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Abstract
In adversarial training (AT), the main focus has
been the objective and optimizer while the model
has been less studied, so that the models being
used are still those classic ones in standard train-
ing (ST). Classic network architectures (NAs) are
generally worse than searched NAs in ST, which
should be the same in AT. In this paper, we argue
that NA and AT cannot be handled independently,
since given a dataset, the optimal NA in ST would
be no longer optimal in AT. That being said, AT is
time-consuming itself; if we directly search NAs
in AT over large search spaces, the computation
will be practically infeasible. Thus, we propose
a diverse-structured network (DS-Net), to signifi-
cantly reduce the size of the search space: instead
of low-level operations, we only consider prede-
fined atomic blocks, where an atomic block is a
time-tested building block like the residual block.
There are only a few atomic blocks and thus we
can weight all atomic blocks rather than find the
best one in a searched block of DS-Net, which is
an essential trade-off between exploring diverse
structures and exploiting the best structures. Em-
pirical results demonstrate the advantages of DS-
Net, i.e., weighting the atomic blocks.

1. Introduction
Safety-critical areas, such as autonomous driving, health-
care and finance, necessitate deep models to be adversarially
robust and generalize well (Goodfellow et al., 2015). Re-
cently, adversarial training (AT) has been shown effective
for improving the robustness of different models (Madry
et al., 2018). Compared with standard training (ST) on
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Table 1. Performance misalignment for different NA in terms of ro-
bustness (PGD-20) and standard accuracy. Models which perform
better after ST are not necessarily more robust after AT. AdaRK-
Net denotes dynamic system-inspired network (Kim et al., 2020).
AT is performed by PGD-10 with a perturbation bound of 0.031.
Robustness is evaluated with the same perturbation bound of 0.031.

Model Standard Acc. Ranking Robustness Ranking
WRN-28-10 0.9646 1 0.4872 3
ResNet-62 0.9596 2 0.4855 4

DenseNet-121 0.9504 3 0.4993 2
MobileNetV2 0.9443 4 0.4732 6
AdaRKNet-62 0.9403 5 0.5016 1

ResNet-50 0.9362 6 0.4807 5

natural data, AT is a new training scheme, which generates
adversarial examples on the fly and employs them to update
model parameters (Madry et al., 2018; Zhang et al., 2019b;
2020b; Wong et al., 2020; Pang et al., 2021).

The research focus of AT has mainly been the objective and
optimizer while the model has been less studied. Therefore,
it is urgent to explore the influence of network architectures
(NAs) for adversarial robustness. Some emerging studies im-
ply that the classic human-designed NAs (e.g., ResNet (He
et al., 2016)), specified for ST, may not be suitable for AT.
For example, Li et al. (2020a) and Kim et al. (2020) argued
that the forward propagation of ResNet can be explained as
an explicit Euler discretization of an ordinary differential
equation (ODE), which leads to unstable predictions given
perturbed inputs. They proposed to change NAs according
to more stable numerical schemes and thus obtained higher
model robustness. Meanwhile, Xie et al. (2020a) discovered
that the ReLU activation function weakens AT due to its
non-smooth nature. They replaced ReLU with its smooth
approximations to improve robustness.

In addition, we show in Tab. 1 a misalignment phenomenon
for different NA in terms of their robustness after AT
and standard accuracy after ST. This phenomenon further
demonstrates a fact that manually-crafted NAs for ST may
not be suitable for AT. Specifically, among various architec-
tures, a clear trend can be observed that models which per-
form better in terms of standard accuracy may not be more
robust. Moreover, a newly-designed AdaRKNet-62 (Kim
et al., 2020) has the biggest misalignment, which inspires
us to rethink NAs for AT. Namely, all intriguing results
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suggest improving adversarial robustness requires carefully
modified structures. Nevertheless, designing an optimal
architecture for AT is still a challenging problem.

One straightforward remedy is to search robust NAs (Guo
et al., 2020; Dong et al., 2020a), where the key to success
is exploring diverse structures. However, it suffers from
computational inefficiency and is sometimes not effective.
Specifically, AT is inherently time-consuming, and search-
ing NAs over large spaces with AT drastically scales up the
computation overhead (Guo et al., 2020). Besides, search-
ing over a large space (denoted as the search phase) requires
pruning less useful operations and retraining the model from
scratch (denoted as the evaluation phase), which naturally
leads to an optimization gap between these two phases. As
claimed in Xie et al. (2020b), the search phase seeks to opti-
mize a large network, but a well-optimized large network
does not necessarily produce high-quality sub-architectures.
Thus, the searched architecture may not always be more
robust or generalizing better. This motivates us to find an
effective architecture for AT which is easy to build and
efficient to train while encouraging flexible NA exploration.

In this paper, we introduce a novel network design strategy
which trades off exploring diverse structures and exploit-
ing the best structures. Concretely, we propose a Diverse-
Structured Network (DS-Net) as a novel solution to the
trade-off (see Fig. 1). Specifically, DS-Net consists of a se-
quence of modules. To significantly reduce the fine-grained
search space, each module contains a few off-the-shelf time-
tested building blocks (i.e., predefined atomic blocks in Sec-
tion 3.3), which are either human-designed or search-based
blocks that can be flexibly chosen. To encourage structure
exploration, besides block parameters, we introduce a set of
learnable attention weights to weight the outputs of these
atomic blocks rather than finding the best one. The weights
are concurrently optimized with the block parameters by the
robust training objective and are fixed for evaluation.

