Supplementary Material for Estimating α -Rank from A Few Entries with Low Rank Matrix Completion

A. Additional Details on Algorithms

A.1. Additional Background of α -rank

Given a n-player game, where each player $i \in [n]$ has a finite set S_i of pure strategies. Let $S = \Pi_i S_i$ denote the set of joint strategies. For each tuple $s = (s_1, ..., s_n) \in S$ of pure strategies, the game specifies a joint payoffs M(s) of players. The vector of expected payoffs is denoted $M(s) = (M^1(s), ..., M^n(s)) \in \mathbb{R}^n$. α -rank computes rankings following four steps: 1) construct payoff matrix for each player M^i , $i \in [n]$; 2) construct transition matrix by Equation (2); 3) compute the stationary distribution of C, as π ; 4) return the ranking of strategies according to probabilities in π . Below is the computation of transition matrix C:

$$C_{s,\sigma} = \begin{cases} \eta \frac{1 - \exp\left(-\alpha\left(M^{i}(\sigma) - M^{i}(s)\right)\right)}{1 - \exp\left(-\alpha p\left(M^{i}(\sigma) - M^{i}(s)\right)\right)} & \text{if } M^{i}(\sigma) \neq M^{i}(s) \\ \frac{\eta}{p} & \text{otherwise} \end{cases}$$
(2)

where the coefficient η is defined as $\eta = \left(\sum_{i=1}^n (|S_i|-1)\right)^{-1}$, and $\alpha>0, p\in\mathbb{N}$ are hyperparameters. Let $C_{\sigma,\tau}=0$ for all τ that differ from σ in more than a single player's strategy. $C_{\sigma,\sigma}=1-\sum_{\tau\neq\sigma}C_{\sigma,\tau}$ ensures that transition distributions are valid.

Our two-player meta-games setting is the single population case of traditional α -rank that two players have a shared pure strategies space S, and the joint strategies space is defined as $S \times S$. The payoffs of joint strategies are saved as a payoff matrix M, where M_{ij} , M_{ji} represents the payoffs of strategy S_i and strategy S_j respectively. Thus we could construct the transition matrix C between strategies in S by Equation (1) and get the ranking of strategies in S eventually.

A.2. Supporting Algorithms

Algorithm 3 gives the details of RG-UCB (Rowland et al., 2019) algorithm as a supplement of Algorithm 2. RG-UCB is composed by a sampling scheme \mathcal{S} and a stopping condition $\mathcal{C}(\delta)$. It adopts Uniform-exhaustive (UE) as sampling scheme \mathcal{S} . At each time, it uniformly randoms a pair from all pairs need to be estimated to make a simulation. For the stopping condition $\mathcal{C}(\delta)$, Hoeffding (UCB) is considered as confidence-bound for stopping the evaluation of M_{ij} . With δ as confidence level and K as interaction times of M_{ij} , we can get M_{ij} are bounded in $[\widehat{M}_{ij} - \epsilon, \widehat{M}_{ij} + \epsilon]$, where \widehat{M}_{ij} is empirical estimation and ϵ is a very small quantity calculated by the Hoeffding inequality and $\epsilon < \sqrt{\frac{4M_{\max}^2 \log(2/\delta)}{K}}$.

Algorithm 4 gives the OptSpace algorithm (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010) as a supplement to Algorithm 1 and 2. OptSpace reconstructs a low rank matrix from a small subset of entries. Given incomplete observations M^{Ω} , OptSpace aims to find \overline{M} , such that $\overline{M} = U\Sigma V$, and $\|\overline{M}^{\Omega} - M^{\Omega}\|_F$ is minimized. It relies on singular value decomposition for an initial guess and then adopts local manifold optimization. Two important steps are Trimming and Rank-r projection. Trimming eliminates over-represented rows and columns in M^{Ω} , which are those containing more than $2|\Omega|/n$ observed entries. Let \tilde{M}^{Ω} denote the trimmed matrix. Rank-r projection is then applied to find the initialization of U_0, V_0 . The singular value decomposition of the trimmed matrix \tilde{M}^{Ω} is defined as: $\tilde{M}^{\Omega} = \sum_{i=1}^{n} \Sigma_i U_i V_i^T$, where $\Sigma_1 \geq \Sigma_2 ... \geq \Sigma_n$ are singular values. Then the rank-r projection of \tilde{M}^{Ω} is defined as: $P_r(\tilde{M}^{\Omega}) = \frac{n^2}{|\Omega|} \sum_{i=1}^r \Sigma_i U_i V_i^T$. Then we get the reconstructed matrix \overline{M} through gradient descent on the Grassman manifold, with initial condition (U_0, V_0) . For more detailed descriptions, see (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010).

