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Abstract

We study the problem of minimizing a relatively-
smooth convex function using stochastic Bregman
gradient methods. We first prove the convergence
of Bregman Stochastic Gradient Descent (BSGD)
to a region that depends on the noise (magnitude
of the gradients) at the optimum. In particular,
BSGD with a constant step-size converges to the
exact minimizer when this noise is zero (interpo-
lation setting, in which the data is fit perfectly).
Otherwise, when the objective has a finite sum
structure, we show that variance reduction can be
used to counter the effect of noise. In particular,
fast convergence to the exact minimizer can be
obtained under additional regularity assumptions
on the Bregman reference function. We illustrate
the effectiveness of our approach on two key ap-
plications of relative smoothness: tomographic
reconstruction with Poisson noise and statistical
preconditioning for distributed optimization.

1. Introduction

We are interested in solving the minimization problem

min f(z), where f() = Belfe(@), ()

where C is a closed convex subset of R? and f; are differ-
entiable convex functions. These problems typically arise
in machine learning when performing (empirical) risk mini-
mization, in which case f is for instance a loss function for
some random sample £. Problem (1) is also encountered in
signal processing applications such as image deblurring or
tomographic reconstruction inverse problems, in which the
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goal is to recover an unknown signal from a large number
of noisy observations. First-order methods are often very
efficient for solving problems such as (1), but computing a
gradient V f might be very expensive for large-scale prob-
lems (large number of components f¢), and even impossible
in the case of true risk minimization (infinite number of
fe). In this case, stochastic gradient methods have proven
to be particularly effective thanks to their low cost per itera-
tion. The simplest one, Stochastic Gradient Descent (SGD),
consists in updating x; as

Tyy1 = argmin { 0.9, = + 1||:v — 22
zeC o 2 )

where g; is a gradient estimate such that E [g;] = V f(z¢).
In our case, a natural choice would be g, = V f¢, (z;) for
some &;. The choice of the step size 7 is crucial for ob-
taining good performances and is typically related to the
smoothness of f with respect to the Euclidean norm.

Beyond simply adapting the step size, a powerful general-
ization of SGD consists in refining the geometry and per-
forming instead Bregman gradient (a.k.a mirror) steps as

Te41 = argmin {n, g/ x+ Dp(z,z)}, (2

where the Euclidean distance has been replaced by the
Bregman divergence with respect to a reference function h,
which writes:

Dy (z,y) = h(z) — h(y) — Vh(y) " (z —y), (3)

forall z € dom h,y € int dom h. We make the following
blanket assumptions on A throughout the article, which
guarantee well-posedness of the update (2).

Assumption 1. The function h : R™ — R U {0} is twice
continuously differentiable and strictly convex on int C.
Moreover, for every y € R%, the problem

g (o)~ =Ty

has a unique solution, which lies in int C.

The standard SGD algorithm corresponds to the case where
h = %||-||%. However, a different choice of & might better fit
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the geometry of the set C' and the curvature of the function,
allowing the algorithm to take larger steps in directions
where the objective gradient changes slowly. This choice
is guided by the notion of relative smoothness and strong
convexity, introduced in Bauschke et al. (2017); Lu et al.
(2018). Instead of the squared Euclidean norm for standard
smoothness, relative regularity is measured with respect to
the reference function h.

Definition 1. The function f is said to be L-relatively
smooth and u-relatively strongly convex with respect to
h if it is differentiable and for all x,y € int dom h,

uDn(z,y) < Dy(z,y) < LDw(2,y). )

where Dy is defined similarly to (3). Note that if yz = 0, the
left-hand side inequality reduces to assuming convexity of
f. Similarly, if » = 3| - [|%, then Dy,(z,y) = %[z — y|°,
and the usual notions of smoothness and strong convexity
are recovered. If both functions are two times differentiable,
Equation (4) can be turned into an equivalent condition on
the Hessians: uV2h(z) = V2 f(z) < LV2h(z). Through-
out the article, we will generally write 7/, and Ly, to
insist on the relative aspect.

Writing the optimality conditions for the minimization prob-
lem of Equation (2), we obtain the following equivalent iter-
ation, which is in the alternative Mirror Descent form (Ne-
mirovsky and Yudin, 1983):

Vh($t+1) = Vh(l't) — NtGe- (5)

Although these updates have a closed-form solution for
many choices of the reference function h, they may be
harder to perform than standard gradient steps, since they
require solving the subproblem defined in (2). Yet, this
may be worth doing in some cases to reduce the overall
iteration complexity, if the resulting majorization in (4) is
much tighter than with the Euclidean distance. Let us list
some applications of relative regularity:

Problems with unbounded curvature. Some problems
have singularities at some boundary points in C' where the
Hessian grows arbitrarily large. In this situation, smooth-
ness with respect to the Euclidean norm does not hold glob-
ally, and standard gradient methods become inefficient as
they necessit excessively small step sizes or costly line
search procedures. A typical example arises in inverse
problems with Poisson noise, which are used in particu-
lar for image deblurring (Bertero et al., 2009) or tomo-
graphic reconstruction (Kak and Slaney, 2001). In this
case, the objective function involves the Kullback-Leibler
divergence, which becomes singular as one of its arguments
approaches 0. However, by choosing the reference func-
tion h(x) = — Zle log(x("), one can show that relative
smoothness holds globally (Bauschke et al., 2017). For

more examples, see Lu et al. (2018); Bolte et al. (2018);
Nesterov (2019); Mishchenko (2019).

