
Supplementary Material for
Estimating ↵-Rank from A Few Entries with Low Rank Matrix Completion

A. Additional Details on Algorithms
A.1. Additional Background of ↵-rank

Given a n-player game, where each player i 2 [n] has a finite set Si of pure strategies. Let S = ⇧iSi denote the set of
joint strategies. For each tuple s = (s1, ..., sn) 2 S of pure strategies, the game specifies a joint payoffs M(s) of players.
The vector of expected payoffs is denoted M(s) = (M1(s), ...,Mn(s)) 2 Rn. ↵-rank computes rankings following four
steps: 1) construct payoff matrix for each player M i

, i 2 [n]; 2) construct transition matrix by Equation (2); 3) compute
the stationary distribution of C, as ⇡; 4) return the ranking of strategies according to probabilities in ⇡. Below is the
computation of transition matrix C:

Cs,� =

(
⌘

1�exp(�↵(Mi(�)�Mi(s)))
1�exp(�↵p(Mi(�)�Mi(s))) if M i(�) 6= M i(s)

⌘
p otherwise

(2)

where the coefficient ⌘ is defined as ⌘ = (
Pn

i=1(|Si|� 1))
�1, and ↵ > 0, p 2 N are hyperparameters. Let C�,⌧ = 0 for all

⌧ that differ from � in more than a single player’s strategy. C�,� = 1�
P

⌧ 6=� C�,⌧ ensures that transition distributions are
valid.

Our two-player meta-games setting is the single population case of traditional ↵-rank that two players have a shared pure
strategies space S, and the joint strategies space is defined as S ⇥ S. The payoffs of joint strategies are saved as a payoff
matrix M , where Mij ,Mji represents the payoffs of strategy Si and strategy Sj respectively. Thus we could construct the
transition matrix C between strategies in S by Equation (1) and get the ranking of strategies in S eventually.

A.2. Supporting Algorithms

Algorithm 3 gives the details of RG-UCB (Rowland et al., 2019) algorithm as a supplement of Algorithm 2. RG-UCB
is composed by a sampling scheme S and a stopping condition C(�). It adopts Uniform-exhaustive (UE) as sampling
scheme S. At each time, it uniformly randoms a pair from all pairs need to be estimated to make a simulation. For the
stopping condition C(�), Hoeffding (UCB) is considered as confidence-bound for stopping the evaluation of Mij . With � as
confidence level and K as interaction times of Mij , we can get Mij are bounded in [cMij � ✏, cMij + ✏], where cMij is

empirical estimation and ✏ is a very small quantity calculated by the Hoeffding inequality and ✏ <

q
4M2

max log(2/�)
K .

Algorithm 4 gives the OptSpace algorithm (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010) as a supplement to
Algorithm 1 and 2. OptSpace reconstructs a low rank matrix from a small subset of entries. Given incomplete observations
M⌦, OptSpace aims to find M , such that M = U⌃V , and kM⌦ �M⌦kF is minimized. It relies on singular value
decomposition for an initial guess and then adopts local manifold optimization. Two important steps are Trimming and
Rank-r projection. Trimming eliminates over-represented rows and columns in M⌦, which are those containing more than
2|⌦|/n observed entries. Let M̃⌦ denote the trimmed matrix. Rank-r projection is then applied to find the initialization

of U0,V0. The singular value decomposition of the trimmed matrix M̃⌦ is defined as: M̃⌦ =
nP

i=1
⌃iUiV T

i , where

⌃1 � ⌃2... � ⌃n are singular values. Then the rank-r projection of M̃⌦ is defined as: Pr(M̃⌦) = n2

|⌦|

rP
i=1

⌃iUiV T
i . Then

we get the reconstructed matrix M through gradient descent on the Grassman manifold, with initial condition (U0,V0). For
more detailed descriptions, see (Keshavan & Oh, 2009; Keshavan et al., 2009; 2010).
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Algorithm 3 ResponseGraphUCB(�,S, C(�))
1: Construct list L of pairs of strategy profiles to compare;
2: Initialize tables cM , N to store empirical means and interaction counts while L is not empty do;
3: while L is not empty do
4: Select a strategy profile s appearing in an edge in L using sampling scheme S;
5: Simulate one interaction for s and update cM ,N accordingly;
6: Check whether any edges are resolved according to C(�), remove them from L if so return empirical table cM .
7: end while