Algorithm 3 ResponseGraphUCB(δ , \mathcal{S} , $\mathcal{C}(\delta)$)

- 1: Construct list L of pairs of strategy profiles to compare;
- 2: Initialize tables M, N to store empirical means and interaction counts while L is not empty do;
- 3: **while** L is not empty **do**
- Select a strategy profile s appearing in an edge in L using sampling scheme S;
- 5: Simulate one interaction for s and update M, N accordingly;
- Check whether any edges are resolved according to $\mathcal{C}(\delta)$, remove them from L if so return empirical table \widehat{M} .
- 7: end while

Algorithm 4 OptSpace(Matrix completion of M^{Ω})

Input: A chosen rank r, sampling operator $\Omega \in [n] \times [n]$

Output: The recovered matrix \overline{M}

- 1: Trim M^{Ω} , and let \tilde{M}^{Ω} be the output;
- 2: Compute the rank-r projection of \tilde{M}^{Ω} , $P_r(\tilde{M}^{\Omega}) = U_0 \Sigma_0 V_0^T$;
- 3: Minimize $\tilde{F}(U, V)$ through gradient descent, with initial condition (U_0, V_0) .
- 4: **Return** $\overline{M} = U\Sigma V^T$

B. Theories and Proofs

B.1. Details of definition and theorem for Proposition 1

Definition 1 $((\mu_0, \mu_1)$ -Incoherence(Keshavan et al., 2009)). Let matrix $M \in \mathbb{R}^{n \times n}$ of rank r and the singular value decomposition is $M = U\Sigma V^T$. $U, V \in \mathbb{R}^{n \times r}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix. In matrix Σ , $\Sigma_{\min} = \Sigma_r \leq ... \leq \Sigma_1 = \Sigma_{\max}$, and define $\kappa = (\Sigma_{\max}/\Sigma_{\min})$. If M meet the following two conditions:

(i)
$$\forall i \in [n] : \sum_{k=1}^{r} \mathbf{U}_{ik}^2 \leq \mu_0 r$$
, $\sum_{k=1}^{r} \mathbf{V}_{ik}^2 \leq \mu_0 r$
(ii) $\forall i, j \in [n] : \left| \sum_{k=1}^{r} \mathbf{U}_{ik} \left(\frac{\Sigma_k}{\Sigma_1} \right) \mathbf{V}_{jk} \right| \leq \mu_1 \sqrt{r}$

(ii)
$$\forall i, j \in [n] : \left| \sum_{k=1}^{r} U_{ik} \left(\frac{\Sigma_k}{\Sigma_1} \right) V_{jk} \right| \le \mu_1 \sqrt{r}$$

then M is defined as (μ_0, μ_1) -incoherent.

This condition describes that one cannot expect to recover the payoff matrix if the meaningful payoffs are in the null space of the sampling operator. Let $\|\cdot\|_*$ denote the nuclear norm, which is a summation of all singular values. The following theorem supports the result in Proposition 1.

