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Abstract
Kernel ridge regression is well-known to achieve
minimax optimal rates in low-dimensional set-
tings. However, its behavior in high dimensions
is much less understood. Recent work establishes
consistency for high-dimensional kernel regres-
sion for a number of specific assumptions on the
data distribution. In this paper, we show that in
high dimensions, the rotational invariance prop-
erty of commonly studied kernels (such as RBF,
inner product kernels and fully-connected NTK
of any depth) leads to inconsistent estimation un-
less the ground truth is a low-degree polynomial.
Our lower bound on the generalization error holds
for a wide range of distributions and kernels with
different eigenvalue decays. This lower bound
suggests that consistency results for kernel ridge
regression in high dimensions generally require
a more refined analysis that depends on the struc-
ture of the kernel beyond its eigenvalue decay.

1. Introduction
Traditional analysis establishes good generalization proper-
ties of kernel ridge regression when the dimension d is rela-
tively small compared to the number of samples n. These
minimax optimal and consistency results, however, do not re-
flect observations for modern datasets with large d close to n.
High dimensional statistical theory (Vaart, 1998; Bühlmann
and Van De Geer, 2011; Wainwright, 2019) aims to fill the
gap and obtain bounds that are predictive for large d. One
popular approach is to consider the high-dimensional asymp-
totic regime n, d→∞, d/nβ → γ resulting in bounds that
often match the behavior of empirical observations for large
finite dimension d quite well.
While recent work (Dobriban and Wager, 2018; Hastie et al.,
2019; Bartlett et al., 2020) establishes explicit asymptotic
upper bounds for the bias and variance for high-dimensional
linear regression, the results for kernel regression are less
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conclusive in the regime d/nβ → c with β ∈ (0, 1). In par-
ticular, even though several papers (Ghorbani et al., 2021;
2020; Liang et al., 2020a) show that the variance decreases
with the dimensionality of the data, the bounds on the bias
are inconclusive. On the one hand, Liang et al. (2020a)
prove asymptotic consistency for ground truth functions
with asymptotically bounded Hilbert norms for neural tan-
gent kernels (NTK) and inner product (IP) kernels. In con-
trast, Ghorbani et al. (2021; 2020) show that for uniform
distributions on the product of two spheres, consistency
cannot be achieved unless the ground truth is a low-degree
polynomial. This polynomial approximation barrier can
also be observed for random feature and neural tangent
regression (Mei and Montanari, 2019; Mei et al., 2021a;
Ghorbani et al., 2021).
Notably, the two seemingly contradictory consistency
results hold for different distributional settings and are
based on vastly different proof techniques. While (Liang
et al., 2020a) proves consistency for general input distri-
butions including isotropic Gaussians, the lower bounds
in the papers (Ghorbani et al., 2021; 2020) are limited to
data that is uniformly sampled from the product of two
spheres. Hence, it is a natural question to ask whether
the polynomial approximation barrier is a more general
phenomenon or restricted to the explicit settings studied
in (Ghorbani et al., 2021; 2020). Concretely, this paper
addresses the following question:

Can we overcome the polynomial approximation barrier
when considering different high-dimensional input distri-
butions, eigenvalue decay rates or scalings of the kernel
function?

We unify previous distributional assumptions in one proof
framework and thereby characterize how the rotational in-
variance property of common kernels induces a bias towards
low-degree polynomials. Specifically, we show that the poly-
nomial approximation barrier persists for

• a broad range of common rotationally invariant kernels
such as radial basis functions (RBF) with vastly differ-
ent eigenvalue decay rates, inner product kernels and
NTK of any depth (Jacot et al., 2018).
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• general input distributions, including anisotropic Gaus-
sians. The degree of the polynomial depends only on
the distribution via deff := tr(Σd)/ ||Σd||op and not on
the specific structure of Σd. In particular, we cover the
distributions studied in previous related works (Ghor-
bani et al., 2021; 2020; Liang et al., 2020a;b; Liu et al.,
2021).

• different scalings τ of the kernel function kτ (x, x′) =

k( x√
τ
, x
′
√
τ

) beyond the classical choice τ � deff.

As a result, this paper demonstrates that it is a general
high-dimensional phenomenon that for rotational invari-
ant kernels, kernel regression can only consistently learn
low-degree polynomials. that the polynomial approxima-
tion barrier is a general high-dimensional phenomenon for
rotationally invariant kernels; that is, kernel regression with
such kernels can only consistently learn functions that are
low-degree polynomials.
Rotationally invariant kernels are a natural choice if no prior
information on the structure of the ground truth is available,
as they treat all dimensions equally. Since our analysis
covers a broad range of distributions, eigenvalue decays and
different scalings, our results motivate future work to focus
on the symmetries, or rather asymmetries, of the kernel
incorporating prior knowledge on the structure of the high-
dimensional problem (see (Arora et al., 2019; Shankar et al.,
2020; Mei et al., 2021b)).
This paper is organized as follows. First of all, we show in
Section 2.2 that the bounded norm assumption that previous
consistency results (Liang et al., 2020a;b) rely on, is violated
as d→∞ even for simple functions such as f(x) = e>1 x.
We then introduce our generalized setting in Section 2 and
present our main results in Section 3 where we show a lower
bound on the bias that increases with the dimensionality of
the data. Finally, in Section 4 we empirically illustrate how
the bias dominates the risk in high dimensions and therefore
limits the performance of kernel regression. As a result,
we argue that it is crucial to incorporate structural prior
knowledge of the ground truth function in high-dimensional
kernel learning, even in the noiseless setting. We empirically
verify this on real-world sparsely parameterized data.