Our end-to-end design strategy is analogous to manual de-
sign, which operates on a fixed set of atomic blocks but
leverages attention weights to flexibly explore their relation-
ship. It is different from searching robust NAs that deter-
mines the local structures inside each block by two-stage
training. Additionally, the structure of DS-Net is consistent
during AT, which does not require the operation of prun-
ing that causes the optimization gap during searching NAs.
Thus, our main contributions are summarized as follows:

• We propose a novel DS-Net that trades off exploring
diverse structures and exploiting the best structures.
DS-Net remains the computational efficiency and ef-
fectiveness, which are limited in existing methods.

• DS-Net allows for a flexible choice among powerful
off-the-shelf atomic blocks including human-designed
and search-based blocks, which are easy to understand,

build, and robustify/generalize well.

• DS-Net learns attention weights of predefined atomic
blocks based on the objective of AT. It empirically
performs better than powerful defense architectures
with less parameters on CIFAR-10 and SVHN.

2. Related Work
Adversarial defense. Existing literature on the adversar-
ial defense of neural networks can be roughly divided into
two categories, namely certified robustness (Tsuzuku et al.,
2018; Zhang & Liang, 2019) and empirical robustness (Cai
et al., 2018; Madry et al., 2018; Zhang et al., 2020a). The
former one focuses on either training provably robust mod-
els (Wong & Kolter, 2018) or obtaining certified models via
random smoothing (Cohen et al., 2019), but often with a
limited robustness compared to the latter approach. Empiri-
cal approaches usually rely on different techniques, such as
input transformation (Dziugaite et al., 2016), randomization
(Xie et al., 2018) and model ensemble (Liu et al., 2018).

However, most of them are evaded by adaptive attacks (Atha-
lye et al., 2018), while the most effective approaches till
now are AT (Madry et al., 2018) and its variants (Zhang
et al., 2019b; Wang et al., 2020b). Based on it, many im-
provements were proposed, e.g., by metric learning (Li
et al., 2019), self-supervised learning (Naseer et al., 2020),
model-conditional training (Wang et al., 2020a), weight per-
turbation (Wu et al., 2020), generative models (Wang &
Yu, 2019) and semi-supervised learning (Zhai et al., 2019).
Besides, several works attempted to speed up AT, such as
computation reuse (Zhang et al., 2019a), adaptive inner max-
imization steps (Wang et al., 2019b; Zhang et al., 2020b)
and one-step approximation (Wong et al., 2020; S. & Babu,
2020). Note DS-Net improves AT from the viewpoint of
network structure.

Several works attempted to improve adversarial robustness
by diversity (Pang et al., 2019; Dong et al., 2020b; Abbasi
et al., 2020; Kariyappa & Qureshi, 2019), but neither of
them focused on learning diverse-structured networks.

Robust network architecture. To obtain robust NAs, re-
searchers developed smooth activation functions (Xie et al.,
2020a), channel activation suppressing (Bai et al., 2021),
dynamical system-inspired networks (Li et al., 2020a; Kim
et al., 2020), model ensemble (Wang et al., 2019a), sparse
coding (Cazenavette et al., 2020) and regularization (Bui
et al., 2020; Rahnama et al., 2020) to enhance robustness.
Besides, several works explored searching robust architec-
tures (Cubuk et al., 2018; Li et al., 2020b; Hosseini et al.,
2020; Vargas & Kotyan, 2019; Yue et al., 2020; Chen et al.,
2020; Ning et al., 2020). Note DS-Net attempts to trade off
exploring diverse structures and exploiting the best struc-
tures, which is orthogonal to these approaches.
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Figure 1. The network structure of DS-Net, where x̃ means the perturbed data and fW (·) denotes the DS-Net with parameter W . The
output from the i-th module xi goes through every atomic block and outputs x j

i . The output xi+1 is calculated by multiplying attention
weights w j

i ( j = 1, ...,N) and the corresponding outputs in a block-wise fashion. Here, N is the number of atomic blocks, K is the number
of robust modules in sequence, and Wi denotes the block parameter for the i-th module.

3. Proposed Approach
3.1. Preliminaries

In this section, we briefly introduce the background for AT.

Standard AT. For each input x, let the input feature space
X with the infinity distance metric dinf (x,x′) = ‖x− x′‖

∞

be (X ,d∞), the closed ball of radius ε > 0 centered at x
in X be Bε [x] = {x′ ∈ X | dinf (x,x′)≤ ε}, and the function
space be F . Given a dataset S = {(xi,yi)}n

i=1 where xi ∈ X
and yi ∈ Y = {0,1, . . . ,C−1}, the objective function of the
standard adversarial training (Madry et al., 2018) is

min
fW∈F

1
n

n

∑
i=1

{
max

x̃∈Bε [xi]
`( fW (x̃),yi)

}
, (1)

where x̃ is the adversarial data centered at x within the ε-
ball, fW (·) : X →RC is a score function with parameters W
and l(·) : RC×Y → R is the loss function that is composed
of a base loss `B : ∆C−1×Y → R (e.g., the cross-entropy
loss) and an inverse link function `L : RC→ ∆C−1 (e.g., the
soft-max activation). Here ∆C−1 is the corresponding proba-
bility simplex. In other words, `( f (·),y) = `B (`L( f (·)),y).
Denote x(0) as the starting point and α > 0 as the step size,
standard AT generates the most adversarial data by Projected
Gradient Descent (PGD) as follows:

x(t+1) = ΠB[x(0)]

(
x(t)+α sign

(
∇x(t)`

(
fW
(

x(t)
)
,y
)))

,∀t ≥ 0,
(2)

until a certain stopping criterion is satisfied to get the adver-
sarial data x̃. Π is the projection operator. It then minimizes
the classification loss on x̃, which is agnostic to NAs.

