Supplementary Material for
Estimating o-Rank from A Few Entries with Low Rank Matrix Completion

A. Additional Details on Algorithms
A.1. Additional Background of a-rank

Given a n-player game, where each player ¢ € [n] has a finite set .S; of pure strategies. Let S = II,;S; denote the set of
joint strategies. For each tuple s = (s1, ..., s,,) € S of pure strategies, the game specifies a joint payoffs M (s) of players.
The vector of expected payoffs is denoted M (s) = (M*(s), ..., M"(s)) € R™. a-rank computes rankings following four
steps: 1) construct payoff matrix for each player M, i € [n]; 2) construct transition matrix by Equation (2); 3) compute
the stationary distribution of C, as 7r; 4) return the ranking of strategies according to probabilities in 7. Below is the
computation of transition matrix C"

CSU:

)

l—exp(—ap(M*(o)—M?(s)))

g otherwise

where the coefficient 7 is defined as n = (3., (|Si| — 1))_1, and o > 0,p € N are hyperparameters. Let C,, , = 0 for all
7 that differ from o in more than a single player’s strategy. C, , = 1 — ZT £o C,. - ensures that transition distributions are
valid.

Our two-player meta-games setting is the single population case of traditional a-rank that two players have a shared pure
strategies space .S, and the joint strategies space is defined as S x S. The payoffs of joint strategies are saved as a payoff
matrix M, where M;;, M;; represents the payoffs of strategy .S; and strategy .S; respectively. Thus we could construct the
transition matrix C' between strategies in .S by Equation (1) and get the ranking of strategies in .S eventually.

A.2. Supporting Algorithms

Algorithm 3 gives the details of RG-UCB (Rowland et al., 2019) algorithm as a supplement of Algorithm 2. RG-UCB
is composed by a sampling scheme S and a stopping condition C(d). It adopts Uniform-exhaustive (UE) as sampling
scheme S. At each time, it uniformly randoms a pair from all pairs need to be estimated to make a simulation. For the
stopping condition C(¢), Hoeffding (UCB) is considered as confidence-bound for stopping the evaluation of M;;. With ¢ as
confidence level and K as interaction times of M;;, we can get M;; are bounded in []\7” — €, J/\/Z-j + €], where M\ij is
empirical estimation and € is a very small quantity calculated by the Hoeffding inequality and € < w.

Algorithm 4 gives the OptSpace algorithm (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010) as a supplement to
Algorithm 1 and 2. OptSpace reconstructs a low rank matrix from a small subset of entries. Given incomplete observations
M$, OptSpace aims to find M, such that M = UXV, and ||MQ — M*|| is minimized. It relies on singular value
decomposition for an initial guess and then adopts local manifold optimization. Two important steps are Trimming and
Rank-r projection. Trimming eliminates over-represented rows and columns in M*?, which are those containing more than
2|€2|/n observed entries. Let M® denote the trimmed matrix. Rank-r projection is then applied to find the initialization

of Uy, Vi. The singular value decomposition of the trimmed matrix M*? is defined as: M = 3. 3,U;V;T, where
i=1

1 > ¥s... > X, are singular values. Then the rank-r projection of M is defined as: PT(MQ) = % 3 %,U; VT, Then
i=1

we get the reconstructed matrix M through gradient descent on the Grassman manifold, with initial condition (Uy, V;). For
more detailed descriptions, see (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010).
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Algorithm 3 ResponseGraphUCB (4, S, C(0))
1: Construct list L of pairs of strategy profiles to compare;
2: Initialize tables M , IN to store empirical means and interaction counts while L is not empty do;
3: while L is not empty do

4:  Select a strategy profile s appearing in an edge in L using sampling scheme S’

S £

6

7

Simulate one interaction for s and update M, N accordingly;
Check whether any edges are resolved according to C(d), remove them from L if so return empirical table M.
: end while

Algorithm 4 OptSpace(Matrix completion of M*?)

Input: A chosen rank r, sampling operator €2 € [n] X [n]
Output: The recovered matrix M
1: Trim M$, and let M be the output;
2: Compute the rank-r projection of M2, P,(M®) = UyX, V' ;
3: Minimize F'(U, V') through gradient descent, with initial condition (Uy, V).
4: Return M = UXV7T

B. Theories and Proofs
B.1. Details of definition and theorem for Proposition 1

Definition 1 ({10, 41)-Incoherence(Keshavan et al., 2009)). Let matrix M € R™ ™ of rank r and the singular value
decomposition is M = UXVT. U,V € R" " are orthogonal matrices and X € R"*" is a diagonal matrix. In matrix 3,
Ymin = Zr < .. X1 = Bax, and define k = (Zmax/Zmin)- If M meet the following two conditions:

()Vi€ [n]: 320 Uj < por Yooy Vi < por

(i1) Vi, € n] + [ iy U (B) Vi| < v/

then M is defined as (g, p1)-incoherent.