2. Problem setting
In this section, we briefly introduce kernel regression estima-
tors in reproducing kernel Hilbert spaces and subsequently
state our assumptions on the kernel, data distribution and
high-dimensional regime.

2.1. Kernel ridge regression
We consider nonparametric regression in a reproducing ker-
nel Hilbert space (RKHS, see e.g. (Wahba, 1990; Smola and
Schölkopf, 1998)) with functions on the domain X ⊂ Rd

induced by a positive semi-definite kernel k : X × X → R.
That is, for any set of input vectors {x1, · · · , xm} in X , the

empirical kernel matrix K with entries Ki,j = k(xi, xj ,) is
positive semi-definite. We denote the corresponding inner
product of the Hilbert space by 〈., .〉k and the corresponding
norm by ‖.‖H :=

√
〈., .〉k.

We observe tuples of input vectors and response variables
(x, y) with x ∈ X and y ∈ R. Given n samples, we consier
the ridge regression estimator

f̂λ = arg min
f∈H

n∑
i=1

(yi − f(xi))
2

+ λ‖f‖2H, (1)

with λ > 0 and the minimum norm interpolator (also called
the kernel ridgeless estimate)

f̂0 = arg min
f∈H

‖f‖H such that ∀i : f(xi) = yi (2)

that can be obtained as the limit of the ridge estimate
f̂0 = limλ→0 f̂λ. It is well-known that the ridge estima-
tor can attain consistency as n→∞ for some sequence of
λ such that λn → 0. Motivated by the curiously good gen-
eralization properties of neural networks with zero training
error, recently some works (Liang et al., 2020a;b; Ghorbani
et al., 2021; 2020) have also analyzed the consistency behav-
ior of ridge and ridgeless estimates in the high-dimensional
regime.
For evaluation, we assume that the observations are i.i.d.
samples from a joint distribution (xi, yi)

n
i=1 ∼ PXY and

refer to f?(x) := E[y | X = x] as the ground truth function
that minimizes the population square loss E(Y − f(X))2.
We evaluate the estimator using the population risk condi-
tioned on the input data X

R(f̂λ) := EY ‖f̂λ − f?‖2L2(PX) = ‖EY f̂λ − f?‖2L2(PX)︸ ︷︷ ︸
=: Bias B

+ EY ‖EY f̂λ − f̂λ‖2L2(PX)︸ ︷︷ ︸
=: Variance V

,

where EY is the conditional expectation over the observa-
tions yi ∼ P(Y |X = xi). In particular, when y = f?(x)+ε,
EY f̂λ is equivalent to the noiseless estimator with ε = 0.
Note that consistency in terms of R(f̂λ) → 0 as n → ∞
can only be reached if the bias vanishes. In this paper,
we lower bound the bias B which, in turn, implies a lower
bound on the risk and the inconsistency of the estimator. The
theoretical results in Section 3 hold for both ridge regression
and minimum norm interpolation.

2.2. Prior work on the consistency of kernel regression
For ridge regression estimates in RKHS, a rich body of work
shows consistency and rate optimality when appropriately
choosing the ridge parameter λ both in the non-asymptotic
setting, e.g. (Caponnetto and De Vito, 2007), and the clas-
sical asymptotic setting, e.g. (Christmann et al., 2007), as
n→∞ for fixed d.
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Figure 1: The approximation of the Hilbert norm induced by
the Laplace and exponential inner product kernels of the function
f?(x) = x1 plotted with respect to the dimension d on the space
X = [0, 1]d. See Section 4.1 for experimental details.

Similar results have also been shown for high-dimensional
asymptotics, where recent papers on minimum norm interpo-
lation in kernel regression (Liang et al., 2020a;b) explicitly
show how the bias vanishes as d, n→∞ when the ground
truth function has bounded Hilbert norm. Even though this
assumption is perfectly reasonable for a fixed ground truth
and Hilbert space, its plausibility is less clear for a sequence
of functions as d → ∞.1 After all, the Hilbert space and
thus also the norm changes with d. In fact, we now show
that even innocuous functions have diverging Hilbert norm
as the dimension increases. The following lemma illustrates
this phenomenon for tensor product kernels including expo-
nential inner product kernels (also studied in (Liang et al.,
2020a;b)) defined on x, x′ ∈ X⊗d ⊂ Rd.

Lemma 2.1 (Informal). For any f that is a non-constant
sparsely parameterized product function
f(x) =

∏m
j=1 fj(x(j)) for some fixed m ∈ N+,

‖f‖Hd
d→∞→ ∞.