Theorem 3. (Keshavan et al., 2010) Assume $M \in \mathbb{R}^{n\alpha \times n}$ of rank r that satisfies the incoherence conditions with (μ_0, μ_1) . Let $\mu = \max\{\mu_0, \mu_1\}$. Further, assume $\Sigma_{\min} \leq \Sigma_1, \dots, \Sigma_r \leq \Sigma_{\max}$ with $\Sigma_{\min}, \Sigma_{\max}$ bounded away from 0 and ∞ . Then there exists a numerical constant C such that, if

$$|\Omega| \ge Cnr\sqrt{\alpha} \left(\frac{\Sigma_{\max}}{\Sigma_{\min}}\right)^2 \max \left\{ \mu_0 \log n, \mu^2 r \sqrt{\alpha} \left(\frac{\Sigma_{\max}}{\Sigma_{\min}}\right)^4 \right\}$$

then the output of OptSpace \overline{M} converges, with high probability, to the matrix M.

The proof of Proposition 1 directly follows by applying Theorem 3 with $\alpha = 1$.

B.2. Proof of Theorem 1

We first give the necessary lemmas and theorems for our proof.

Lemma 1. (Rowland et al., 2019) Suppose there are n strategies and all payoffs are bounded in the interval $[-M_{\text{max}}, M_{\text{max}}]$, and define $L(\alpha, M_{\max}) = 2\alpha \exp(2\alpha M_{\max})$, and $g(\alpha, \eta, p, M_{\max}) = \eta \frac{\exp(2\alpha M_{\max}) - 1}{\exp(2p\alpha M_{\max}) - 1}$, where α, η, p are all hyperparameters

rameters in
$$\alpha$$
-rank. Let $\epsilon \in (0, 18 \times 2^{-n} \sum_{i=1}^{n-1} \binom{n}{i} i^n)$. If $\sup_{(i,j) \in [n] \times [n]} |\overline{\widehat{M}}_{i,j} - M_{i,j}| \leq \frac{\epsilon g(\alpha, \eta, p, M_{\max})}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} \binom{n}{i} i^n}$, then we have $\max_{i \in [n]} |\overline{\widehat{\pi}}(i) - \pi(i)| \leq \epsilon$.

Theorem 4. (Keshavan et al., 2009) Let $M \in \mathbb{R}^{n \times n}$ be a (μ_0, μ_1) -incoherent matrix of rank r and the singular value decomposition is $M = U\Sigma V^T$, where $U, V \in \mathbb{R}^{n \times r}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{r \times r}$ is a diagonal matrix. In matrix Σ , $\Sigma_{\min} = \Sigma_r \leq ... \leq \Sigma_1 = \Sigma_{\max}$, and define $\kappa = (\Sigma_{\max}/\Sigma_{\min})$. Let $\widehat{M} = M + Z$ be the observed matrix with noise Z. Define $\Omega \subseteq [n] \times [n]$ is the sampling operator in which m entries are randomly selected for observation from all n^2 entries. Therefore, the matrix with noise observed by the sampling operator Ω is $\widehat{M}^{\Omega} = M^{\Omega} + Z^{\Omega}$. There exist constants C, C' such that if the number of sampled entries satisfies

$$|\Omega| > C\kappa^2 n \max(\mu_0 r \log(n), \mu_0^2 r^2 \kappa^4, \mu_1^2 r^2 \kappa^4)$$

and get $\overline{\widehat{M}}$ through performing matrix completion algorithm **OptSpace** (Keshavan et al., 2009) on \widehat{M}^{Ω} then we have

$$\frac{1}{n}\|\overline{\widehat{\boldsymbol{M}}}-\boldsymbol{M}\|_F \leq C'\kappa^2\frac{n\sqrt{r}}{|\Omega|}\|\boldsymbol{Z}^\Omega\|_2$$

with probability at least $1 - \frac{1}{n^3}$. The right hand side above is less than Σ_{\min} .

Theorem 5. (Keshavan et al., 2009) For any matrix $M \in \mathbb{R}^{n \times n}$ and any set $\Omega \subseteq [n] \times [n]$,

$$\|\boldsymbol{M}^{\Omega}\|_{2} \leq \frac{2|\Omega|}{n} \max_{(i,j)\in\Omega} |\boldsymbol{M}_{ij}|.$$

Now we are ready to provide the proof for Theorem 1.