TRADES. To trade off natural and robust errors, Zhang et al.
(2019b) trained a model on both natural and adversarial data
and changed the min-max formulation as follows:

min
fW∈F

1
n

n

∑
i=1
{`( fW (xi) ,yi)+β`KL ( fW (x̃i) , fW (xi))} , (3)

where `KL is the Kullback-Leibler loss. β is a regularization
parameter that controls the trade-off between standard accu-
racy and robustness. When β increases, standard accuracy
will decease while robustness will increase, and vice visa.
Meanwhile, the adversarial examples are generated by

x̃i = arg max
x̃∈Bε [xi]

`KL( fW (x̃), fW (x)). (4)

Friendly adversarial training. Friendly AT (Zhang et al.,
2020b) is a novel formulation of adversarial training that
searches for least adversarial data (i.e., friendly adversarial
data) minimizing the inner loss, among the adversarial data
that are confidently misclassified. It is easy to implement by
just stopping the most adversarial data searching algorithms
such as PGD (projected gradient descent) early. The outer
minimization still follows Eq. (1). However, instead of
generating adversarial data via inner maximization, friendly
AT generates x̃i as follows:

x̃i =argmin
x̃∈Bε [xi]

`( fW (x̃),yi)

s.t. `( fW (x̃),yi)−min
y∈Y

`( f (x̃),y)≥ ρ,
(5)

where there is a constraint on the margin of loss values
ρ (i.e., the misclassification confidence). This constraint
firstly ensures x̃ is misclassified and secondly ensures for x̃
the wrong prediction is better than the desired prediction yi
by at least ρ in terms of the loss value.

There are other AT styles, such as misclassification-aware
AT (Wang et al., 2020b) and Fast AT (Wong et al., 2020).

3.2. Diverse-Structured Network

The overview of our DS-Net is demonstrated in Fig. 1,
which starts with a stem layer (e.g., a convolutional layer for
images) for feature transformation. It then stacks K sequen-
tial robust modules and ends with an average pooling layer
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and a fully connected layer. Each module has N atomic
blocks and two sets of variables for optimization, namely
the attention weights w and the block parameters W . We
denote the attention weight for the j-th atomic block at the
i-th module as w j

i , which is randomly initialized before train-
ing. The feature transformation function of the j-th block at
the i-th module is denoted as fW j

i
(·) with the parameter W j

i .
During AT, DS-Net alternates between adversarial data gen-
eration (with the attention weights fixed) and classification
loss minimization. For convenience, the following contents
are described in the context of standard AT.

Forward propagation. Denote xi as the output feature of
the (i−1)th module and g(·) as the first stem layer, given
an input x or its adversarial counterpart x̃, the forward prop-
agation of DS-Net is formulated as follows:

xi+1 =
N

∑
j=1

w j
i · fW j

i
(xi),x1 = g(x̃), (6)

where the output of each module is calculated as the
weighted sum of outputs of different atomic blocks. Each
atomic block in a robust module has the same number of
input and output channels.

Backward propagation. During the backward propagation
to generate adversarial examples, DS-Net fixes attention
weights w and uses PGD to generate adversarial data as

x(t+1)=ΠB[x(0)]

(
x(t)+α sign

(
∇x(t)`

(
fW
(

x(t)
)
,y,w

)))
,∀t ≥ 0,

(7)
which is similar to Eq. (2) but with a set of attention weights.

During classification loss minimization, the attention
weights w and the atomic block parameters W are optimized
by Stochastic Gradient Descent (SGD) as:

w′ = w−αw∇w`( fW (x̃),yi,w) ,

W ′ =W −αW ∇W `( fW (x̃),yi,w) ,
(8)

where αw,αW > 0 are the learning rate for the two set of
variables.

Under standard AT, the minimax formulation is changed as

min
w, fW∈F

1
n

n

∑
i=1

{
max

x̃∈Bε [xi]
`( fW (x̃),yi,w)

}
, (9)

where fW means DS-Net with the full set of atomic block
parameters W . W is simultaneously optimized with the
block weights w by the classification loss on the generated
adversarial data. Therefore, DS-Net is able to automatically
learn to weight different atomic blocks so as to improve
architecture exploration and diversity. The training and
evaluation outline of DS-Net is presented in Algorithm 1.
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Figure 2. The atomic blocks (except for the Conv block) in DS-
Net. SE means the Squeeze-and-Excitation Layer (Hu et al., 2018).
Swish is an activation function (Ramachandran et al., 2018).