In words, for simple sequences of sparse product functions,
the Hilbert norm diverges as the dimension d → ∞. The
precise conditions on the kernel and sequenceHd of induced
Hilbert spaces can be found in Appendix B. Figure 1 illus-
trates this phenomenon for f?(x) = e>1 x for the Laplace
and exponential inner product kernel.
The discussion so far implies that generalization upper
bounds that rely on the bounded Hilbert norm assumption
become void even for simple ground truth functions. A nat-
ural follow-up question is therefore: Does kernel regression
actually fail to consistently learn sparsely parameterized
functions or is it an artifact of the analysis in Liang et al.
(2020a;b). A recent line of work by Ghorbani et al. (2021;

1Although Liu et al. (2021) replace the bounded Hilbert norm
assumption with a weaker bounded source condition, we expect
this condition not to hold with increasing dimension either. We
defer the detailed discussion to future work.

2020) shows that kernel ridge regression estimates can in-
deed only consistently learn polynomials of degree at most
logn

log deff
as d, n → ∞ (which we refer to as the polynomial

approximation barrier). While the results provide some
intuition for the behavior of kernel regression, the proofs
heavily rely on significant simplifications that only hold for
the specific distributional assumptions on the sphere.
In the next sections, we use a different proof technique
to show that the polynomial approximation barrier indeed
holds for a broad spectrum of data distributions that also
capture the distributions studied in the papers (Liang et al.,
2020a;b) as well as for an entire range of eigenvalue de-
cay rates of the kernel functions (e.g. polynomial and ex-
ponential decay rates) and choices of the scaling τ . As a
consequence, our results suggest that the polynomial approx-
imation barrier is strongly tied to the rotational invariance of
the kernel function and not specific to uniform distributions
on the sphere.

2.3. Our problem setting
The framework we study in this paper covers random vectors
that are generated from a covariance matrix model, i.e. X =

Σ
1/2
d W with vector W consisting of i.i.d entries and their

projections onto the d− 1-dimensional unit sphere. We now
specify all relevant assumptions on the kernel and the data
distribution.

Kernels Throughout this paper, we focus on continuous
and rotationally invariant kernels. They include a vast ma-
jority of the commonly used kernels such as fully connected
NTK, RBF and inner product kernels as they only depend
on the squared Euclidean norm of x and x′ and the inner
product x>x′. We first present one set of assumptions on
the kernel functions that are sufficient for our main results.

(A.1) Rotational invariance and local power series expan-
sion: The kernel function k is rotationally invari-
ant and there is a function g such that k(x.x′) =
g(‖x‖22, ‖x′‖22, x>x′). Furthermore, g can be ex-
panded as a power series of the form

g(‖x‖22, ‖x′‖22, x>x′) =

∞∑
j=0

gj(‖x‖22, ‖x′‖22)(x>x′)j

(3)

that converges for x, x′ in a neighborhood of the sphere
{x ∈ Rd | ‖x‖2 ∈ [1 − δ, 1 + δ]} for some δ > 0.
Furthermore, all gi are positive semi-definite kernels.

(A.2) Restricted Lipschitz continuity: The restriction of k on
{(x, x)|x ∈ Rd, ‖x‖22 ∈ [1−δL, 1+δL]} is a Lipschitz
continuous function for some constant δL > 0.

Beyond Assumptions A.1,A.2 our main results hold in fact
for a broader range of commonly studied kernels in practice
(see Corollary 3.2). In particular, Theorem 3.1 also holds
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for α-exponential kernels defined as k(x, x′) = exp(−‖x−
x′‖α2 ) for α ∈ (0, 2) even though we could not yet show
that they satisfy Assumptions A.1-A.2. In Appendix C, we
show how the proof of Theorem 3.1 crucially relies on the
rotational invariance Assumption C.1 and the fact that the
eigenvalues of the kernel matrix K are asymptotically lower
bounded by a positive constant. Both conditions are also
satisfied by α-exponential kernels and the separate treatment
is purely due to the different proof technique used to lower
bound the kernel matrix eigenvalues.

Data distribution and scaling We impose the following
assumptions on the data distribution.

(B.1) Covariance model: We assume that the input data dis-
tribution is from one of the following sets

Q = {PX | X = Σ
1
2

dW with ∀i : W(i)
i.i.d.∼ P,P ∈ W}

QSd−1 = {PX | X =
√
deff

Z

‖Z‖
with Z ∼ P ∈ Q}

where Σd ∈ Rd×d is a positive semi-definite covari-
ance matrix and the effective dimension deff is defined
as deff := tr(Σd)/ ||Σd||op. The entries of the random
vector W are sampled i.i.d. from a distribution in the
setW , containing the standard normal distribution and
any zero mean and unit variance distributions with
bounded support.

(B.2) High dimensional regime: We assume that the effective
dimension grows with the sample size n s.t. deff/n

β →
c for some β, c > 0.