Algorithm 4 OptSpace(Matrix completion of M⌦)
Input: A chosen rank r, sampling operator ⌦ 2 [n]⇥ [n]
Output: The recovered matrix M

1: Trim M⌦, and let M̃⌦ be the output;
2: Compute the rank-r projection of M̃⌦, Pr(M̃⌦) = U0⌃0V T

0 ;
3: Minimize F̃ (U ,V ) through gradient descent, with initial condition (U0,V0).
4: Return M = U⌃V T

B. Theories and Proofs
B.1. Details of definition and theorem for Proposition 1

Definition 1 ((µ0, µ1)-Incoherence(Keshavan et al., 2009)). Let matrix M 2 Rn⇥n
of rank r and the singular value

decomposition is M = U⌃V T
. U ,V 2 Rn⇥r

are orthogonal matrices and ⌃ 2 Rr⇥r
is a diagonal matrix. In matrix ⌃,

⌃min = ⌃r  ...  ⌃1 = ⌃max, and define  = (⌃max/⌃min). If M meet the following two conditions:

(i) 8i 2 [n] :
Pr

k=1 U
2
ik  µ0r ,

Pr
k=1 V

2
ik  µ0r

(ii) 8i, j 2 [n] :
���
Pr

k=1 Uik

⇣
⌃k
⌃1

⌘
Vjk

���  µ1
p
r

then M is defined as (µ0, µ1)-incoherent.

This condition describes that one cannot expect to recover the payoff matrix if the meaningful payoffs are in the null space
of the sampling operator. Let k · k⇤ denote the nuclear norm, which is a summation of all singular values. The following
theorem supports the result in Proposition 1.
Theorem 3. (Keshavan et al., 2010) Assume M 2 Rn↵⇥n

of rank r that satisfies the incoherence conditions with (µ0, µ1) .
Let µ = max {µ0, µ1} . Further, assume ⌃min  ⌃1, . . . ,⌃r  ⌃max with ⌃min,⌃max bounded away from 0 and 1. Then

there exists a numerical constant C such that, if

|⌦| � Cnr
p
↵

✓
⌃max

⌃min

◆2

max

(
µ0 log n, µ

2
r
p
↵

✓
⌃max

⌃min

◆4
)

then the output of OptSpace M converges, with high probability, to the matrix M .

The proof of Proposition 1 directly follows by applying Theorem 3 with ↵ = 1.

B.2. Proof of Theorem 1

We first give the necessary lemmas and theorems for our proof.
Lemma 1. (Rowland et al., 2019) Suppose there are n strategies and all payoffs are bounded in the interval [�Mmax,Mmax],

and define L(↵,Mmax) = 2↵ exp(2↵Mmax), and g(↵, ⌘, p,Mmax) = ⌘
exp(2↵Mmax)�1
exp(2p↵Mmax)�1 , where ↵, ⌘, p are all hyperpa-

rameters in ↵-rank. Let ✏ 2 (0, 18⇥ 2�n
n�1P
i=1

�n
i

�
i
n). If sup(i,j)2[n]⇥[n] |cM i,j �Mi,j |  ✏g(↵,⌘,p,Mmax)

18L(↵,Mmax)
Pn�1

i=1 (ni)in
, then we

have maxi2[n] | ¯̂⇡(i)� ⇡(i)|  ✏.

