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In this supplement, we present additional image generation
results in Section A. Next we detail experimental settings in
Section B. We provide derivations of gradients of LCD and
LKL and show there equivalence to the original contrastive
divergence objective in Section C. Finally we provide addi-
tional analysis of our method in Section D.

A More Image Results

A.1 Nearest Neighbor Generations

We present L2 nearest neighbors in CelebA-HQ training
dataset of unconditional image samples from our trained
EBM in Figure 2. We find that our approach generates
images distinct from the training set.

A.2 Additional Quantitative Results

We further quantitatively compare our generations with
those of SNGAN on LSUN 128x128 bedroom scenes. We
find that an SNGAN model trained on LSUN 128x128 bed-
room scenes obtains an FID of 64.05 compared to our ap-
proach, which obtains an FID of 33.46. To report SNGAN
scores, we re-implemented the SNGAN model using the
default hyper parameters to train models on ImageNet
128x128.

A.3 Additional Qualitative Images

We present qualitative visualizations of unconditional sam-
ples generated from an EBM. Figure 3 shows unconditional
image generations from LSUN bedroom scenes. Figure 4
shows unconditional image generations on the CIFAR-10
dataset. Finally, Figure 5 shows unconditional image gener-
ations on the ImageNet 32x32 dataset. In all three different
settings, we find that our generated unconditional images
are relatively globally coherent.
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B Training Details

B.1 Model Architectures

In this part, we provide the model architectures used in our
experiments. When training multiscale energy functions,
our final output energy function is the sum of energy func-
tions applied to the full resolution image, the half resolution
image, and the quarter resolution image. We use the ar-
chitecture reported in Table 1 for the full resolution image
on CIFAR-10 and ImageNet 32x32 (used in the main pa-
per Section 3.2 and 3.3). The model architecture used on
the CelebA-HQ and LSUN datasets are reported in Table 2
(used in the main paper Section 3.2 and 3.4). The half-
resolution models share the architecture listed in Table 1,
but with the first down-sampled residual block removed.
Similarly, the quarter resolution models share the architec-
tures listed, but with the first two down-sampled residual
blocks removed. We utilize group normalization (Wu &
He, 2018) inside each residual block and utilize the Swish
nonlinearity (Ramachandran et al., 2018).

B.2 Experiment Configurations For Different
Datasets

CIFAR-10/ImageNet 32x32. For CIFAR-10 and Ima-
geNet 32x32, we use 40 steps of Langevin sampling to
generate a negative sample. The Langevin sampling step
size is set to be 500, with Gaussian noise of magnitude 0.001
at each iteration. The data augmentation transform consists
of color augmentation of strength 1.0 from (Chen et al.,
2020), a random horizontal flip, and a image resize between
0.02 and 1.0. This is used in the main paper Section 3.2 and
3.3.

CelebA/LSUN Bedroom. For the CelebA-HQ and
LSUN bed datasets, we use 40 steps of Langevin sampling
to generate negative samples. The Langevin sampling step
size is set to be 1000, with Gaussian noise of magnitude
0.001 applied at each iteration. The data augmentation trans-
form consists of color augmentation of strength 1.0 from
(Chen et al., 2020), a random horizontal flip, and a image
resize between 0.08 and 1.0. This is used in the main paper
Section 3.2 and 3.4.
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C Loss Gradient Derivation
We show that the gradient of the contrastive divergence
objective, LCD Full is equivalent to that of the LFull = LKL +
LCD. Recall that the contrastive divergence objective is
given by

LCD Full = KL(pD(x) || pθ(x))− KL(qθ(x) || pθ(x)).
(1)

The gradient of the first KL term with respect to θ,
∂KL(pD(x) || pθ(x))

∂θ is

−EpD(x)

[
∂Eθ(x)
∂θ

]
(2)

while the gradient of the second KL term with respect to θ,
KL(qθ(x) || pθ(x))

∂θ

∂q(x′)
∂θ

∂KL(qθ(x′) || pθ(x′))
∂qθ(x′) )− Eqθ(x′)[

∂Eθ(x
′)

∂θ ] (3)

with the overall gradient being
LCD Full

∂θ
= −(EpD(x)

[
∂Eθ(x)

∂θ

]
− Eqθ(x′)[

∂Eθ(x
′)

∂θ
]

+
∂q(x′)