In words, when PX ∈ Q, the data has covariance Σd, and
when PX ∈ QSd−1 , the data can be generated by projecting
Z ∼ PZ ∈ Q onto the sphere of radius

√
deff. Unlike

Ghorbani et al. (2021; 2020), we do not require the random
vectors xi to be uniformly distributed on the sphere (see
Table 1). In the sequel we assume, without loss of generality,
that for simplicity ||Σd||op = 1 and hence deff = tr(Σd).
In our analysis, the kernel function g does not change for any
d. However as deff, n → ∞ we need to adjust the scaling
of the input as the norm concentrates around E‖x‖22 = deff.
Hence, we consider the sequence of scale dependent kernels

kτ (x, x′) = g

(
‖x‖22
τ

,
‖x′‖22
τ

,
x>x′

τ

)
(4)

and parameterize the scaling by a sequence of parameters
τ dependent on n. In Section 3.1 we study the standard
scaling τ

deff
→ c > 0, before discussing τ

deff
→ 0 and

τ
deff
→∞ respectively in Section 3.2, where we show that

the polynomial approximation barrier is not a consequence
of the standard scaling.

3. Main Results
We now present our main results that hold for a wide range
of distributions and kernels and show that kernel methods
can at most consistently learn low-degree polynomials. Sec-
tion 3.1 considers the case τ � deff while Section 3.2 pro-
vides lower bounds for the regimes τ

deff
→ 0 and τ

deff
→∞.

3.1. Inconsistency of kernel regression for τ � deff
For simplicity, we present a result for the case τ = deff. The
more general case τ � deff follows from the exact same
arguments. In the sequel we denote by P≤m the space of
polynomials of degree at most m ∈ N.

Theorem 3.1 (Polynomial approximation barrier). Assume
that the kernel k, respectively its restriction onto the sphere,
satisfies A.1-A.2 or is an α-exponential kernel. Furthermore,
assume that the input distribution PX satisfies Assumptions
B.1-B.2 and that the ground truth function f∗ is bounded.
Then, for some m ∈ N specified below, the following results
hold for both the ridge (1) and ridgeless estimator (2) f̂λ
with λ ≥ 0.

1. The bias of the kernel estimators f̂λ is asymptotically
almost surely lower bounded for any ε > 0,

B(f̂λ) ≥ inf
p∈P≤m

‖f?− p‖L2(PX)− ε a.s. as n→∞.

(5)

2. For bounded kernel functions on the support of PX the
averaged estimator EY f̂λ converges almost surely in
L2(PX) to a polynomial p ∈ P≤m,∥∥∥EY f̂λ − p

∥∥∥
L2(PX)

→ 0 a.s. as n→∞. (6)

More precisely, if gi is (b2/βc+ 1− i)-times continuously
differentiable in a neighborhood of (1, 1) and there exists
j′ > b2/βc such that gj′(1, 1) > 0, then the bounds (5),(6)
hold with m = 2b2/βc for PX ∈ Q and m = b2/βc for
PX ∈ QSd−1 .

The almost sure statements refer to the sequence of matri-
ces X of random vectors xi as n → ∞, but also hold true
with probability ≥ 1− n2 exp(−Cε′ log(n)(1+ε′)) over the
draws of X (see Lemma C.1 for further details).
The first statement in Theorem 3.1 shows that even with
noiseless observations, the estimator f̂λ can consistently
learn ground truth functions f? that are a polynomial of
degree at most m. We refer to m as the β-dependent poly-
nomial approximation barrier. Figures 2a and 2b illustrate
this barrier on synthetic datasets drawn from different input
data distributions (see Section 4.2 for a detailed discussion).
Furthermore, the second part of Theorem 3.1 states that the
averaged estimator EY f̂λ converges in L2(PX) to a poly-
nomial of degree at most m when the kernel is bounded
on the support of PX . We provide a closed form expres-
sion for the polynomial in the proof of the Theorem 3.1
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(a) Ground truth f? = 2x2(1) (b) Ground truth f? = 2x3(1) (c) Degeneration of estimator

Figure 2: (a) and (b): The bias of the minimum norm interpolant B(f̂0) normalized by B(0) as a function of β for (a) different covariance
models P1- P3 (see Section 4.2) with n = 4000 and (b) different choices of n and samples generated from the isotropic Gaussian P1

with d = bnβc . The horizontal lines B(flin) correspond to the risk of the optimal linear model for the respective input distributions
Pi. (c): The minimum norm interpolator f̂0 plotted in the direction (0, 1/2, · · · , 1/2) + αe1 when fitting noiseless observations with
f?(x) = sin(2πx(1)) and n = 100 covariates drawn uniformly from [0, 1]d for varying d.

in Appendix C.1. Figure 2c illustrates how the estimator
degenerates to a linear function as dimension grows. We
refer to Theorem C.2 in Appendix C for slightly weaker
statements which also apply to unbounded kernels.
The attentive reader might notice that Ghorbani et al. (2020)
achieve a lower barrier m = b1/βc for their specific setting
which implies that our results are not tight. However, we
leave this as a future work as the focus of this paper is
to demonstrate that the polynomial approximation barrier
persists for general covariance model data distributions (Ass.
B.1-B.2).
We now present a short proof sketch to provide intuition for
the polynomial approximation barrier. The full proof can be
found in Appendix C.