Distributed optimization. When h approximates f in
the sense of (4), Bregman methods can be used to speed
up convergence by performing non-uniform precondition-
ing (Shamir et al., 2014; Reddi et al., 2016; Yuan and Li,
2020; Hendrikx et al., 2020b). Typically, h is chosen as
the objective function on a smaller portion of the dataset of
size nprec (e.g., the dataset of the server), which improves
the conditioning by a factor of up to 1. compared to
Euclidean methods, while naturally taking advantage of an
eventually small effective dimension of the dataset (Even
and Massoulié, 2021). In this case, forming the gradient g;
requires communication with the workers (where most of
the data is held), and is thus expensive. Although the up-
dates may not have a simple expression, the inner problem
of Equation (2) can be solved locally at the server without
additional communications. Therefore, Bregman methods
allow to drastically reduce the communication cost by re-
ducing the overall iteration complexity.

Despite these applications, there are still many gaps in our
understanding of convergence guarantees of Bregman gra-
dient methods. In particular, most existing results focus on
the deterministic case g, = V f(z;), or do not leverage the
relative regularity assumptions.

Contributions and outline

In this work, we develop convergence theorems for Breg-
man SGD in the relatively-smooth setting, Our variance
condition depends on the magnitude of the stochastic gradi-
ents at the optimum, and can thus be much smaller than
the one used in Hanzely et al. (2018), in particular for
overparametrized models (which verify the interpolation
condition that all stochastic gradients are equal to O at the
optimum). Our analysis relies on the Bregman general-
ization of a few technical lemmas such as the celebrated
lla + ]| < 2(]|al|? + ||b]|*) inequality (Lemma 2) or the
co-coercivity inequality (Lemma 3), which we believe to be
of independent interest.

Then, we show that variance-reduction techniques, which
are widely used to accelerate traditional Euclidean stochas-
tic methods when the objective has a finite-sum struc-
ture (Schmidt et al., 2013; Johnson and Zhang, 2013; De-
fazio et al., 2014; Allen-Zhu, 2017), can be adapted to the
Bregman setting. Although this generally requires stronger
regularity assumptions (such as global smoothness of / and
Lipschitz continuity of V2h*), we show that the asymptoti-
cal rate of convergence solely depends on relative regularity
constants. The same type of results (asymptotic speedup
under additional smoothness assumptions) is observed when
applying Nesterov-type acceleration to Bregman gradient
methods (Hanzely et al., 2018; Dragomir et al., 2021; Hen-
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drikx et al., 2020b). We provide a summary of the rates
proven in this paper in the appendix.

We start by discussing the related work in Section 2. Then,
Section 3 presents the results for stochastic gradient descent,
along with the main technical lemmas. Section 4 develops a
Bregman version of the standard SAGA algorithm (Defazio
et al., 2014). Finally, Section 5 illustrates the efficiency
of the proposed methods on several applications, including
Poisson inverse problems, tomographic reconstruction and
distributed optimization.

2. Related work

The Bregman gradient method was first introduced as the
Mirror Descent scheme' (Nemirovsky and Yudin, 1983;
Beck and Teboulle, 2003) for minimizing convex nonsmooth
functions, and enjoyed notable success in online learning
(Bubeck, 2011). More recently, the introduction of relative
smoothness (Bauschke et al., 2017; Lu et al., 2018; Bolte
et al., 2018) has also brought interest in applying Bregman
methods to differentiable objectives. This condition guides
the choice of a well-suited reference function h which can
greatly improve efficiency over standard gradient descent.
While the vanilla Bregman descent method yields the same
convergence rate as the Euclidean counterpart, subsequent
work has focused on obtaining better rates with acceleration
schemes (Hanzely et al., 2018). However, lower bounds
show that the rates for relatively smooth optimization can-
not be accelerated in general (Dragomir et al., 2021), and
that additional regularity assumptions are needed. Similar
notions of relative regularity have also been investigated for
non-differentiable functions, such as relative continuity (Lu,
2019; Antonakopoulos et al., 2019). Zhou et al. (2020) also
study non-differentiable functions, but in the online setting
and without relative continuity.