This condition describes that one cannot expect to recover the payoff matrix if the meaningful payoffs are in the null space
of the sampling operator. Let || - || denote the nuclear norm, which is a summation of all singular values. The following
theorem supports the result in Proposition 1.

Theorem 3. (Keshavan et al., 2010) Assume M € R"®*™ of rank r that satisfies the incoherence conditions with (g, p1) -
Let ;v = max {po, 1 } - Further, assume in < 31, ..., X < Einax With iin, Yimax bounded away from 0 and co. Then
there exists a numerical constant C such that, if

min min

Snasx ) Snax ) |
1] > Cnrva <znmx> max {Mo log n, urv/o <Zmax> }

then the output of OptSpace M converges, with high probability, to the matrix M.

The proof of Proposition 1 directly follows by applying Theorem 3 with o = 1.

B.2. Proof of Theorem 1

We first give the necessary lemmas and theorems for our proof.

Lemma 1. (Rowland et al., 2019) Suppose there are n strategies and all payoffs are bounded in the interval [— My ax, Miax),

and define L(o, Miax) = 2aexp(2aMmax), and g(a,n, p, Minax) = n%, where o, m, p are all hyperpa-

. —n 'S - v €9(0,1,0, Mmas

rameters in a-rank. Let ¢ € (0,18 x 27" 2; (M)im). If sup(; jyem)xing 1Mij — Mij| < 18L(ai\(/zn:]jZ?;l)(?)in, then we
have max;en) |7 (i) — w(i)| < e

Theorem 4. (Keshavan et al., 2009) Let M € R™ "™ be a (1, p11)-incoherent matrix of rank r and the singular value
decomposition is M = UXVT, where U,V € R" " are orthogonal matrices and 3 € R"™ " is a diagonal matrix. In
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matrix X, Ypin = Xy < ... < X1 = Yax, and define £ = (Zmax/Ymin ). Let M = M + Z be the observed matrix with
noise Z. Define ) C [n] x [n] is the sampling operator in which m entries are randomly selected for observation from

all n? entries. Therefore, the matrix with noise observed by the sampling operator ) is M = M9 + Z2. There exist

constants C, C' such that if the number of sampled entries satisfies

Q| > Cr*nmax(uorlog(n), pars?, uir?s?)

and get ﬁ through performing matrix completion algorithm OptSpace (Keshavan et al., 2009) on M then we have

1, = n+/7
LR - Ml < 02T 20,
" o

with probability at least 1 — L The right hand side above is less than ¥iy.

n

Theorem 5. (Keshavan et al., 2009) For any matrix M € R™*" and any set Q) C [n] X [n],

20
M QSM max |M;;|.
J
n (i.j)en

Now we are ready to provide the proof for Theorem 1.

Proof of Theorem 1. According to Theorem 4 and 5, we have

IM — Ml[p <[M—-Mlp+|M—-M|r 3)
2
<Ot |20 + 1121 @
2V 29
<oty A9 Zis| + 1)) Z e 5
< (206 + 1)) Z | max. (6)
Recall that, 7 = cg(0.1:p, Munax) . Thus we have
18L (e, Mmax) 3 (7)im(2C"w2/T+1)n
=1
— = = ~r €gla, 1, p, Mm‘X
sup  |M;; — M | < |M—-M|r< glen nfl)n —. (7)
(i.9)eln] xn] 18L (0, Max) S0 (7)im
By applying Lemma 1, we have max; e[, |7 (i) — @ (i)| < €. Thus the proof of Theorem 1 is completed.
O
B.3. Proofs of Theorem 2
Now we are ready to prove Theorem 2.
Proof of Theorem 2. Define Z = M — M. Let T = £0(.1,0, Mimax) |9 Denote M;; = Ly, M\Zj,

18L (0, Mmasx) 727 (7)inC/w2n2 /7 ”

i
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then we have:

2|02
P(HZQHQ > 7') < P(Ln ‘max(i’j)eg\zm > T) (by Theorem 5)
™
= P( max |Z;;| > —
((i,j)€Q| il 2\Q|)
. R —~ Tn
_ P(i) € Q¢ My — My| > 7
2]Q|

< Y P(My; - Myl > ) (8)
T4 ’ 71T 2|0

(,4)€Q

1 , 8M?2, log(2mn3)m?

