retrained.

4.2. Visualizing the bias of different architectures

To empirically investigate the inductive bias of the different
components of the transformer architecture, we study the
behavior of a single-layer transformer when applied recur-
rently (akin to the universal transformer (Dehghani et al.,
2019)) to predict a simple 2D circular sequence. This
is designed as a simple task to train different architectural
variants from scratch, with visually intuitive results.

Specifically, we train a single-layer transformer to sequen-
tially predict two circular arcs in R2 of radius 0.3, starting at
(−0.3, 0) and (0.3, 0), respectively, each directed counter-
clockwise and consisting of 1000 points (illustrated as gray
arcs in 3). An input sample consists of a sequence of two
opposing points on the circle, one from the top arc and the
other from the bottom arc. We apply teacher-forcing at
each step, meaning we give the network the ground truth
coordinates of the two current points, and train it to predict

the next two points. The model attempts to minimize the
MSE loss between the predicted points and the ground truth
points on the trajectories. At inference time, we don’t apply
teacher-forcing, and simply feed the model output as input
for the next step.

Since this recurrent application of a single-layer transformer
can be reparametrized to be equivalent to a multi-layer trans-
former without skip connections, we hypothesize that at
inference time the predicted trajectories of the two arcs will
converge to the same point (indicating a rank collapse),
rather than following the training trajectories. Convergence
of the two arcs implies rank collapse, as that means the
two points in the predicted sequence have become uniform.
Note that the setting has also been intentionally constructed
to enable training even without skip connections (by using
teacher forcing) and thus to disentangle the two distinct
benefits of skip connections: their ability to improve opti-
mization and their mitigation of rank collapse.

We trained the network until it could perfectly memorize
the next step on the circular trajectories with near-zero loss.
Figure 3 demonstrates the trajectories predicted at inference
time (i.e., without teacher forcing). As seen on the top row,
without MLP or skip connections the network exhibits rank
collapse. Theorem 2.2 predicts that the convergence slows
down when β ≥ ‖W l

QK‖1‖W l
V ‖1,∞ increases. Indeed, as

the hidden dimension increases from 32 to 128 (leading to
larger β), the convergence slows down, becoming hardly
observable for dimension 128. The supplementary material
contains additional experiments showing that the observed
effects are not artifacts of a larger model overfitting the
training data, and indeed result from increasing β.

In accordance to our analysis, adding MLP or skip connec-
tions either stops or drastically slows down rank collapse.
As observed, skip connections tend to slow down points
from moving. The latter phenomenon is because in this
setting skip connections introduce a bias towards remaining
in the same position. On the other hand, adding MLPs does
not exhibit the same bias.

4.3. Path effectiveness

SANs can be seen as ensembles of paths of different lengths
(from 0 to L), each involving a different sequence of self-
attention heads. Our analysis of SAN with skip connections
indicates that the expressivity of a path decreases with its
length, even if the number of non-linear operations involved
increases. To test this hypothesis, we isolate paths of differ-
ent lengths and evaluate their predictive power.

Tasks. We considered the following three tasks to test path
effectiveness with respect to length:
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Figure 2: Relative norm of the residual along the depth for three models before and after training. Pure attention (SAN) converges rapidly
to a rank-1 matrix. Adding MLP blocks and skip connection gives a transformer. Skip connections play a critical role in mitigating rank
collapse (i.e., a zero residual).

• Sequence memorization. The model learns to memo-
rize a pre-determined mapping from natural language
sentences and random label sequences of the same
length. We use random tokens to make this purely a
test of expressiveness of a network by way of memo-
rizing training data, rather than confounding effects
such as generalization. The cross entropy loss between
predicted and the ground truth labels is minimized dur-
ing training. The training data consist of 500 English
sentences from Wikipedia and News sources (Dagan
et al., 2006; Wang et al., 2019), tokenized using the
SentencePiece tokenizer (Kudo & Richardson, 2018)
into a vocabulary of size 30522 with 128 tokens per
sequence. Each sequence is labeled with a random
binary sequence of the same length.

• Learning to sort. Given an input sequence of letters,
this task learns to sort the letters in alphabetical order-
ing (similar tasks have been studied before (Freivalds
et al., 2019)). Specifically, the model’s output for each
input letter is used to determine the position of that
letter in the predicted ordering. Each input sequence,
of length 8, is created by sampling uniformly randomly,
with replacement, from an alphabet of size 10. The
training and test sets consist of 1000 and 200 sequences,

respectively.

• Convex hull prediction. This task was inspired by the
work of Vinyals et al. (2015). Given a sequence of
N points uniformly distributed in [0, 1] × [0, 1] and
shifted by a random bivariate standard normal, this task
predicts the convex hull of these points. Specifically,
for each point in the set, the model predicts whether it
is part of the convex hull. The training set consists of
10, 000 sequences of points in [0, 1] × [0, 1], each of
length 10.

In all three tasks, we report the test-set per-token label pre-
diction accuracy as the evaluation metric. While we report
results for the specified settings, we found that the path
effectiveness trends are generally robust with respect to hy-
perparameter changes, such as the model depth, number of
heads, and the difficulty of the task.