Stochastic optimization methods, and in particular SGD,
are very efficient when the number of samples is high (Bot-
tou, 2012) and are often referred to as “the workhorse of
machine learning”. The problem with SGD is that, in
general, it only converges to a neighbourhood of the op-
timum unless a diminishing step-size is used. Variance
reduction can be used to counter this problem, and many
variance-reduced methods have been developed, such as
SAG (Schmidt et al., 2013), SDCA (Shalev-Shwartz and
Zhang, 2013; Shalev-Shwartz, 2016), SVRG (Johnson and

'Note that Mirror Descent and Bregman Gradient refer to
the same algorithm, but that Mirror Descent is typically used
when f is non-smooth, or in the online optimization community,
whereas Bregman Gradient is generally preferred when using the
relative smoothness assumption. Yet, both names are valid and
there are exceptions, for instance Hanzely and Richtarik (2018)
use the Mirror Descent terminology although they assume relative
smoothness.

Zhang, 2013) or SAGA (Defazio et al., 2014).

Surprisingly, stochastic Bregman gradients algorithms have
received less attention. Hanzely and Richtarik (2018); Gao
et al. (2020); Hendrikx et al. (2020a) study Bregman coor-
dinate descent methods, and Zhang and He (2018) study
the non-convex non-smooth setting. Antonakopoulos et al.
(2020) study stochastic algorithms for online optimization,
under Riemann-Lipschitz continuity. In contrast, our work
focuses on Bregman SGD for relatively-smooth objectives.
Hanzely and Richtérik (2018) study the same setting and ob-
tain comparable convergence rates, but with a much looser
notion of variance, which we discuss more in details in the
next section. This is problematic since their bound on the
variance is thus proportional to the magnitude of the gradi-
ents along the trajectory, and may thus be very large when
far from the optimum if f is strongly convex. In contrast,
our definition of variance leverages the stochastic gradients
at the optimum, which allows us to obtain significant results
without bounded gradients and in the interpolation regime
(zero gradients at the optimum). In particular, our analysis
can be seen as a Bregman generalization of the analysis
from Gower et al. (2019). Davis et al. (2018) also analyze a
similar setting, but again with more restrictive assumptions
on the noise and boundedness of the gradients. Besides, to
the best of our knowledge, variance reduction for Bregman
stochastic methods was only studied in Shi et al. (2017)
in the context of stochastic saddle-point optimization, but
without leveraging relative regularity assumptions like we
do in this work.

When preparing the final version of this paper, we became
aware of the recent work by (Latafat et al., 2021), who
also study Bregman stochastic algorithms for finite-sum
minimization. However, the setting they consider is more
restricted, as the convergence rates depend on the strong
convexity modulus of / as well as the Euclidean smoothness
constant of f.

3. Bregman Stochastic Gradient Descent
3.1. Preliminaries

We start by introducing a few technical lemmas, which
are Bregman analogs to well-known Euclidean results, and
which are at the heart of our analysis. All missing proofs
can be found in Appendix A.

Recall that the conjugate h* is defined for y € R? as
h*(y) = sup,era @ ' y—h(x). In particular, under Assump-
tion 1, h* is convex and differentiable on R (Bauschke and
Combettes, 2011, Cor. 18.12), and VA*(Vh(y)) = y for
y € int C, which implies the following result:

Lemma 1 (Duality). For z,y € int dom h, we have
Dy (x,y) = Du+(Vh(y), Vh(z)).
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See, e.g., Bauschke and Borwein (1997, Thm 3.7.) for the
proof. Using duality, we prove the following key lemma:

Lemma 2. Let xt be such that Vh(z") = Vh(z) — g,
and similarly define xf and x; from g1 and g». Then, if
g= %, we obtain:

Dp(z,2") < = [Dp(z,27) + Dy(w,23)] .

[\D\r—l

Lemma 2 can be adapted for any g = (1 — a)g1 + cg2 with

€ [0,1]. In the Euclidean case h = || - ||?, we recover
|\gl+92 17 < 3 ([lgr)* + llg21|?). We now generalize the
cocoercivity of the gradients (Nesterov, 2003, Eq. 2.1.7) to
the relatively smooth case:

Lemma 3 (Bregman Cocoercivity). If a convex function f
is relatively L-smooth w.r.t to h, then for any n < +,

Dy(x.y) > %Dh*whm —0(Vf(x) -V ), Vh(z))

3.2. Variance definition

We start by specifying two assumptions on the struc-
ture of the noise. Note that we use a constant step-size
1 > 0 throughout this section for simplicity, but similar
results hold with decreasing step-sizes. We denote z* =
arg min, f(x) the minimizer of f and ||z||% = =" Hz for
a positive definite operator H and = € R

Assumption 2. The stochastic gradients g, are such that
g = Ve, (x1), with Ee, [f¢,] = f and fe, is convex and
L jp,-relatively smooth with respect to h for all §;. Besides,
there exists a constant o2 > 0 such that:

0_2

"), Vh(z+))]

\%

1
TE o [Dr=(Vh(xy) = 20V fe, (z
Ee,

19 fe. () Bae o] »

for some z, € [Vh(xy) — 20V fe, (x*), Vh(z,)].

The assumption that the stochastic gradients are actual gra-
dients of stochastic functions which are themselves smooth
with respect to h is rather natural, as already discussed in the
introduction. It is at the heart of variance reduction in the
finite sum setting (though the sum does not need to be finite
in the case of Assumption 2), and is in particular verified
when solving (Empirical) Risk minimization problems.