Algorithm 1 Diverse-Structured Network.
Input: input data x ∈ X with label y ∈ Y , model fW with
block parameters W , loss function `, maximum PGD steps
K, perturbation bound ε , step size α , and randomly initial-
ized attention weights w.
Output: learned model fW and attention weights w.
while not eval do

Step 1: Fix w and W , generate x̃ by Eq. (7).
Step 2: Update w and W by Eq. (8).

end
while eval do

Step 3: Fix w and W , generate x̃ by Eq. (7).
Step 4: Calculate output by Eq. (6) and report accuracy.

end

3.3. Predefined Atomic Blocks

DS-Net allows for a flexible choice of the atomic blocks. We
implement DS-Net by using four powerful atomic blocks in
Fig. 2, which are either human-designed, such as the residual
block (He et al., 2016), dense block (Huang et al., 2017) and
Adaptive Runge Kutta (Ada-RK) block (Kim et al., 2020),
or searched-based block (Tan et al., 2019). Most blocks
have been theoretically or empirically validated to improve
ST instead of AT. Although Ada-RK aims at AT, its gener-
alization ability is not satisfactory (Kim et al., 2020). To
trade off robustness and generalization, we simultaneously
leverage four predefined atomic blocks via the learnable
attention weights. Note that there are other potential candi-
dates except the above four predefined blocks, which is a
promising future work beyond the scope of our study.

Importantly, using atomic blocks avoids costly structure
search for AT while exploiting powerful architectures in lit-
erature. Besides, building a robust model by these blocks is
easier while retaining sufficient diversity, which is important
for AT.

3.4. Robustness Analysis

We provide a robustness analysis of our DS-Net. Previous
works (Weng et al., 2018; Hein & Andriushchenko, 2017)
usually connected Lipschitz smoothness w.r.t. the input with



Learning Diverse-Structured Networks for Adversarial Robustness

……

(a) (b) 

Figure 3. Two different architectures. (a) The robust module for
DS-Net. (b) The common network architecture, which covers
many human-designed models and searched models. xi, x̂i denote
the intermediate outputs (atomic block outputs for DS-Net). f , f̂
denote the training objective functions. m,n denote the outputs.

network robustness, which suggests that a small input pertur-
bation will not lead to large change of the output. Formally,
we give its definition.

Definition 3.1 (Paulavičius & Žilinskas, 2006) Given a
model f and a perturbation δ within the ε-ball of the input
x. The Lipschitz smoothness of f is represented as

| f (x)− f (x+δ )| ≤ L f ‖δ‖p ≤ Lε, (10)

where p≥ 0 is the norm of interest and L f is the Lipschitz
constant. Thus, a robust model holds a small value of L f .

We fist provide Lemma 3.2 that decomposes the global
Lipschitz constant into the value for each atomic block and
then propose our main proposition (Proposition 3.3).

Lemma 3.2 Denote the attention weight and the Lipschitz
constant of the j-th block at the i-th module for DS-Net f
as w j

i and L j
i , and the Lipschitz constant of the j-th block

in the common network architecture f̂ as L j. If the number
of layers and atomic blocks in DS-Net are K and N, the
Lipschitz constants can be decomposed as

L f =
K

∏
i=1

N

∑
j=1

w j
i ·L

j
i , L f̂ =

NK

∏
j=1

L j. (11)

Proposition 3.3 Denote the Lipschitz constants for DS-Net
with learnable or fixed attention weights as L f and L′f , and
those of the common network architectures as L f̂ , we get
L f ≤ L f̂ and L f ≤ L′f .

Remark: From Proposition 3.3, we conclude two results:
1) A common network architecture f̂ (·) (Fig. 3(b)) with
the same number of parameters as DS-Net (Fig. 3(a)) al-
ways holds a larger Lipschitz constant L f̂ . 2) The Lipschitz
constant L f of DS-Net with learnable attention weights is
smaller than that of DS-Net with an arbitrary fixed set of
attention weights. The proof can be found in Appendix A.

3.5. Convergence Analysis

We provide a convergence analysis of DS-Net for solving
the min-max optimization problem in Eq. (9). Due to the

nonlinearities in DNNs such as ReLU (Nair & Hinton, 2010)
and pooling operations, the exact assumptions of Danskin’s
theorem (Danskin, 2012) do not hold. Nonetheless, since
adversarial training only computes approximate maximizers
of the inner problem, we can still provide a theoretical guar-
antee of convergence. The several necessary assumptions
for the analysis are given as follows.

Assumption 3.4 Let LWW ,LWx,LxW be positive constants,
the function fW (x,y) satisfies the gradient Lipschitz condi-
tions as follows

supx ‖∇W fW (x,y)−∇W fW ′ (x,y)‖2 ≤ LWW ‖W −W ′‖2 ;
supW ‖∇W fW (x,y)−∇W fW (x′,y)‖2 ≤ LWx ‖x− x′‖2 ;
supx ‖∇x fW (x,y)−∇x fW ′ (x,y)‖2 ≤ LxW ‖W −W ′‖2 .

(12)

Assumption 3.4 requires that the loss function satisfies
the Lipschitzian smoothness conditions. Despite the non-
smoothness of the ReLU activation function, recent stud-
ies (Allen-Zhu et al., 2019; Du et al., 2019; Cao & Gu, 2019)
justify the loss function of overparamterized networks are
semi-smooth. Thus this assumption is satisfied.