Proof sketch The proof of the main theorem is primarily
based on the concentration of Lipschitz continuous func-
tions of vectors with i.i.d entries. In particular, we show in
Lemma C.1 that

max
i

∣∣x>i X∣∣
τ

≤ n−β/2(log n)(1+ε)/2 a.s. as n→∞,
(7)

where we use tr(Σd) � nβ . Furthermore, Assumption
A.1 and hence the rotational invariance of the kernel, implies
that for inner product kernels where gj are scalars,

kτ (xi, X) =

m∑
j=0

gj ·
(
x>i X

τ

)j
+O

(
n−θ

)
a.s. as n→∞

(8)
with θ some constant such that 1 < θ < (m + 1)β2 that
exists because m ≥ b2/βc. Hence, as n → ∞, kτ (xi, X)
converge to low-degree polynomials. Using the closed
form solution of f̂λ based on the representer theorem we
can hence conclude the first statement in Theorem 3.1 if
K + λI � cI for some constant c > 0. The result follows

naturally for ridge regression with non vanishing λ > 0.
However for the minimum norm interpolator, we need to
show that the eigenvalues of the kernel matrixK themselves
are asymptotically lower bounded by a positive non-zero
constant. This follows from the additional assumption in
Theorem 3.1 and the observation that (X>X)◦j

′ → In in
operator norm with ◦ being the Hadamard product. Finally,
the case where gj are non-constant functions of x, x′

requires a more careful analysis and constitute the major
bulk of the proof in Appendix C.

The assumptions in Theorem 3.1 cover a broad range of
commonly used kernels. The following corollary summa-
rizes relevant special cases, some of which have also been
studied in previous works.

Corollary 3.2. Theorem 3.1 applies to:

1. The exponential inner product kernel

2. The α-exponential kernel for α ∈ (0, 2], including
Laplace (α = 1) and the Gaussian (α = 2) kernels

3. The fully-connected NTK of any depth with regular
activation functions including the ReLU activation
σ(x) = max(0, x)

The precise regularity conditions of the activation functions
for the NTK and the proof of the corollary can be found
in Appendix C.3.

3.2. Inconsistency of kernel interpolation for τ 6� deff
As Section 3.1 focuses on the classical scaling τ

deff
� 1, an

important question remains unaddressed: can we avoid the
polynomial approximation barrier with a different scaling?
When τ

deff
→ 0, intuitively the estimate f̂λ converges to the

zero function almost everywhere and hence the bias is lower
bounded by the L2(Px)-norm of f? (see Appendix D.2 for
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(a) Laplacian kernel (b) Gaussian kernel (c) Exponential inner product kernel

Figure 3: The bias of the minimum interpolant B(f̂0) normalized by B(0) as a function of the normalization constant τ for different
choices of d = deff. The ground truth function is f(x) = 2x3(1) and n = 2000 noiseless observations are fit where the input vectors are
sampled from an isotropic Gaussian with d = bn1/2c.

a rigorous statement). When τ increases faster than deff,
however, the behavior is unclear a priori. Simulations in
Figure 3a, 3c suggest that the bias could in fact decrease
for τ � deff and attain its minimum at the so called flat
limit, when τ →∞. To the best of our knowledge, the next
theorem is the first to show that the polynomial approxima-
tion barrier persists in the flat limit for RBF kernels with
polynomial eigenvalue decay.

Theorem 3.3. Let k be an RBF kernel with Fourier trans-
form k̂ such that for any d, lim

‖θ‖→∞
‖θ‖d+αk̂(θ) = cd > 0

for some α ∈ (0, 2). Under the assumptions B.1-B.2 on the
data distribution, the bias lower bound (5) and polynomial
approximation (6) hold for the flat limit interpolator lim

τ→∞
f̂0

with the same β-dependence for m as in Theorem 3.1, given
that f? is bounded on the support of PX .

In particular, the assumptions hold for instance for the
α-exponential kernels with α ∈ (0, 2) (see (Blumenthal
and Getoor, 1960)) and the popular Matern RBF kernels
with ν < 2. The proof of the theorem can be found
in Appendix D.1 and is based on the flat limit literature
on RBFs (Lee et al., 2014; Driscoll and Fornberg, 2002;
Schaback, 2005; Larsson and Fornberg, 2005). Finally, we
remark that Theorem 3.3 applies only for the interpolating
estimator f̂0. However, it is well known that the bias in-
creases with the ridge penalty λ > 0 and hence attains its
minimum at λ = 0.

3.3. Discussion of theoretical results
Our unifying treatment shows that the polynomial approx-
imation barrier (5) is neither restricted to a few specific
distributions nor to a particular choice of the scaling or the
eigenvalue decay of the kernel function (see Table 1).

Distribution Assumptions B.1-B.2 allow very general
distributions and include the ones in the current literature.
In particular, we also cover the settings studied in the papers

(Liang et al., 2020a;b; Liu et al., 2021) and consequently
put their consistency results into perspective. Besides, our
results hold true for arbitrary covariance matrices and only
depend on the growth rate of the effective dimension, but
are independent of the explicit structure of the covariance
matrix. This stands in contrast to linear regression where
consistency results depend on the “spikiness” of the co-
variance matrices (Bartlett et al., 2020; Muthukumar et al.,
2020).

Scaling Our results do not only apply for the standard
choice of the scaling τ/deff → c > 0, but also apply to gen-
eral RBF kernels in the flat limit scaling, i.e. where τ →∞.
This case is particularly important since this is where we
empirically find the bias to attain its minimum in Figure 3c.
We therefore conjecture that the polynomial barrier cannot
be overcome with different choices of the scaling.