Yet, it prevents the analysis from applying to coordinate
descent methods for instance, in which g; = V, f(z;), with
i € {1,---,d}. However, in this case, the extra structure
can also be leveraged to obtain similar results (Hanzely and
Richtarik, 2018; Hendrikx et al., 2020a; Gao et al., 2020).

For the variance, Assumption 2 is a Bregman adapta-
tion of the usual variance at the optimum definition used

for instance in Bach and Moulines (2011); Gower et al.
(2019). Note that if A* is pp-strongly convex with re-
spect to the Euclidean norm, then the assumption is verified
for instance when the variance is bounded in ¢, norm, as
IV feo (2)|[Rr2e 2y < 151V fe, ()| (we used the fact
that if & is u,-strongly convex, then h* is 1/pp,-smooth, see
e.g., Kakade et al. (2009)).

We now compare our noise assumption with (Hanzely and
Richtarik, 2018, Assumption 5.1.), which writes:

%E& [(Vf(@e) = Ve, (2e) T (w1 — Be11)] <07, (6)

for t > 0, where g, is the stochastic gradient estimate and
Zy+1 1S the output of the (theoretical) Bregman gradient step
taken with the true gradient, that is, Vh(Z:41) = Vh(z;) —
1V f (). Thus, their condition can be written:

1
72E§t [Dh(xt+1a jt+1) + Dh(i't+1, {Et+1)] g (3'27
t

so that o2 bounds at each step the distance (in the Bregman
sense) between x,y; and Z;;1, the point that would be
obtained by the expected (deterministic) gradient update.
To illustrate why our assumption is weaker, let us consider
the case where h is up-strongly convex. In this setting, a
sufficient condition for (6) to hold is that

iE& V(@) = Ve @)l <o @

while a sufficient condition for our variance definition to
hold is (using that V f (z*) = 0):

1
EE& IV f(z*) = Ve, (z)]]?] < (8)

which only depends on the magnitude of the gradients at
the optimum instead of the variance along the full trajectory
since x; is replaced by z*. In particular, in the interpolation
setting where V f¢(2*) = 0 for every &, 0% = 0 with our
condition. Besides, if f is strongly convex then the norm
of its gradients increases when far from the optimum, and
so one needs to restrict x; to a compact set of R? for a
condition such as (7) to hold. In contrast, the condition
from (8) can hold globally without further assumptions.

3.3. Convergence results

We now prove the actual convergence theorems for Bregman
SGD. To avoid notation clutter, we generally omit with
respect to which variable expectations are taken when clear
from the context.

Theorem 1. If f is Ly ,,-smooth and pig /p,-strongly convex
relative to h with iy /h >0, and Assumptions 1 and 2 hold,
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then forn < 1/(2Ly y,), the iterates produced by Bregman
stochastic gradient (2) satisfy

2

E [Dp (2%, 2¢)] < (L—npg/p)" Du(x*, 20) +1 <)

Kf/h

Note that since we are in a Bregman setting, convergence
is measured in terms of Dy, (z*, x;), the distance between
x* and x; in the metric induced by h. If h is py-strongly
convex, then Dy, (z*, ;) > 4[|z, — 2*||* and convergence
in /5 distance is recovered.

Proof. By using Lemma 4 from Appendix A, we obtain:

Ee, [Dn(2*, z41)] = Du(a*,2) — nDy (2, )

10
0Dy, 2*) + Ee, [Da(en i) . )

Using Lemma 2, the last term can be bounded as
Dy (zy, xp41) < % [D1 4+ D2]. We use Lemma 3 (Bregman
co-coercivity) to write:

Dy = D= (Vh(ze) = 20 [V fe, (21) = Ve, (a7)], VA(21))
< 20Dy, (v, %),

so that E¢, [D1 /2] < nDy(x¢, z*). Similarly,

Dy = Dy (Vh(z) — 20V fe(a*), Vh(zy)),  (11)
so that E¢, [D5/2] < n?0?. Thus, using the relative strong
convexity of f to bound the Dy (z*, x;) term, we obtain:

Be, Dy (2", 2011) < (L=npg/n) Di(a*, a:) +1°02, (12)
which yields the desired result. O

Remark 1 (Interpolation). In the interpolation setting
(when V fe,(x*) = 0 for all &), we have that 0® = 0.
Theorem I thus proves linear convergence in this case. For
instance, when solving objectives of the form Dk, (Ax,b)
(which has applications in optimal transport (Mishchenko,
2019)) or D1, (b, Ax) (which has application in deblurring
or tomographic reconstruction), then the variance as de-
fined in Hanzely and Richtdrik (2018) may be unbounded,
whereas the variance as we define it is equal to 0 if there
exists z such that Az = b.

When f is convex (u s/, = 0), Theorem 1 can be adapted
to obtain a 1/T decrease of the error up to a noise region.