Theorem 4. (Keshavan et al., 2009) Let M 2 Rn⇥n
be a (µ0, µ1)-incoherent matrix of rank r and the singular value

decomposition is M = U⌃V T
, where U ,V 2 Rn⇥r

are orthogonal matrices and ⌃ 2 Rr⇥r
is a diagonal matrix. In
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matrix ⌃, ⌃min = ⌃r  ...  ⌃1 = ⌃max, and define  = (⌃max/⌃min). Let cM = M +Z be the observed matrix with

noise Z. Define ⌦ ✓ [n] ⇥ [n] is the sampling operator in which m entries are randomly selected for observation from

all n
2

entries. Therefore, the matrix with noise observed by the sampling operator ⌦ is cM⌦ = M⌦ + Z⌦
. There exist

constants C,C
0

such that if the number of sampled entries satisfies

|⌦| � C
2
nmax(µ0r log(n), µ

2
0r

2

4
, µ

2
1r

2

4)

and get cM through performing matrix completion algorithm OptSpace (Keshavan et al., 2009) on cM⌦
then we have

1

n
kcM �MkF  C

0

2n

p
r

|⌦| kZ
⌦k2

with probability at least 1� 1
n3 . The right hand side above is less than ⌃min.

Theorem 5. (Keshavan et al., 2009) For any matrix M 2 Rn⇥n
and any set ⌦ ✓ [n]⇥ [n],

kM⌦k2  2|⌦|
n

max
(i,j)2⌦

|Mij |.

Now we are ready to provide the proof for Theorem 1.

Proof of Theorem 1. According to Theorem 4 and 5, we have

kcM � cMkF  kcM �MkF + kM � cMkF (3)

 C
0

2n

2p
r

|⌦| kZ⌦k2 + kZkF (4)

 C
0

2n

2p
r

|⌦| · 2|⌦|
n

max
(i,j)2⌦

|Zij |+ nkZkmax (5)

 (2C 0

2p

r + 1)nkZkmax. (6)

Recall that, ⌧ = ✏g(↵,⌘,p,Mmax)

18L(↵,Mmax)
n�1P
i=1

(ni)in(2C02
p
r+1)n

. Thus we have

sup
(i,j)2[n]⇥[n]

|cM i,j � cMi,j |  kcM � cMkF  ✏g(↵, ⌘, p,Mmax)

18L(↵,Mmax)
Pn�1

i=1

�n
i

�
in

. (7)

By applying Lemma 1, we have maxi2[n] | ¯̂⇡(i)� ⇡̂(i)|  ✏. Thus the proof of Theorem 1 is completed.

B.3. Proofs of Theorem 2

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Define Z = cM � M . Let ⌧ = ✏g(↵,⌘,p,Mmax)|⌦|
18L(↵,Mmax)

Pn�1
i=1 (ni)inC02n2

p
r

. Denote cMij = 1
K

PK
k=1

cMk
ij ,
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then we have:

P (kZ⌦k2 > ⌧)  P (
2|⌦|
n

max(i,j)2⌦|Zij | > ⌧) (by Theorem 5)

= P ( max
(i,j)2⌦

|Zij | >
⌧n

2|⌦| )

= P (9(i, j) 2 ⌦ : |cMij �Mij | >
⌧n

2|⌦| )


X

(i,j)2⌦

P (|cMij �Mij | >
⌧n

2|⌦| ) (8)


X

i,j2⌦

1

mn3
(since K >

8M2
max log(2mn

3)m2

⌧2n2
) (9)

=
1

n3

Here (8) holds because of union bound theorem (Shalev-Shwartz & Ben-David, 2014). (9) holds because of Hoeffding’s In-

equality: let X1, X2, ..., Xn be i.i.d random variables bounded in [a, b], then for any ✏ > 0, P
✓����

1
K

KP
i=1

Xi � E(Xi)

���� > ✏

◆


2e�2K✏2/(b�a)2
. So we get that with probability at least 1� 1

n3 ,

kZ⌦k2  ✏g(↵, ⌘, p,Mmax)|⌦|
18L(↵,Mmax)