Eigenvalue decay Furthermore, by explicitly showing
that the polynomial barrier persists for all α-exponential
kernels with α ∈ (0, 2] (that have vastly different eigen-
value decay rates), we provide a counterpoint to previous
work that suggests consistency for α → 0. In particular,
Belkin et al. (2019) prove minimax optimal rates for the
Nadaraya-Watson estimators with singular kernels for fixed
dimensions and empirical work by Belkin et al. (2018) and
Wyner et al. (2017) suggests that spikier kernels have more
favorable performances. Our results, however, suggest
that in high dimensions, the effect of eigenvalue decay
(and hence “spikiness”) may be dominated by asymptotic
effects of rotationally invariant kernels. We discuss possible
follow-up questions in Section 5.

As a result, we can conclude that the polynomial ap-
proximation barrier is a rather general phenomenon that
occurs for commonly used rotationally invariant kernels.
For ground truths that are inherently higher-degree polyno-
mials that depend on all dimensions, our theory predicts
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Functions f? Kernels Domain Choice of τ Σd Regime Paper

P≤m IP, α-exp, NTK Rd, Sd−1(
√
deff) τ = deff arbitrary deff � nβ Ours

P≤m RBF Rd, Sd−1(
√
deff) τ →∞ arbitrary deff � nβ Ours

‖f?‖H = O(1) IP, NTK Rd τ = deff = d Id d � nβ (Liang et al., 2020a)

‖f?‖H = O(1)2 IP, RBF Rd τ = deff = d
tr(Σd)/d→ c

or→ 0 d � n
(Liang et al., 2020b),

(Liu et al., 2021)
P≤m′ IP, NTK Sd−1(

√
deff) τ = d Id d � nβ (Ghorbani et al., 2021)

P≤m′ IP, NTK Sd−1(
√
deff) τ ≈ deff UU> + d−κI deff � nβ (Ghorbani et al., 2020)

Table 1: Compilation of the different settings studied in the literature and our paper. The left-most column denotes the necessary
conditions on the function space of the ground truth f? for the corresponding consistency results. Here, m = 2b2/βc and m′ = b1/βc.

that consistency of kernel learning with fully-connected
NTK, standard RBF or inner product kernels is out of reach
if the data is high-dimensional. In practice however, it
is possible that not all dimensions carry equally relevant
information. In Section 4.3 we show how, in this case,
feature selection can be used in such settings to circumvent
the bias lower bound. On the other hand, for image datasets
like CIFAR-10 where the ground truth is a complex function
of all input dimensions, kernels that perform well heavily
rely on convolutional structures to break the rotational
symmetries such CNTKs or compositional kernels (Arora
et al., 2019; Novak et al., 2019; Daniely et al., 2016;
Shankar et al., 2020; Mei et al., 2021b)).

4. Experiments
In this section we describe our synthetic and real-world
experiments to further illustrate our theoretical results and
underline the importance of feature selection in high dimen-
sional kernel learning.

4.1. Hilbert space norm increases with dimension d
In Figure 1, we demonstrate how the Hilbert norm of the
simple sparse linear function f?(x) = x(1) grows with
dimension d as discussed in Section 2.2. We choose the
scaling τ = d and consider the Hilbert space induced by
the scaled Gaussian kτ (x, x′) = exp(−‖x−x

′‖2
τ ), Laplace

kτ (x, x′) = exp(−‖x−x
′‖2√
τ

) and exponential inner product

kτ (x, x′) = exp(−x
T x′

τ ) kernels. To estimate the norm, we
draw 7500 i.i.d. random samples with noiseless observations
from the uniform distribution on X = [0, 1]d.

4.2. Illustration of the polynomial barrier
We now provide details for the numerical experiments in
Figure 2,3 that illustrate the lower bounds on the bias in
Theorem 3.1 and Theorem 3.3. For this purpose, we con-
sider the following three distributions PX that satisfy the
assumptions of the theorems and are covered in previous
works:

2 (Liu et al., 2021) actually requires the weaker assumption
that the source condition parameter r > 0.

• P1: X = W , W(i) ∼ N(0, 1) and d = bnβc

• P2: X =
√
d W
‖W‖2 , W(i) ∼ N(0, 1) and d = bnβc

• P3: X = Σ
1/2
d W , W(i) ∼ Uniform([−u, u]d), with u

such that W(i) has unit variance, Σd diagonal matrix
with entries (1− ((i−1)/d)κ)1/κ and κ ≥ 0 such that
tr(Σd) = nβ and d = n

We primarily use the Laplace kernel with τ = tr(Σd) unless
otherwise specified and study two sparse monomials as
ground truth functions, f?1 (x) = 2x2

(1) and f?2 (x) = 2x3
(1).

We choose the Laplace kernel because of its numerical
stability and good performance on the high dimensional
datasets studied in (Belkin et al., 2018; Geifman et al.,
2020). Other kernels can be found in Appendix A. In
order to estimate the bias ‖EY f̂0 − f?‖2L2(PX) of the
minimum norm interpolant we fit noiseless observations
and approximate the expected squared error using 10000
i.i.d. test samples.