Theorem 2 (Convex case). Under the same assumptions as
Theorem 1, if u = 0, then

T (13)

T
D *
ZDf(x*7xt)] < M+n02

Contrary to the Euclidean case, we do not obtain a guarantee
on the average iterate in general. This is because the bound
is on the average of D (x*, x;) instead of D (x¢,x*), and
Bregman divergences are not necessarily convex in their
second argument (except for the Euclidean distance and
Kullback-Leibler divergence). Therefore, the final bound is
obtained on min, Dy (z*, z;), meaning that there is at least
one z; such that this is true. Note that the nice properties
regarding interpolation still hold in this setting.

Proof. 'We start from Lemma 4 and bound the Dy, (x4, 2¢11)
in the same way as when p > 0, which yields:

nDy(a*, ) = Dp(a*, w¢) — Be, [Di (2%, we41)] + 0?0,

Averaging over ¢ and dividing by 7 leads to (13). [

4. Variance reduction

‘We have shown in the previous section that BSGD enjoys
guarantees that are similar to that of its Euclidean counter-
part, although the notion of variance needs to be adapted.
We show in this section that it is also possible to apply vari-
ance reduction to accelerate convergence. To this end, we
solve for n € N* and some convex functions f;:

1

min f(x) :=

(14)

The difference with Section 3 is that we now assume that f
is a finite sum, which is required for variance reduction. We
also assume that the minimizer =* belongs to int C, so that
V f(«*) = 0. The case where z* lies on the border of C'is
more delicate, as h might not be differentiable there (e.g.,
the log-barrier); this would require an involved technical
analysis which we leave for future work.

To solve Problem (14), we consider Algorithm 1, which is a
Bregman adaptation of the SAGA algorithm (Defazio et al.,
2014). Following its Euclidean counterpart, Algorithm 1
stores the stochastic gradients computed at each iteration,
and reuses them to estimate the full gradient. Therefore,
only one stochastic gradient needs to be computed at each
iteration, thus drastically reducing the iteration cost com-
pared to batch gradient descent, at the expense of using
more memory. Note that the stochastic updates are unbi-
ased since E; [g:] = V f(x¢), and at the optimum (when
xy = ¢; = x* for all i), g = V f(z*) = 0 so the variance
at the optimum is 0 (contrary to SGD). We now study the
convergence guarantees of Algorithm 1 in more details.

4.1. Convergence Results

For analyzing the Bregman-SAGA scheme, we first need to
introduce, in addition to relative smoothness, an assumption
on the regularity of Dj,.
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Algorithm 1 Bregman-SAGA((1;)¢>0, o)
1: ¢ =xpfori=1,....n
2: fort =0,1,2,...do
31 Picki; € {1, ...,
9t =V fi, (z¢) —

n} uniformly at random
s VI (04) + LS, V()
5. xpy1 = argming {ntg;rx+Dh(x,a:t)}

6: ¢t =4, and store V f;, (d)tH).
7

8

1t

Dt = ¢t for j # iy
: end for

Assumption 3. Forall i € {1,---,n}, f;is Ly, rela-
tively smooth w.r.t. h, and f is iz, relatively strongly
convex w.r.t. h. Moreover, there exists a gain function G
such that for any z,y,v € R and X € [-1,1],

Dh* (SE + )\U7l’) < G(I’,y,l})AzDh* (y + U7y) .

Such structural assumptions appear to be essential for ana-
lyzing Bregman-type methods that use information provided
by gradients of past iterates. The function G models the fact
that the Bregman divergence Dy (z + v, x) is not homo-
geneous nor invariant to translation in x in general (except
for the Euclidean case where it is equal to ||v||?/2). Note
that such difficulties are also encountered for obtaining ac-
celerated rates with inertial variants of Bregman descent,
where similar assumptions are needed (Hanzely et al., 2018).
This seems unavoidable, as suggested by the lower bound
in Dragomir et al. (2021).

Although the gain function G is relatively abstract at this
point, it plays a key role in defining the step-size, and con-
vergence guarantees similar those of Euclidean SAGA can
be obtained provided G can be chosen small enough. We
first state the general Theorem 3 (convergence proof for
Algorithm 1), and then detail how G can be bounded in
several interesting cases.

For ¢t > 0 and step-sizes 7y > 0, define H; =
LS Dy, (¢!, 2*), and the potential ¢/, as follows:
1 n
Yy = —Dp (2", 2¢) + - Hy. (15)
Uiz 2

First note that by convexity of h and of the f;, ¢, > 0 for all
t. Our goal in this section is to show that {1, }+>0 converges
to 0 at a given speed. Indeed, since Dy, (z*, z;) < 1), this
implies (as in Section 3) that x; converges to x* at the same
rate. To ease notations, we define

1 n
it = j;ij;), and a} = Vfi(¢}) —a'.  (16)

Theorem 3. Assume that Algorithm 1 is run with a step
size sequence {1 }>o satisfying n; = 1/(8Lys/,G¢) for

every t > 0, with G decreasing in t and such that for all
el ,n):