Path effectiveness test. We measure the effectiveness
of individual paths by a path disentanglement procedure
that we apply at inference time: the procedure isolates
the weights involved and the output of an individual path
(PL

hL
· · ·P 1

h1
)X (W 1

h1
· · ·WL

hL
) for any given sequence of
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Figure 3: Applying a trained single-layer transformer module recurrently, to models of increasing β ≥ ‖W l
QK‖1‖W l

V ‖1,∞ (horizontal
direction) and across architectural variants (vertical direction). The two light background paths illustrate the two training trajectories, for
which the starting points are (−0.3, 0) and (0.3, 0). Each figure contains the same number of steps. Consistent with the theory in §3,
convergence slows down or stops as β increases, as well as when either MLP or skip connections are added.

heads h1, · · · , hL ∈ [H ∪ 0]L. After the attention network
has been successfully trained to solve each task, we use
this procedure to determine the output of a randomly sam-
pled set of paths of a given length. We then evaluate the
task performance based solely on the normalized sum of
this subset of paths (rather than from all paths). Note that
the training remains unaltered and uses all heads simulta-
neously, therefore ensuring that each path learns to its full
effectiveness.

Figure 4 illustrates the resulting performance across all three
tasks. We test different subset sizes and report the mean and
standard deviation of five repetitions. For reference, we also
plot the accuracy of a naive classifier, as well as that of the
entire trained model including all paths. As observed, short
paths carry predictive power; on the other hand, the output
of longer paths is not much better than a random guess. In
the convex hull task, since there is a class imbalance, we
use a majority class predictor to obtain a random baseline.
Though the difference in accuracy between short and long
paths is less pronounced for the convex hull task, we observe
that the variance of the long paths is noticeably larger.

The depths (L), number of heads (H), and hidden dimen-

sions (d) for the three models are: L:6, H:2, d:250 for
memorization, L:6, H:2, d:48 for sorting, and L:6, H:3,
d:84 for convex hull. It’s important to note that for all three
tasks, while higher peak accuracies are attainable with in-
creased model capacity and training time, our focus is to
study the effects of path length on performance. Indeed, the
trend for degenerating performance as path length increases
stayed consistent across model sizes in all experiments.

The rapidly diminishing effectiveness of paths with respect
to length indicates that attention networks rely almost ex-
clusively on short paths. In other words, attention networks
behave like an ensemble of shallow networks. Furthermore,
the results indicate that there is underutilized capacity in
long paths, and suggest that one way to make them, and
hence the attention network, more effective, is to prevent
the long paths from losing rank.

5. Related works

Skip connections were first introduced in ResNets (He et al.,
2016a), ever since, it has been used to facilitate optimiza-
tion in deep networks (He et al., 2016b; Veit et al., 2016a;
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Figure 4: To determine how much of the expressive power can be attributed to short vs long paths, we examine the performance of
subsets of paths of different lengths (rather than of the entire SAN). Performance can be seen to consistently deteriorate with respect to
path length, supporting our hypothesis that short paths are responsible for the majority of the expressive power.

Balduzzi et al., 2018). In particular, skip connections tackle
the vanishing gradient problem, by allowing the gradient to
flow bypass the skipped layers during backpropagation. The
original motivation of using skip connections in transform-
ers follow the same reasoning on facilitating optimization
(Vaswani et al., 2017). With the paths decomposition for
transformers, we discover an additional surprising impor-
tance of skip connections: they prevent the transformer
output from degenerating to rank one exponentially quickly
with respect to network depth.

Veit et al. (2016a) introduced an analogous interpretation
for residual networks as a collection of paths of varying
lengths, and found that the length of the effective paths in
deep residual networks are much shorter than the total net-
work depth, due to the gradients used for parameter updates
coming overwhelmingly from these short paths. Our find-
ing suggests that SANs rely on short paths to avoid rank
collapse. Daneshmand et al. (2020) proved that batch nor-
malization prevents rank collapse in randomly initialized
deep linear networks, with certain assumptions. Interest-
ingly, their work did not find skip connections to have a
similar rank stabilizing effect under the settings studied.

Some recent works have approximated the attention matrix
with low-rank factorizations (Wang et al., 2020; Tay et al.,
2020) or kernel methods (Katharopoulos et al., 2020; Choro-
manski et al., 2020), to reduce the quadratic self-attention
complexity. Are work is orthogonal to these works, by
studying the rank of the network’s output (rather than of the
attention matrix).

There have been other recent advances in understanding
the theory behind transformers: (Perez et al., 2019; De-
hghani et al., 2019) proved Turing universality, (Cordonnier
et al., 2020a) provided necessary and sufficient conditions
for attention to simulate convolution. A linearized form
of self-attention was also found to exhibit a depth phase
transition (Levine et al., 2020); and the Lipschitz constant

of self-attention was analyzed by (Kim et al., 2020).

Perhaps the convergence to rank one of a path should come
as no surprise: each path component contains row-stochastic
matrices as a result of the softmax attention, and (Anthonisse
& Tijms, 1977) showed the exponential convergence of prod-
ucts of stochastic matrices to rank one. While the intuition
behind stochastic matrices driving convergence still applies,
in deep attention networks these matrices interact in more
complex ways than what classical analyses consider. As
we show, because of these interactions the rank collapses
much faster than what would be expected based on classical
analyses (cubic vs linear rate).

6. Conclusion

This work exposes competing forces over rank collapse in
self-attention networks, namely self-attention vs skip con-
nections and MLPs. In the process, we develop a path
decomposition for SANs, which modularizes the study of
self-attention and is of independent interest to additional
applications. These results open the door for exciting future
directions. For instance, how can one leverage the token-
uniformity inductive bias revealed to design more effective
networks, perhaps better at utilizing long paths? What are
some practical implications for width-depth trade-off? How
do we prove meaningful lower bounds of residue conver-
gence for transformers? We believe that answering these
questions will have broad implications in advancing the
state of the art.
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