Assumption 3.5 The variance of the stochastic gradient of
fW (x) is bounded by a constant σ2 > 0 as

E
[
‖g(xk,ξk)−∇ fW (xk)‖2

]
≤ σ

2, (13)

where g(xk,ξk) is an unbiased estimator of ∇ fW (xk) as
E [g(xk,ξk)] = ∇ fW (xk). ξk,k ≥ 1 are random variables.

Assumption 3.5 is commonly used in stochastic gradient
based optimization algorithms (Wang et al., 2019b).

Then we introduce the convergence analysis of non-
convex optimization with the randomized stochastic gra-
dient method (Ghadimi & Lan, 2013) as follows:

Theorem 3.6 (Ghadimi & Lan, 2013) Suppose the tech-
nical assumptions 3.4 and 3.5 hold. Let f be L-smooth
and non-convex function and f ∗ be the optimal value of
the optimization problem (9). Given repeated, independent
accesses to stochastic gradients with variance bound σ2,
let SGD start with initial network parameters W0, iterations
N > 0 and step size γk <

1
L , then it converges to the follow-

ing point by randomly choosing Wk as the final output WR
with probability γk

H . For H = ∑
N
k=1 γk:

E
[
‖∇ fWR (x)‖

2
]
≤

2
(

fW0 (x)− f ∗
)

H
+

Lσ2

H

N

∑
k=1

γ
2
k , (14)

where f is the robust network in our case.

From this theorem, we can see that the convergence speed
and stability of the optimization problem heavily depend
on the Lipschitz smoothness L and the gradient variance σ2
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given the fixed number of iterations N and SGD step size
(i.e., learning rate) γk.

In the following theorem, we explain that DS-Net has a
smaller Lipschitz smoothness constant and gradient variance
than common NAs. We also conduct an empirical analysis
on these two factors to support our claim (Section 4.7).

Due to the complexity of global Lipschitz smoothness, we
instead use the block-wise Lipschitz smoothness (Beck &
Tetruashvili, 2013) in the following. Consider two architec-
tures in Fig. 3 with the same number of parameters, then we
have the following theorem.

Theorem 3.7 Following Fig. 3, let λi be the largest eigen-
value of the network parameters Wi, i = 1, . . . ,N. f , f̂ are
the objective functions for DS-Net and common network
architectures, respectively. For any two possible assign-
ments W 1

i ,W
2
i of Wi, the block-wise Lipschitz smoothness

w.r.t. the network parameters and the gradient variance of
the common network architectures are represented as

‖∇W 1
i

f̂ −∇W 2
i

f̂‖
‖W 1

i −W 2
i ‖

≤ Li ·
i−1

∏
k=1

λk,

E‖∇Wi f̂ −E∇Wi f̂‖2 ≤ N
N

∑
k=i

(
σk

λi

k

∏
j=1

λ j

)2

,

(15)

by assuming the two properties of DS-Net satisfy: ‖∇W 1
i

f −
∇W 2

i
f‖ ≤ Li

∥∥W 1
i −W 2

i

∥∥, E‖∇Wi f −E∇Wi f‖2 ≤ σ2
i . N is

the number of intermediate layers or atomic blocks.

Remark: From Theorem 3.7, we conclude two results: 1)
The common network architectures hold a Lipschitz smooth-
ness constant, namely, ∏

i−1
k=1 λk times that of DS-Net. Note

most of the largest eigenvalues of neural networks are big-
ger than 1 to prevent vanishing gradients (Pascanu et al.,
2013). Therefore, the convergence of Problem (9) is slower
than that of DS-Net. 2) The bound of the gradient vari-
ance in common network architectures is scaled up by the
largest eigenvalue of network parameters and the network
depth, which hurts the convergence speed and stability of
AT. The proof can be found in Appendix B, which is adapted
from Shu et al. (2020). Overall, Theorem 3.7 tells us DS-Net
(Fig. 3 (a)) converges faster and more stably than common
network architectures (Fig. 3 (b)).

4. Experiments and Results
In this section, we present empirical evidence to validate
DS-Net on benchmarks with three AT styles. The code is
available at https://github.com/d12306/dsnet.

4.1. Experimental Setting

We evaluated DS-Net on CIFAR-10 and SVHN using: Pro-
jected Gradient Descent (PGD) (Madry et al., 2018), Fast

Gradient Sign Method (FGSM) (Goodfellow et al., 2015),
Carlini & Wagner (C&W) (Carlini & Wagner, 2017) and
AutoAttack (AA) (Croce & Hein, 2020). We compared with
human-designed models, such as ResNet (He et al., 2016),
WideResNet (Zagoruyko & Komodakis, 2016), IE-skips (Li
et al., 2020a), AdaRK-Net (Kim et al., 2020) and SAT (Xie
et al., 2020a). We also compared with searched NAs for
AT, i.e., RobNet (Guo et al., 2020). We used three training
styles, i.e., AT (Madry et al., 2018), TRADES (Zhang et al.,
2019b) and MART (Wang et al., 2020b).