G2 ((Vh(an), Vhten). (Vo) = VE)
Gr 2G(Vh(e,) — 2ma’, Vh(s)),
1 ty _ (x*
£ (V56 = V1),

Then, under Assumptions I and 3, the potential 1); satisfies

1
E;, W}t+1] (1 — min <77tﬂf/ha 271)) i, (17)

In the convex case (jiy, = 0), we obtain that

T

E xt7

ch

*) + Hy (18)

Proof. Similarly to BSGD, we apply Lemma 4 (Ap-
pendix A), which yields

E;, [Dn(2*, v411)] =Dn(x*, 2) — ne Dy (2™, 21)

N (19)
=Dy, x*) + Ei, [Dp(we, 2141)] -
Lemmas 1 and 2 yield Dy, (x4, 41 (D1 + D3)/2, with

) <
) =20 [V fi(we) = Vi(a™)], Vh(x41)),
1) = 2m(Vfi(2*) — &7), Vh(zy)).

Using Assumption 3 together with Lemma 3, we obtain:

Dy = Dy (Vh(z
Dy = Dy« (Vh(z

Dy < 4niL%,,Gix

Dy« (Vh(xt) - L;/h [va(xt) -

< 477t2Lf/thDﬂ (zg, ™).

Vii(@™)], Vh(x))

To bound the second term, we use Lemma 5 (Pfau, 2013)
which is a Bregman version of the bias-variance decompo-
sition. We write V. = 2n, [V f;, (¢%.) — V f;,(z*)], so that
E;, [V] = 2m.a and:
Ei, [Da] = Ei, [Dn+ (Vh(x1) — Eq, [V]+V, Vh(z1))]

< Ei, [Dn-(Vh(zy) = Ei, [VI 4V, V(i) = E;, [V])]

< 4nfL?/thEich* (

< 4771‘ Gth/hE'Lf [qu (d)z,? *)]

where we used the gain function for translation and rescaling
the step size. Following Hofmann et al. (2015), we write:

= Vfi (z9)], Vh(¢],))

1
]Eit [Hthl} = (1 — ) Ht + Df(l’t, ) (20)
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Therefore, we can use the — H; /n term to control the excess
term from bounding Dy, (x¢, x¢+1). In the end, we obtain:

N 1
E;, [Ye41 — W) < —Dy(x*,z) — <2 - 277th/th> H,
1
- (1 = 2n¢Ly/nGr — 2) Dy (xt,x").

If we choose 7; < 1/(8L;;;,G'¢) then the last term is posi-
tiveand 1—4n; L, Gy > 1/2.1f jug /5 > 0 then we use the
relative strong convexity of f to obtain that the right hand
side is proportional to 1), thus leading to a linear conver-
gence rate. Otherwise, we obtain a telescopic sum, leading
to the 1/7 rate of Equation (18). O

Note that the monotonicity of 7; (through G;) is a technical
condition to ensure that the Lyapunov is non-increasing.
Otherwise, 1, could blow up even though x;; is very close
to ¢, simply because 7; shrinks. It could be replaced by the
condition that n; does not vary too much (not more than a
factor 1 — O(1/n)), which achieves the same goal. The rest
of this section is devoted to shong that non-trivial G; can be
chosen in many cases, thus leading to strong convergence
guarantees. In particular, the rate recovers that of Euclidean
SAGA in case h is a quadratic form.

Corollary 1. If V2h is constant (h is quadratic), then As-
sumption 3 is satisfied with G = 1, so that

E 1] < (1 —min L tw (21)
H= 8/<;f/h’2n 0

where ki, = Lf/h/,uf/h is the relative condition number.

If h is not quadratic, but f* and h* are regular with respect
to a norm, then strong guarantees can also be obtained:

Corollary 2. Ifh* is u;l—smooth and f* is L;l—strongly
2, then the stepsize can

convex with respect to a norm || -

be chosen constant as n; = 8‘2—’}, and
paten 1YY
E <(1—mi — . 22
[1he] < < mln( 3L; ’2n)) Yo (22)

Note that following Kakade et al. (2009), having h* be pgl-
smooth is equivalent to having h be p;, strongly-convex.

Proof. The proof follows the same step as the proof of
Theorem 3, but the translation invariance and homogeneity
are obtained by comparison with the norm, instead of using
Assumption 3. Thus, we pay a factor ,u,:l when bounding
Dy, by the norm, and a factor Ly when bounding the norm
by Dy-. Itis also possible to directly use Assumption 3, but
in this case the Ly factor is replaced by L, Ly, which is
an upper bound on Ly, and may thus be slightly looser. [J

Note that Corollary 1 is actually a consequence of Corol-
lary 2, since 1, = 1 and Ly = Ly, if Dp, is a norm itself.
Otherwise, the constant (G4 is chosen in a rather pessimistic
way, and depends on the difference between directly bound-
ing Dy by Dy, (in which case we pay a factor Ly /), or
going through a norm || - || in the middle (in which we case
wepay Ly/un = Ly/n).