Proof of Theorem 1. According to Theorem 4 and 5, we have

$$\|\widehat{\overline{M}} - \widehat{M}\|_F \le \|\widehat{\overline{M}} - M\|_F + \|M - \widehat{M}\|_F$$
(3)

$$\leq C' \kappa^2 \frac{n^2 \sqrt{r}}{|\Omega|} \|\boldsymbol{Z}^{\Omega}\|_2 + \|\boldsymbol{Z}\|_F \tag{4}$$

$$\leq C' \kappa^2 \frac{n^2 \sqrt{r}}{|\Omega|} \cdot \frac{2|\Omega|}{n} \max_{(i,j) \in \Omega} |\boldsymbol{Z}_{ij}| + n \|\boldsymbol{Z}\|_{\max}$$

$$\tag{5}$$

$$\leq (2C'\kappa^2\sqrt{r}+1)n\|\boldsymbol{Z}\|_{\text{max}}.\tag{6}$$

Recall that, $au=rac{\epsilon g(\alpha,\eta,p,M_{\max})}{18L(\alpha,M_{\max})\sum\limits_{i=1}^{n-1}{n\choose i}i^n(2C'\kappa^2\sqrt{r}+1)n}$. Thus we have

$$\sup_{(i,j)\in[n]\times[n]}|\overline{\widehat{M}}_{i,j}-\widehat{M}_{i,j}| \leq \|\overline{\widehat{M}}-\widehat{M}\|_F \leq \frac{\epsilon g(\alpha,\eta,p,M_{\max})}{18L(\alpha,M_{\max})\sum_{i=1}^{n-1} \binom{n}{i}i^n}.$$
 (7)

By applying Lemma 1, we have $\max_{i \in [n]} |\bar{\hat{\pi}}(i) - \hat{\pi}(i)| \le \epsilon$. Thus the proof of Theorem 1 is completed.

B.3. Proofs of Theorem 2

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Define $Z = \widehat{M} - M$. Let $\tau = \frac{\epsilon g(\alpha, \eta, p, M_{\max}) |\Omega|}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} \binom{n}{i} p^i C' \kappa^2 n^2 \sqrt{r}}$. Denote $\widehat{M}_{ij} = \frac{1}{K} \sum_{k=1}^K \widehat{M}_{ij}^k$,

then we have:

$$P(\|\boldsymbol{Z}^{\Omega}\|_{2} > \tau) \leq P(\frac{2|\Omega|}{n} \max_{(i,j) \in \Omega} |\boldsymbol{Z}_{ij}| > \tau) \quad \text{(by Theorem 5)}$$

$$= P(\max_{(i,j) \in \Omega} |\boldsymbol{Z}_{ij}| > \frac{\tau n}{2|\Omega|})$$

$$= P(\exists (i,j) \in \Omega : |\widehat{\boldsymbol{M}}_{ij} - \boldsymbol{M}_{ij}| > \frac{\tau n}{2|\Omega|})$$

$$\leq \sum_{(i,j) \in \Omega} P(|\widehat{\boldsymbol{M}}_{ij} - \boldsymbol{M}_{ij}| > \frac{\tau n}{2|\Omega|})$$

$$\leq \sum_{(i,j) \in \Omega} \frac{1}{mn^{3}} \quad (\text{since } K > \frac{8M_{\max}^{2} \log(2mn^{3})m^{2}}{\tau^{2}n^{2}})$$

$$= \frac{1}{n^{3}}$$
(9)

Here (8) holds because of union bound theorem (Shalev-Shwartz & Ben-David, 2014). (9) holds because of Hoeffding's Inequality: let $X_1, X_2, ..., X_n$ be i.i.d random variables bounded in [a, b], then for any $\epsilon > 0$, $P\left(\left|\frac{1}{K}\sum_{i=1}^K X_i - \mathbb{E}(X_i)\right| > \epsilon\right) \le 2e^{-2K\epsilon^2/(b-a)^2}$. So we get that with probability at least $1 - \frac{1}{n^3}$,

$$\|\boldsymbol{Z}^{\Omega}\|_{2} \leq \frac{\epsilon g(\alpha, \eta, p, M_{\text{max}})|\Omega|}{18L(\alpha, M_{\text{max}}) \sum_{i=1}^{n-1} \binom{n}{i} i^{n} C' \kappa^{2} n^{2} \sqrt{r}}$$