Pn�1
i=1

�n
i

�
inC 02n2

p
r

Thus, combined with Theorem 4 and the union bound, the probability that the first inequality (in Theorem 4) is true is
1� 1/n3, the probability that the second inequality(above) is true is 1� 1/n3, we can get with probability at least 1� 2

n3 ,
that:

kcM �MkF  ✏g(↵, ⌘, p,Mmax)

18L(↵,Mmax)
Pn�1

i=1

�n
i

�
in

Obviously, sup(i,j)2[n]⇥[n] |cM i,j�Mi,j |  kcM �MkF . By applying Lemma 1, the proof of Theorem 2 is completed.

C. Further Experiments
Additional results Figure 7 and 8 show the results with ↵ = 0.001 and � 2 {0.01, 0.1, 0.2} on Bern(100) and soccer
meta-game, as a supplement for Figure 5. Similarly, Figure 9 and 10 show the results with ↵ = 0.01 and � 2 {0.01, 0.1, 0.2}
on Bern(100) and soccer meta-game, as a supplement for Figure 5. The results show that, across different choices of ↵-rank
parameters, our algorithm can estimate ↵-rank with much fewer sample of pairs.

Table 3 shows the statistics of real world games that is used in Figure 1. Table 4 shows results of twelve real world games
with ↵-conv metric, as a supplement of Table 2, which demonstrates that higher rank will lead to lower approximation error
on payoff matrices and better convergence to ↵-rank.
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Table 3. Statistics of payoffs from real world games from (Czarnecki et al., 2020). k denote the number of dominant singular values such
that

Pk
i ⌃i/

Pn
i ⌃i � 80%.

Game # policies rank k

10,3-Blotto 66 30 12
10,4-Blotto 286 40 14
10,5-Blotto 1001 50 16

3-move parity game 2 160 14 9
5,3-Blotto 21 12 7
5,4-Blotto 56 16 8
5,5-Blotto 126 20 10
AlphaStar 888 888 238

Blotto 1001 50 16
Disc game 1000 2 2

Elo game + noise=0.1 1000 1000 396
Elo game + noise=0.5 1000 1000 507
Elo game + noise=1.0 1000 1000 524

Elo game 1000 38 2
Kuhn-poker 64 64 24

Normal Bernoulli game 1000 1000 499
Rock-Paper-Scissors 3 2 2

Random game of skill 1000 1000 515
Transitive game 1000 2 2
Triangular game 1000 1000 137

connect four 1470 1464 297
go(board size=3,komi=6.5) 1933 1924 516
go(board size=4,komi=6.5) 1679 1668 380

hex(board size=3) 766 764 232
misere(game=tic tac toe()) 926 926 295

quoridor(board size=3) 1404 1306 244
quoridor(board size=4) 1540 1464 343

tic tac toe 880 880 285

(a) Noisy evaluations, �=0.01 (b) Noisy evaluations, �=0.1 (c) Noisy evaluations, �=0.2

Figure 7. Bernoulli game with n = 100, r = 10,↵ = 0.001 with noisy evaluations.
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(a) Noisy evaluations, �=0.01 (b) Noisy evaluations, �=0.1 (c) Noisy evaluations, �=0.2

Figure 8. Soccer meta-game with n = 200, r = 10,↵ = 0.001 with noisy evaluations.

(a) Noisy evaluations, �=0.01 (b) Noisy evaluations, �=0.1 (c) Noisy evaluations, �=0.2

Figure 9. Bernoulli game with n = 100, r = 10,↵ = 0.01 with noisy evaluations.

(a) Noisy evaluations, �=0.01 (b) Noisy evaluations, �=0.1 (c) Noisy evaluations, �=0.2

Figure 10. Soccer meta-game with n = 200, r = 10,↵ = 0.01 with noisy evaluations.
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Table 4. Results on twelve real world games with noise free evaluations. (Left of plot) Recovery error on the payoff matrices. (Right of
the plot) ↵-conv error showing the convergence to ↵-rank.