As stated at the beginning of this section, one of the prob-
lems is that Bregman divergences lack translation invariance
and homogeneity. However, as the algorithm converges, one
can expect these conditions to hold locally, as Dy« (z+ v, x)
is approximated by 1 [|v[|2.,,. (+ for small enough v, and
x close enough to z*. This is indeed what happens under
enough regularity assumptions on h.

Proposition 1. [f h is Ly,-smooth and the Hessian V2h* is
M -smooth, then the gain function can be chosen as:

Gz, y,v) =1+ 2MLp (ly — [l + [[o])) -

Note that, even if the regularity conditions of Proposition 1
do not hold globally (such as for problems with unbounded
curvature), they are at least valid on every bounded subset
of int C, as soon as h is C3 on int C. We now explicit a
possible explicit choice for G in this setting.

Corollary 3. Assume that h is Ly-smooth, jip,-strongly con-
vex and that the Hessian NV*h* is M-smooth. Then, there
exists an explicit constant C' such that if Algorithm 1 is run
with a step size n; = 1/(8Ly/,G¢) with Gy decreasing and
satisfying

G > min (W,
h
" N (23)
14+ (Yl = o) +1 ijw;)n)),
j=1 j=1

then we have the convergence rate

. 1 1
E [¥s41] < (1 — min <8Gt/€f/h’ 271)) Ve, (24)

where lim;_, o, Gy = 1, or, more precisely,

1 1\
E[G)] <140 (1 — min (, )) . (25
Bkpkf/n 20

The explicit expression for the constant C' is provided in
Appendix B along with the proof. Although the result
involves smoothness constants of 2 which can be large
in the relatively-smooth setting, this dependence disap-
pears asymptotically. Hence, after some time ¢, which we
can roughly estimate using Equation (25), we obtain that
G = O(1). Thus, we reach the same kind of convergence
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rate as in the ideal quadratic case, which depends only on
the relative condition number £ ¢ /ho but with more general
functions h, and thus possibly much better conditioning.
Besides, the order of magnitude required for GG; can be esti-
mated during the optimization process using Equation (23).

4.2. Remarks on adaptivity

Assumption 3 highlights the fact that the key difficulty is
purely geometric, and that in general we need to make
up for the lack of translation invariance and homogeneity
of Bregman divergences. Although Corollary 3 gives a
criterion for G that can be evaluated throughout training
(since the constant C' is explicit), several approximations
are required to obtain it, and it may be loose overall. Yet,
for the theory to hold, it suffices to have 7, small enough
such that:

Ei, Da(ws, vi41) < 2 [Dy(a1,a*) +Eq, Dy, (¢),2%)]

Unfortunately, one would need to know z* to evaluate
such a condition, which is thus hard to use in practice.
For the sake of clarity, we have only presented results
for Bregman SAGA in this section. Yet, similar results
hold for SVRG-style variance reduction, and we present
them in Appendix C. An important difference is that in
this case, zj)ﬁ = ¢, for all 4, and so the last term becomes
E[Dy,(¢1,2")|F] = f(61) — f(a*) since V f(z*) = 0, 50
we only need to know f(z*) (or an estimation of it) in order
to compute this criterion. In this case, we don’t need to know
the relative smoothness constant of the problem and the step-
size can be set adaptively, similarly to Barré et al. (2020).
Although it may be expensive to compute D (x¢,z*) at
each iteration, one can also approximate f(x;) on the fly,
or only update 7, periodically. On a side note, a similar
criterion could be used for BSGD (without the second term
in this case), in particular for over-parametrized problems
for which we know that f(z*) = 0.

5. Experiments

In order to show the effectiveness of our method, we con-
sider the two key settings mentioned in the introduction:
problems with unbounded curvature (inverse problems with
Poisson noise) and preconditioned distributed optimiza-
tion. The first setting corresponds to the convex case
(ey/n = 0), whereas the second one corresponds to the
relatively strongly convex case (u7/, > 0). We observe
that leveraging stochasticity (and, when needed, variance
reduction) drastically improves the performance of Breg-
man methods in both cases. Additional details on the setting
(such as the precise formulation of the objective or the rela-
tive smoothness constants) are given in Appendix D.

5.1. Poisson inverse problems

Figure 1(a) considers the minimization problem
min, cge f(x) = Dxr(b,Ax), where A € R
and Dgr,(u,v) = >0 u;log(u;/v;) — u; + v; is the
Kullback-Leibler divergence. The goal is to recover an
unknown signal x,, observed through the matrix A and
corrupted by Poisson noise. This is a fundamental signal
processing problem, with applications in astronomy and
medicine (see Bertero et al. (2009) for a review). We use
the log-barrier reference function, h(x) = — ), log x;, for
which relative smoothness holds with L/, = 7" | b;/n
(Bauschke et al., 2017).