< 2 (e f> TR ) ©

1
3

Here (8) holds because of union bound theorem (Shalev-Shwartz & Ben-David, 2014). (9) holds because of Hoeffding’s In-

K
equality: let Xy, X5, ..., X,, be i.i.d random variables bounded in [a, ], then for any € > 0, P ( % S X, —E(Xy)| > e) <
i=1

2¢~2K</(0-0)* S0 we get that with probability at least 1 — - ,

€g(a, 1, p, Mmax)|€Y]
18L(t, Minax) Sor) (1) inC/ w202\ /r

12%]l2 <

Thus, combined with Theorem 4 and the union bound, the probability that the first inequality (in Theorem 4) is true is
1 — 1/n3, the probability that the second inequality(above) is true is 1 — 1/n3, we can get with probability at least 1 — n%,
that:

v Eg(O[, 1, D, Mmax)
IM - M|r < =1 o\
18L(ct, Mimax) Yoiy ()i
Obviously, sup(; )| ] |ﬁi,j—Mi,j| < ||ﬁ — M || . By applying Lemma 1, the proof of Theorem 2 is completed. [J

n|x[n

C. Further Experiments

Additional results Figure 7 and 8 show the results with « = 0.001 and § € {0.01,0.1,0.2} on Bern(100) and soccer
meta-game, as a supplement for Figure 5. Similarly, Figure 9 and 10 show the results with « = 0.01 and § € {0.01,0.1,0.2}
on Bern(100) and soccer meta-game, as a supplement for Figure 5. The results show that, across different choices of a-rank
parameters, our algorithm can estimate a-rank with much fewer sample of pairs.

Table 3 shows the statistics of real world games that is used in Figure 1. Table 4 shows results of twelve real world games
with a-conv metric, as a supplement of Table 2, which demonstrates that higher rank will lead to lower approximation error
on payoff matrices and better convergence to a-rank.
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Table 3. Statistics of payoffs from real world games from (Czarnecki et al., 2020). £ denote the number of dominant singular values such
that >F 32,/ S 8 > 80%.

Game # policies  rank k
10,3-Blotto 66 30 12
10,4-Blotto 286 40 14
10,5-Blotto 1001 50 16

3-move parity game 2 160 14 9
5,3-Blotto 21 12 7
5,4-Blotto 56 16 8
5,5-Blotto 126 20 10
AlphaStar 888 888 238

Blotto 1001 50 16
Disc game 1000 2 2

Elo game + noise=0.1 1000 1000 396

Elo game + noise=0.5 1000 1000 507

Elo game + noise=1.0 1000 1000 524
Elo game 1000 38 2
Kuhn-poker 64 64 24

Normal Bernoulli game 1000 1000 499
Rock-Paper-Scissors 3 2 2
Random game of skill 1000 1000 515
Transitive game 1000 2 2
Triangular game 1000 1000 137
connect_four 1470 1464 297
go(board_size=3,komi=6.5) 1933 1924 516
go(board_size=4,komi=6.5) 1679 1668 380
hex(board_size=3) 766 764 232
misere(game=tic_tac_toe()) 926 926 295

quoridor(board_size=3) 1404 1306 244

quoridor(board_size=4) 1540 1464 343
tic_tac_toe 880 880 285

te1 1 Jed
8
5 125
SN 4 6 1.00 614
5, 0 A% 5 5 8075 A ,
5 \ L 5 54 4\\ 5o A\ A
=, = = = e N
\/\ 4 1 ok 2 L =\ 73 025 = 2 e
. SN < = > 0.00 =
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 34 5 6 71 8 3 4 5 6 7 8
samples m 103 samples m 163 samples m 163 samples m 13 samples m 1e3 samples m 163

le-a le-1 le-a

le-1 le-a le-1

5 > 5 > 5 5

595 e 4 595 = 4 §9s — 4

o 7 o o dl

% 9.0 /4~ g 3 i é 9.0 // § 3 ; 9.0 7 g 3

€ 8.5/ Q2 '\\ Eg5{ eZT\i 585 22

Es.o 1 2y Eso'/ 1 0\ A E801// . E NV |

s 0 = s [J=Aaas o 575 0 Y
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

samples m 163 samples m 1e3 samples m 1e3 samples m 1e3 samples m le3 samples m 1e3

(a) Noisy evaluations, 6=0.01 (b) Noisy evaluations, §=0.1 (c) Noisy evaluations, §=0.2

Figure 7. Bernoulli game with n = 100, = 10, o = 0.001 with noisy evaluations.
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Figure 10. Soccer meta-game with n = 200, r = 10, o = 0.01 with noisy evaluations.
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Table 4. Results on twelve real world games with noise free evaluations.
the plot) a-conv error showing the convergence to a-rank.

(Left of plot) Recovery error on the payoff matrices. (Right of