For CIFAR-10, during training, we set the perturbation
bound ε to 0.031 and step size α to 0.007 with 10 steps. We
used SGD optimizer with a momentum of 0.9 and weight
decay of 5e-4. The initial learning rate is 0.1. We trained
for 120 epochs for standard AT and the learning rate is mul-
tiplied by 0.1 and 0.01 at epoch 60 and 90. For TRADES,
we trained for 85 epochs and the learning rate is multiplied
by 0.1 at epoch 75. We tested the performance when the
model is trained with regularization factor β = 1 and β = 6.
For MART, we trained for 90 epochs and the learning rate
is multiplied by 0.1 at epoch 60. We set β = 6. The batch
size is set to 128. For SVHN, the step size is set to 0.003
with ε = 0.031. The training epochs including the epoch
for learning rate decay is reduced by 20 for AT, TRADES
and MART. We trained on one Tesla V100 and used mixed-
precision acceleration by apex at O1 optimization level1. We
select all models 1 epoch after the 1st learning rate decay
point following Rice et al. (2020) because robust overfitting
also happens for DS-Net. We have tried to use 1,000 im-
ages from the training set as validation set to determine the
stopping point, which aligns with our selection point.

We used Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 1e-3 and a weight decay of 1e-3 to optimize
the attention weights, which is then normalized by softmax
function. The comparison with using other optimizers is
shown in Appendix E. We set the number of layers to 15
and the initial channel number to 20. We used two residual
layers at the 1

3 and 2
3 of the total depth of the DS-Net to

increase the channels by a factor of k and 2, respectively.
Meanwhile, the spatial size of the feature map is reduced by
a half. We set k = 4/6 and obtain a small and large DS-Net
in our experiments, denoted as DS-Net-4/6-softmax.

The evaluation ε is set to 0.031. We used PGD attack with
20 steps and CW attack with 30 steps. The step size is set to
0.031 for FGSM attack. For non-FGSM attack, we set the
step size to 0.003 on TRADES while the evaluation step size
on AT and MART is 0.008. We reported the best accuracy
for comparison. Due to the complexity, we reported the
accuracy of AA by randomly sampling 12.5% of the test set.
Each experiment is repeated by 3 times with three random
seeds. The results are averaged for comparisons.

1https://github.com/NVIDIA/apex

https://github.com/d12306/dsnet
https://github.com/NVIDIA/apex
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Table 2. Test accuracy on CIFAR-10 and SVHN using AT (Madry et al., 2018). † means the results by our implementation under the same
setting. AA denotes the results of AutoAttack (Croce & Hein, 2020). The perturbation bound ε is 0.031. DS-Net-4-softmax means the
scale factor is 4 and block weights are normalized by the softmax activation. Improv.(%) is calculated by comparing with the best baseline.

CIFAR-10
Defense Architecture Param (M) Natural FGSM PGD-20 C&W∞ AA

ResNet-50 (He et al., 2016)† 23.52 83.83±0.190 54.76±0.229 48.07±0.222 47.77±0.365 44.98±0.237
WRN-34-10 (Zagoruyko & Komodakis, 2016)† 46.16 86.32±0.317 64.84±0.118 51.95±0.291 50.65±0.339 50.01±0.284

SAT-ResNet-50 (Xie et al., 2020a)† 23.52 73.59±0.164 57.50±0.287 48.44±0.105 46.56±0.291 44.11±0.370
SAT-WRN-34-10 (Xie et al., 2020a)† 46.16 78.03±0.298 60.73±0.305 49.54±0.311 49.43±0.042 46.27±0.163

IE-ResNet-50 (Li et al., 2020a)† 22.41 84.49±0.111 55.00±0.229 48.31±0.321 48.04±0.392 43.27±0.138
IE-WRN-34-10 (Li et al., 2020a)† 48.24 84.23±0.200 63.28±0.222 52.61±0.316 49.36±0.501 51.24±0.251
AdaRK-Net (Kim et al., 2020)† 23.61 80.42±0.124 57.23±0.218 51.37±0.411 49.27±0.228 45.11±0.260

RobNet-large-v2 (Guo et al., 2020)† 33.42 84.39±0.129 59.21±0.311 52.54±0.371 51.28±0.212 49.22±0.138
DS-Net-4-softmax (ours) 20.78 85.39±0.216 66.71±0.186 54.14±0.100 52.18±0.137 49.98±0.199
DS-Net-6-softmax (ours) 46.35 86.76±0.125 67.03±0.372 53.59±0.211 53.28±0.174 51.48±0.191

Improv.(%) - 0.51% 3.38% 2.91% 3.90% 0.47%
SVHN

ResNet-50 (He et al., 2016)† 23.52 90.02±0.213 69.03±0.233 47.23±0.177 49.69±0.186 44.11±0.029
WRN-34-10 (Zagoruyko & Komodakis, 2016)† 46.16 94.26±0.175 75.15±0.310 48.57±0.163 50.08±0.271 45.38±0.124

DS-Net-4-softmax (ours) 20.78 95.53±0.172 78.50±0.278 49.53±0.301 48.73±0.101 46.21±0.222
DS-Net-6-softmax (ours) 46.35 95.96±0.211 75.80±0.170 50.89±0.235 50.12±0.304 48.09±0.258

Improv.(%) - 1.80% 4.46% 4.78% 0.08% 5.97%
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Figure 4. The results of block ensemble variants of DS-Net (under
PGD-20 attack). (a) DS-Net with fixed and uniform attention
weights. β = 1 is used for TRADES. (b) DS-Net with the same
atomic blocks and uniform ensemble. Standard AT is used.