We verify experimentally in this section that SGD is fast
when the gradients at optimum are zero by first studying
a problem where b = Az*. A € R"*? and x € R? are
random (indices sampled uniformly between 0 and 1), with
n = 10000 and d = 1000. We compare the results of
the deterministic and stochastic versions of Bregman Gra-
dient descent. We also compare to the Multiplicative Up-
dates (MU) algorithm, also known as Lucy-Richardson or
Expectation-Maximization (Shepp and Vardi, 1982), which
is a standard baseline for this problem. We observe that
BGD is by far the slowest algorithm, but that BSGD is faster
than Lucy-Richardson thanks to the stochastic speedup. We
also observe that BSGD does not plateau in a noise region
and converges to the true solution, which is consistent with
Theorem 2. The step-size for BGD and BSGD is chosen as
1/Ly /. whereas Lucy-Richardson is parameter-free.

Figure 1(b) considers experiments on the tomographic re-
construction problem on the standard Shepp-Logan phan-
tom (Kak and Slaney, 2001). Due to space limitations, the
main text mainly describes the results, but the setting details
can be found in Appendix D. The step-size given by theory
was rather conservative in this case, so we increased it by
a factor of 5 for all Bregman algorithms (and even 10 for
BGD). Figure 1(b) shows again that stochastic algorithms
drastically outperform BGD. Yet, BSGD quickly reaches a
plateau because of the noise. On the other hand, BSAGA en-
joys variance reduction and fast convergence to the optimum.
In this case, BSAGA is on par with MU, the state-of-the-art
algorithm for this problem. This is because of the log barrier
that allows relative smoothness to hold, but heavily slows
down Bregman algorithms when coordinates are close to
0. Yet, these results are encouraging and one may hope
for even faster convergence of BSAGA for tomographic
reconstruction with a tighter reference function.

5.2. Statistically Preconditioned Distributed
Optimization

In this section we consider the problem of solving a dis-
tributed optimization problem in which data is distributed
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(a) Poisson inverse problem (interpolation).

(b) Tomographic reconstruction.

(c) Distributed optimization.

Figure 1. Bregman first-order methods on various applications.

among many workers. We closely follow the setting of Hen-
drikx et al. (2020a), and solve a logistic regression prob-
lem for the RCV1 dataset (Lewis et al., 2004). Func-
tion h is taken as the same logistic regression objective
as for the global objective f, but on a much smaller dataset
of size nprec = 1000 and with an added regularization
Cprec = 10~°. In this case, BGD corresponds to a widely
used variant of DANE (Shamir et al., 2014), in which only
the server performs the update. The stochastic updates in
BSGD are obtained by subsampling a set of workers at each
iteration, so that all the nodes do not have to participate in
every iteration. Regularization is taken as A = 107°, and
there are n = 100 nodes with N = 1000 samples each.
A fixed learning rate is used, and the best one is selected
selected among [0.025,0.05,0.1,0.25,0.5,1.]. BGD uses
1 = 0.5 while SAGA and BSGD use 1 = 0.05. The x-axis
represents the total number of communications (or number
of passes over the dataset). Note that at each epoch, BGD
communicates once with all workers (one round trip for
each worker) whereas BSGD and BSAGA communicate n
times with one worker sampled uniformly at random each
time. Therefore, BSAGA requires much less gradients from
the workers to reach a given precision level, yet, it is at the
cost of having to solve more local iterations.

Figure 1(c) first shows that BSAGA clearly outperforms
BGD. BSGD on the other hand is as fast as BSAGA at
the beginning of training, until it hits a variance region at
which it saturates. This is consistent with the theory, and is
similar to what can be observed in the Euclidean case. An
interesting feature is that although the step-size has to be
selected smaller than that of gradient descent (which is also
the case in the Euclidean setting since f is smoother than the
least smooth f;), choosing a constant step-size is enough to
ensure convergence in this case, thus hinting at the fact that
the analysis is rather conservative and that GG; does not slow
down the algorithm as much as we could have feared when
far from the optimum. This is consistent with the results
obtained by Hendrikx et al. (2020b) on acceleration.

6. Conclusion

Throughout the paper, we have (i) given tight convergence
guarantees for Bregman SGD that allow to accurately de-
scribe its behaviour in the interpolation setting, and (ii)
introduced and analyzed Bregman analogs to the standard
variance-reduced algorithm SAGA. These convergence re-
sults require stronger assumptions on the objective than
relative smoothness and strong convexity, but we show that
fast rates can be obtained nonetheless when h is nicely be-
haved (quadratic or Lipschitz Hessian). We also prove that
these fast rates can be obtained for more general functions
h after a transient regime. Besides, we show experimen-
tally that variance reduction greatly accelerates Bregman
first-order methods for several key applications, including
distributed optimization and tomographic reconstruction. In
particular, there does not seem to be a slow transient regime
in the applications considered, despite the lack of regular-
ity of the objectives. This need for higher order regularity
assumptions but great practical performance is consistent
with the results obtained for acceleration in the Bregman
setting. Better understanding the transient regime (in which
G can be high) and finding better reference functions A for
the tomographic reconstruction problem are two promising
extensions of our work.
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