In Figures 2a and 2b, we plot the dependence of the bias
on the parameter β which captures the degree of high-
dimensionality, i.e. how large dimension d is compared
to the number of samples n. We vary β by fixing n and
increasing d (see also Appendix A for plots for fixed d and
varying n). In Figure 2a we demonstrate the important con-
sequence of our unifying framework that the polynomial
barrier only depends on the growth of the effective dimen-
sion tr(Σd) parameterized by β. The horizontal lines that
indicate the bias of the optimal linear fit flin, show how for
large β, kernel learning with the Laplace kernel performs
just as well as a linear function. Figure 2b depicts the bias
curve for different choices of n as a function of β with in-
puts drawn from P1. Since the bias curves are identical we
conclude that we already enter the asymptotic regime for
d, n as low as d ∼ 50 and n ∼ 2000.
In Figures 2a,2b we provide conclusive evidence in a syn-
thetic setting that the increasing bias is caused by the poly-
nomial approximation barrier. For a nonlinear ground truth
function the polynomial approximation barrier suggests that
as β = log deff/ log n increases, the bias will align stepwise
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(a) Bias variance trade-off (b) Residential housing - original (c) Residential housing - add. noise

Figure 4: (a): The bias-variance trade-off of the minimum norm interpolant normalized by B(0) for a synthetic experiment as a function
of selected features (see details in Section 4.3). The trends are reversed compared to the usual bias-variance curve as a function of model
complexity and reflect our theoretical results: the bias term dominates the risk as dimension increases, while the variance monotonically
decreases with dimension. This behaviour can also be observed for the residential housing dataset (b) without and (c) with additive
synthetic noise where the risk of Ridge regression and interpolation follow similar trends that we hence attribute to the bias.

with the best polynomial of decreasing order. For example,
with decreasing β, for the cubic polynomial in Figure 2b, we
first start to learn linear functions (first descent in the curve).
Since the best degree 2 polynomial approximation of f?2
around 0 is a linear function, the curve then enters plateau.
When further decreasing β, the risk starts to descend again
as it gains the ability to learn degree 3 polynomial functions.
Indeed, with decreasing β, for the cubic polynomial in Fig-
ure 2b we first learn linear functions (first descent in the
curve). Since the best degree 2 polynomial approximation
of f∗2 around 0 is a linear function, the curve then enters a
plateau before descending to zero indicating that we suc-
cessfully learn the ground truth.
Figure 3 illustrates how the bias depends on the scaling τ
for different β with n = 2000. We generate samples using
P1 and the ground truth f?2 and plot the bias of the mini-
mum norm interpolator for the Laplace, exponential inner
product and Gaussian kernel. For the latter, the minimum
is obtained around τ = d. For the Laplace and exponential
inner product kernel, the bias achieves its minimum at the
flat limit τ →∞. Given that our lower bounds hold for both
τ = d and τ →∞ (Theorems 3.1 and 3.3), we conjecture
that there might not exist an intermediate scaling regime for
τ that can break the polynomial approximation barrier.

4.3. Feature selection for high-dim. kernel learning
In this section, we demonstrate how the polynomial ap-
proximation barrier limits the performance in real world
datasets and how one may overcome this issue using feature
selection.
Based on our theoretical results we expect that for sparse
ground truths (i.e. that depend only on a few features), the
bias follows a U-shape as dimension increases: until all rel-
evant features are included, the bias first decreases before it
then starts to increase due to the polynomial approximation
barrier that holds for large d when asymptotics start to kick

in. Since recent work shows that the variance vanishes in
high-dimensional regimes (see e.g. (Liang et al., 2020a;
Ghorbani et al., 2020)), we expect the risk to follow a U-
shaped curve as well. Hence, performing feature selection
could effectively yield much better generalization for sparse
ground truth functions. We would like to emphasize that this
behavior is not due to the classical bias-variance trade-off,
since the U-shaped curve can be observed even in the noise-
less case where we have zero variance. We now present
experiments that demonstrate the U-shape of the risk curve
for both synthetic experiments on sparse ground truths and
real-world data. We vary the dimensionality d by perform-
ing feature selection using the algorithm proposed in the
paper (Chen et al., 2017)3. In order to study the impact of
high-dimensionality on the variance, we add different levels
of noise to the observations.

Sparse functions For our synthetic experiments, we draw
500 input samples x1, . . . , xn from P1 and compute the
minimum norm interpolator for n = 100 different draws
over noisy observations from a sparsely parameterized func-
tion y = 0.5

∑4
i=1 x

2
(2i+1) −

∑4
i=1 x(2i) + ε with uniform

noise ε ∼ U([−10, 10]). We increase d by adding more
dimensions (that are irrelevant for the true function value)
and compute the bias and variance of the minimum norm
interpolator. We approximate theL2(Px) norm using Monte
Carlo sampling from P1. In Figure 4a we observe that as
we increase the number of selected features, the bias first
decreases until all relevant information is included and then
increases as irrelevant dimensions are added. This is in line
with our asymptotic theory that predicts an increasing bias
due to the progressively more restrictive polynomial approx-
imation barrier. Furthermore, the variance monotonically

3We expect other approaches that incorporate sparsity such as
automatic relevance determination (Neal, 1996; MacKay, 1996) to
yield a similar effect.
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decreases as expected from the literature. Therefore, the
risk follows the U-shaped curve described above.