4.2. Results on CIFAR-10 and SVHN

We presented the results of AT and MART in Tabs. 2 and 3.
Results of TRADES are in Appendix C. We made several
observations. First, the robustness of DS-Net is consistently
better than baselines, which achieves promising results with
a much smaller amount of parameters, e.g., 54.14% under
PGD-20 attack with only 20.78M parameters compared to
51.95% for WRN-34-10 (46.16M) and 52.54% for RobNet
(33.42M) using AT. Second, if we increase the amount of pa-
rameters to the same level of WRN-34-10 by setting the fac-
tor k = 6, DS-Net further improves its robustness (53.28%
under CW attack). Meanwhile, DS-Net generalizes well
(with a standard accuracy of 86.76%) and also performs
well in terms of ensembles of white-box and black-box
attacks (see AutoAttack). Third, DS-Net shows its effec-
tiveness across different datasets and training styles, which
provides better robustness and generalization ability.

4.3. Comparison with Block Ensemble

We compared the robustness of DS-Net with two variants:
1) The attention weights are uniformly distributed among
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Figure 5. Comparative robustness of our DS-Net with different
initializations (evaluated by PGD-20 attack).

different atomic blocks and fixed during training. 2) The
four atomic blocks are the same whose outputs are uniformly
ensembled. We compared them with DS-Net on CIFAR-10
with factor k = 4, which is shown in Fig. 4.

The above figure highlights two factors—a) Learnability of
attention weights and (b) The diversity of atomic blocks—
matter for network robustness in DS-Net. Therefore, the
improvement of DS-Net does not solely come from a simple
ensemble. Meanwhile, we found that the highest standard
accuracy of these variants are lower than DS-Net, such as
85.31% vs. 87.89% for fixed attention weights and learnable
weights in DS-Net on TRADES, which justifies that these
two factors are also important for generalization.

4.4. Sensitivity to Weight Initialization

We investigated the sensitivity of DS-Net to the initialization
of the attention weights. Note the results in Tabs. 2 and 3
are reported using the normal distribution (µ = 0,σ2=1),
we further tested the uniform distribution (within [0,1]), log-
normal distribution (µ = 0,σ2 = 1), exponential distribution
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Table 3. Evaluations (test accuracy) of deep models on CIFAR-10 and SVHN dataset using MART (Wang et al., 2020b). † means the
results by our implementation. The perturbation bound ε is set to 0.031 for each architecture. The regularization factor β is set to 6.

CIFAR-10
Defense Architecture Param (M) Natural FGSM PGD-20 C&W∞ AA

RobNet-large-v2 (Guo et al., 2020)† 33.42 80.23±0.129 60.23±0.203 51.07±0.290 48.37±0.365 48.14±0.317
WRN-34-10 (Zagoruyko & Komodakis, 2016)† 46.16 78.59±0.221 62.50±0.355 52.26±0.409 49.75±0.517 49.96±0.531

IE-WRN-34-10 (Li et al., 2020a)† 48.24 81.33±0.127 62.29±0.116 51.99±0.244 49.40±0.142 50.07±0.246
DS-Net-4-softmax(ours) 20.76 79.51±0.137 63.03±0.241 54.29±0.376 50.25±0.229 49.79±0.256
DS-Net-6-softmax(ours) 46.35 81.64±0.229 66.40±0.173 55.23±0.168 51.48±0.291 52.74±0.096

Improv.(%) - 0.38% 6.09% 5.68% 3.48% 5.44%
SVHN

WRN-34-10 (Zagoruyko & Komodakis, 2016)† 46.16 92.15±0.279 74.57±0.160 52.96±0.384 47.03±0.100 49.88±0.103
DS-Net-4-softmax (ours) 20.78 92.39±0.172 73.88±0.263 56.08±0.326 48.00±0.298 51.39±0.206
DS-Net-6-softmax (ours) 46.35 93.77±0.272 76.23±0.165 55.00±0.126 48.84±0.179 50.43±0.312

Improv.(%) - 1.76% 2.23% 5.89% 3.85% 3.03%
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Figure 6. The performance of DS-Net with atomic block space
reduction. Results are reported using seed 0.

λ = 1, geometric distribution (p = 0.5). We also used the
optimized attention weights after training for initialization.
We compared these initializations using standard AT on
CIFAR-10 with factor k = 4, which are shown in Fig. 5.

From the above figure, DS-Net is not sensitive to different
initializations, where the largest accuracy drop is ≤ 2%.
The optimized weight for initialization obtains the closet
performance to the original one, which illustrates its superi-
ority. Besides, we compared the l∞ difference between the
learned weights initialized with the normal distribution and
the others, which shows a similar trend to the PGD-20 Acc.

4.5. Effect of Reducing Atomic Block Space

To observe whether the number of atomic blocks matters to
model performance, we trained our DS-Net under 2 and 3
atomic blocks for each robust module. Note that sampling 2
and 3 atomic blocks from 4 blocks has 6 and 4 options and
we reported the average results. To ensure a fair comparison,
we kept the same level of network parameters by changing
the initial channel number across different models. We
compared them with DS-Net-4-softmax using standard AT
on CIFAR-10 with factor k = 4, which are shown in Fig. 6.