∂θ

∂KL(qθ(x
′) || pθ(x′))

∂qθ(x′)
)

. (4)

We have that

LCD = EpD(x)[Eθ(x)]− Estop grad(qθ(x′))[Eθ(x
′)], (5)

with corresponding gradients

∂LCD
∂θ = EpD(x)

[
∂Eθ(x)
∂θ

]
− Eqθ(x′)[

∂Eθ(x
′)

∂θ ]. (6)

Furthermore, we have that

LKL = Eqθ(x)[Estop grad(θ)(x)] + Eqθ(x)[log(qθ(x))], (7)

can be rewritten as

LKL = Eqθ(x)[− log(pθ(x))] + Eqθ(x)[log(qθ(x))] (8)
= KL(qθ(x) || pstop gradient(θ)(x)). (9)

The corresponding gradient of the objective is

∂LKL

∂θ
=
∂q(x)

∂θ

∂KL(qθ(x) || pθ(x))

∂qθ(x)
. (10)

Thus the sum of the gradients in ∂LCD
∂θ (Equation 6) and ∂LKL

∂θ
(Equation 10) is equal to the full contrastive divergence
gradient LCD Full

∂θ ( Equation 4).

D Additional Analysis

D.1 Alternative Sampling Distributions

Instead of utilizing qθ(x) as Πt
θ(pD(x)), as noted in

the method section, our approach can further maximize
likelihood as long as KL(pD(x) || pθ(x)) is greater
KL(qθ(x) || pθ(x)). We test an alternative sampler qθ(x)
consisting of initializing Langevin dynamics from random
noise in Figure 1. We find again that our approach improves
the training stability.

Figure 1: Inception Score and energy difference plots when LKL
is applied to MCMC initialized from random noise.

D.2 Analysis of Truncated Langevin
Backpropagation

To better understand the training effect of LKL, we analyze
the effect of truncating backpropogation through Langevin
sampling. We train two separate models on MNIST, one
with backpropogation through all Langevin steps, and one
with backpropogation through only the last Langevin step.
We obtain an FID of 90.54 with backpropogation through
only 1 step of Langevin sampling and an FID of 94.85 with
backpropogation through all steps of Langevin sampling.
We present illustrations of samples generated with one step
in Figure 6 and with all steps in Figure 7. Overall, we
find little degradation in performance with the truncation of
backpropogation, but note that backpropogation through all
steps of sampling is over 3 times slower to train.

D.3 Analysis of Effect of KL Loss on Mode Sampling

We illustrate the effect of LKL as a regularizer to prevent
EBM sampling collapse. When training an EBM, LKL
serves as a repelling term encouraging MCMC samples
from an EBM to both have low energy and exhibit diver-
sity. In the absence of LKL, we find that EBM sampling
always collapses and eventually always generates samples
illustrated in Figure 8. These samples are significantly less
diverse than those generated when training with LKL ( Fig-
ure 1), which never suffers from sampling collapse.
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Figure 2: Nearest neighbors in the L2 space of generated images
in CelebA-HQ 128x128.

Figure 3: Randomly selected unconditional LSUN bed 128x128
samples from our trained EBM.

Figure 4: Randomly selected unconditional CIFAR-10 samples
from our trained EBM.

Figure 5: Randomly selected unconditional ImageNet 32x32
samples from our trained EBM.
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Table 1: The model archi-
tecture used for CIFAR-10
and ImageNet-32x32 ex-
periments.

3x3 conv2d, 64

ResBlock 64

ResBlock Down 64

ResBlock 64

ResBlock Down 64

Self Attention 64

ResBlock 128

ResBlock Down 128

ResBlock 256

ResBlock Down 256

Global Mean Pooling

Dense→ 1

Table 2: The model archi-
tecture used for CelebA-
HQ/LSUN room experi-
ments.

3x3 conv2d, 64

ResBlock Down 64

ResBlock Down 128

ResBlock Down 128

ResBlock 256

ResBlock Down 256

Self Attention 512

ResBlock 512

ResBlock Down 512

Global mean Pooling

Dense→ 1

Figure 6: Generations on MNIST with backpropogation through
1 step of Langevin sampling.

Figure 7: Generations on MNIST with backpropogation through
all steps of Langevin sampling.

Figure 8: Illustration of collapsed sampling from an EBM. Sam-
pling does not collapse with the addition of the KL loss.