Real-world data We now explore the applicability of our
results on real-world data where the assumptions of the the-
orems are not necessarily satisfied. For this purpose we
select datasets where the number of features is large com-
pared to the number of samples. In this section we show
results on the regression dataset residential housing (RH)
with n = 372 and d = 107 to predict sales prices from
the UCI website (Dua and Graff, 2017). Further datasets
can be found in Appendix A.3. In order to study the effect
of noise, we generate an additional dataset (RH-2) where
we add synthetic i.i.d. noise drawn from the uniform dis-
tribution on [−1/2, 1/2] to the observations. The plots in
Figure 4 are then generated as follows: we increase the num-
ber of features using a greedy forward selection procedure
(see Appendix A.3 for further details ). We then plot the risk
achieved by the kernel ridge and ridgeless estimate using
the Laplace kernel on the new subset of features.
Figure 4b shows that the risks of the minimum norm interpo-
lator and the ridge estimator are identical, indicating that the
risk is essentially equivalent to the bias. Hence our first con-
clusion is that, similar to the synthetic experiment, the bias
follows a U-curve. For the dataset RB-2 in Figure 4c, we fur-
ther observe that even with additional observational noise,
the ridge and ridgeless estimator match, i.e. the bias dom-
inates the risk for large d. We also observe both trends in
other high-dimensional datasets discussed in Appendix A.3.
Hence we conclude that even for real-world datasets that
do not necessarily satisfy the conditions of our bias lower
bound, feature selection is crucial for kernel learning for
noisy and noiseless observations alike.
We would like to note that this conclusion does not neces-
sarily contradict empirical work that demonstrates good test
performance of RBFs on other high-dimensional data such
as MNIST. In fact, experiments only indicate that linear or
polynomial fitting would do just as well for these datasets
which has also been suggested in (Ghorbani et al., 2020).

5. Conclusion and future work
Kernel regression encourages certain structural properties
through the RKHS norm induced by the kernel. For exam-
ple, the eigenvalue decay of α-exponential kernels results
in estimators that tend to be smooth (i.e. Gaussian kernel)
or more spiky (i.e. small α < 1). In fact, it is far less
discussed that by choosing a kernel we already implicitly
assume certain structure of the data. For instance, rotational
invariant kernels are invariant under permutations and hence
treat all dimensions equally. Even though rotational invari-
ance is a natural choice when no prior information on the
structure of the ground truth is available, this paper shows
that the corresponding inductive bias in high dimensions
is in fact, restricting the average estimator to a polynomial.

In particular, we show in Theorems 3.1 and 3.3 that the
lower bound on the bias is simply the projection error of
the ground truth function onto the space of polynomials
of degree at most 2b2/βc respectively b2/βc. Apart from
novel technical insights that result from our unified analysis
(discussed in Sec. 3.3), our result also opens up new avenues
for future research.

Future work Modern datasets which require sophisti-
cated methods like deep neural networks to obtain good
predictions are usually inherently non-polynomial and high-
dimensional. Hence, our theory predicts that commonly
used rotationally invariant kernels cannot perform well for
these problems due to a high bias. In particular, our bounds
are independent of properties like the smoothness of the ker-
nel function and cannot be overcome by carefully choosing
the eigenvalue decay. Therefore, in order to understand why
certain highly overparameterized methods generalize well,
our results suggest that it is important to understand how
prior information can be used to break the rotational symme-
try of the kernel function. Examples for recent contributions
in this direction are kernels for image datasets relying on
convolution structures such as CNTKs (Arora et al., 2019;
Novak et al., 2019) or compositional kernels (Daniely et al.,
2016; Shankar et al., 2020; Mei et al., 2021b).
Another relevant future research direction is to present a
tighter non-asymptotic analysis that allows a more accu-
rate characterization of the estimator in practice. The pre-
sented results in this paper are asymptotic statements, mean-
ing that they do not provide explicit bounds for fixed n, d.
Therefore, for given finite n, d it is unclear which high-
dimensional regime provides the most accurate characteri-
zation of the estimator’s statistical properties. For instance,
our current results do not provide any evidence whether the
estimator follows the bias lower bounds for n = dβ with
β = log(n)/ log(d) or n = γd. We remark that the method-
ology used to prove the statements in this paper could also
be used to derive non-asymptotic bounds, allowing us to
further investigate this problem. However, we omitted such
results in this paper for the sake of clarity and compactness
of our theorem statements and proofs and leave this for
future work.
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der Tsigler. Benign overfitting in linear regression. 117
(48):30063–30070, 2020.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To under-
stand deep learning we need to understand kernel learn-
ing. In Proceedings of the International Conference on
Machine Learning (ICML), volume 80, pages 541–549,
2018.

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsy-
bakov. Does data interpolation contradict statistical opti-
mality? In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS), pages
1611–1619, 2019.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic
Analysis on Semigroups. Springer, 1984.

R. M. Blumenthal and R. K. Getoor. Some theorems on
stable processes. Transactions of the American Mathe-
matical Society, 95(2):263–273, 1960.
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