From Fig. 6, the performance of DS-Net slightly decreases
in terms of robustness and generalization ability with smaller
atomic block space, which shows a carefully-designed block

space with higher diversity is beneficial. A principled ap-
proach to block selection is a promising future work.

4.6. Learned Attention Weight Visualization

To gain some insights on the location sensitivity of different
atomic blocks, we visualized the learned attention weights
from different layers in Fig. 8. We made several observa-
tions. First, the weight of atomic blocks is balanced in the
former layers of DS-Net without obvious dominance, which
implies that AT prefers a diverse structure. Second, the
weight of residual block increases in the last layers, which
shows DS-Net tends to tends to use the cleaner feature repre-
sentations by favoring residual blocks in the later layers for
classification. This phenomenon happens because the error
of features learned by the early layers accumulates less than
that learned by the later layers. Third, densely connected
modules are more favorable in robust models. For instance,
DS-Net-6-softmax pays more attention to the dense block
compared to DS-Net-4-softmax, and DS-Net-6-softmax un-
der TRADES (β = 6) gives more weights to dense block
than DS-Net-6-softmax under TRADES (β = 1). Such find-
ings align well with Guo et al. (2020). The trends may guide
us to design different blocks for different layers of a robust
model.

4.7. Empirical Convergence Analysis

We showed in Theorem 3.6 that Lipschitz smoothness and
gradient variance are important for convergence. In this
section, we empirically verified these two properties of DS-
Net. Due to the substantial budget for calculating the Hes-
sian matrix of the objective function in order to measure
the global Lipschitz smoothness (Nesterov, 2004), we fol-
lowed (Li et al., 2018) and used the loss landscape to mea-
sure the local smoothness of models, which is visualized as
f (α,β ) = L(W ∗+αδ +βη) (δ ,η are two random direc-
tions and W ∗ is the center point in the network parameter
space). We compared the loss landscape among four models
in Fig. 7 (a), and found that DS-Net empirically smooths
the loss landscape around the optimized parameters, which
makes the convergence faster and more stable.
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(a) (b)

Figure 7. Empirical convergence analysis under TRADES (β = 6). (a) 3D loss landscape of four models, i.e., WRN-34-10, DS-Net-4-fixed,
DS-Net-4-softmax and DS-Net-6-softmax from left to right where “fixed” means we use 0.25 as the weight for each atomic block. The
height of the surface indicates the loss value. (b) Gradient variance for the same set of models.

(a) (b)

(c) (d)

Figure 8. Visualization of the learned attention weights with vari-
ance in shaded area. (a) DS-Net-4-softmax under AT. (b) DS-
Net-6-softmax under AT. (c) DS-Net-6-softmax under TRADES
(β = 1). (d) DS-Net-6-softmax under TRADES (β = 6).

We computed the gradient variance of DS-Net by its defi-
nition E‖∇Wi f −E∇Wi f‖2. To reduce computational cost,
following Shu et al. (2020), the gradients over batches are
regarded as the full gradients and the expected gradient is
calculated by averaging over batch gradients. The variance
is calculated w.r.t. the last fully connected layer. The com-
parison among the same set of models is shown in Fig. 7(b),
where DS-Net holds a smaller gradient variance. Learn-
able attention weights and more network parameters are
beneficial to convergence speed and stability.

4.8. Results after Block Pruning

To observe whether block pruning in search-based meth-
ods (Dong et al., 2020a) benefits DS-Net, we tested the
performance of DS-Net by selecting 1,2,3 atomic blocks
with higher probabilities after training, re-normalizing their
weights and retraining the model from scratch by AT (The
weights are fixed). We also tested 4 blocks with their opti-
mized attention weights. To ensure a fair comparison, we
kept the same level of network parameters by changing the
initial channel number across different models. We con-
ducted experiments using standard AT on CIFAR-10 with
factor k = 4, which are shown in Tab. 4.

Table 4. Model robustness and generalization ability with different
number of pruned blocks. The standard deviations (Std.) are
shown below the mean row (Acc.).

Selected Blocks 1 2 3 4 Ours
PGD-20 Acc. (%) 42.03 51.88 50.70 52.19 54.14

Std. 0.339 0.214 0.213 0.291 0.100
Standard Acc. (%) 78.05 84.22 84.30 83.75 85.39

Std. 0.172 0.238 0.176 0.118 0.216

Tab. 4 shows that block pruning is not suitable for DS-Net,
since attention weights and block parameters are co-adapted
together. Therefore, discarding parameters that cooperates
well with attention weights will lead to the accuracy drop.
Additionally, such block pruning reduces the structure di-
versity during retraining, which may also hurt the model
robustness and generalization ability.

5. Conclusion
Orthogonal to studies from the view of objective and op-
timizer for AT, we focus on NAs and propose a Diverse-
Structured Network (DS-Net) to improve model robustness.
DS-Net trades off exploring diverse structures and exploit-
ing the best structures. Specifically, it learns a set of atten-
tion weights over predefined atomic blocks, where attention
weights are jointly optimized with network parameters by
the robust training objective that encourages structure explo-
ration. We theoretically demonstrate the advantage of DS-
Net in terms of robustness and convergence, and empirically
justify our DS-Net on benchmark datasets. In the future, we
will improve DS-Net by studying different combination of
atomic blocks to further improve model robustness.
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