Thus, combined with Theorem 4 and the union bound, the probability that the first inequality (in Theorem 4) is true is $1 - 1/n^3$, the probability that the second inequality(above) is true is $1 - 1/n^3$, we can get with probability at least $1 - \frac{2}{n^3}$, that:

$$\|\overline{\widehat{M}} - M\|_F \le \frac{\epsilon g(\alpha, \eta, p, M_{\max})}{18L(\alpha, M_{\max}) \sum_{i=1}^{n-1} \binom{n}{i} i^n}$$

Obviously, $\sup_{(i,j)\in[n]\times[n]}|\widehat{\overline{M}}_{i,j}-M_{i,j}|\leq \|\widehat{\overline{M}}-M\|_F$. By applying Lemma 1, the proof of Theorem 2 is completed. \Box

C. Further Experiments

Additional results Figure 7 and 8 show the results with $\alpha = 0.001$ and $\delta \in \{0.01, 0.1, 0.2\}$ on Bern(100) and soccer meta-game, as a supplement for Figure 5. Similarly, Figure 9 and 10 show the results with $\alpha = 0.01$ and $\delta \in \{0.01, 0.1, 0.2\}$ on Bern(100) and soccer meta-game, as a supplement for Figure 5. The results show that, across different choices of α -rank parameters, our algorithm can estimate α -rank with much fewer sample of pairs.

Table 3 shows the statistics of real world games that is used in Figure 1. Table 4 shows results of twelve real world games with α -conv metric, as a supplement of Table 2, which demonstrates that higher rank will lead to lower approximation error on payoff matrices and better convergence to α -rank.

Table 3. Statistics of payoffs from real world games from (Czarnecki et al., 2020). k denote the number of dominant singular values such that $\sum_{i}^{k} \Sigma_{i} / \sum_{i}^{n} \Sigma_{i} \geq 80\%$.

Game	# policies	rank	k
10,3-Blotto	66	30	12
10,4-Blotto	286	40	14
10,5-Blotto	1001	50	16
3-move parity game 2	160	14	9
5,3-Blotto	21	12	7
5,4-Blotto	56	16	8
5,5-Blotto	126	20	10
AlphaStar	888	888	238
Blotto	1001	50	16
Disc game	1000	2	2
Elo game + noise=0.1	1000	1000	396
Elo game + noise=0.5	1000	1000	507
Elo game + noise=1.0	1000	1000	524
Elo game	1000	38	2
Kuhn-poker	64	64	24
Normal Bernoulli game	1000	1000	499
Rock-Paper-Scissors	3	2	2
Random game of skill	1000	1000	515
Transitive game	1000	2	2
Triangular game	1000	1000	137
connect_four	1470	1464	297
go(board_size=3,komi=6.5)	1933	1924	516
go(board_size=4,komi=6.5)	1679	1668	380
hex(board_size=3)	766	764	232
misere(game=tic_tac_toe())	926	926	295
quoridor(board_size=3)	1404	1306	244
quoridor(board_size=4)	1540	1464	343
tic_tac_toe	880	880	285

Figure 7. Bernoulli game with $n = 100, r = 10, \alpha = 0.001$ with noisy evaluations.

Figure 8. Soccer meta-game with $n = 200, r = 10, \alpha = 0.001$ with noisy evaluations.

Figure 9. Bernoulli game with $n=100, r=10, \alpha=0.01$ with noisy evaluations.

Figure 10. Soccer meta-game with $n = 200, r = 10, \alpha = 0.01$ with noisy evaluations.

Table 4. Results on twelve real world games with noise free evaluations. (Left of plot) Recovery error on the payoff matrices. (Right of the plot) α -conv error showing the convergence to α -rank.