Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning

A. Proof of Results for Double Sampling (Theorem 4.1)

Throughout the supplementary materials, we omit the subscript p in population Rademacher complexty R~ (-) if the
distribution is clear from the context.

In this part, we prove Theorem 4.1 in Section 4. We first define some auxiliary notations to simplify the writing. We divide
the dataset D into D = Dy U... U Dy, where D}, consists of n independent sample tuples collected at the ~A™ time step.
For fy, gn € Fn, denote

tos(on £ (5,075, ) = (gu(5,0) =7 = Vi, () = 3 (Vi () = Vi ()

Define an expected value E,,, ¢ps(gn, fr) = E[EDs(gh,fh)(s a,r,s' §’)] with (s,a) ~ pp, 7 = rp(s,a), s, § i
Py (-| sk, ap) and its empirical version éDs(gh, fn) = % Z(s a5 5 W) Ips(gn, fr)(s,a,r, s',§). Itis easy to see that

By os(gn, fn) = llgn — T full, - Forany f = (fi,..., fu) € F, we have

Lps(f) : Hzens frofn1), EuLps(f) =E(f) and Lps(f ps(frs fre1),

HMD:

where fz711 := 0. Note that the loss function Lps(f) is an empirical estimation of ().

Theorem 4.1 provides an upper error bound for the BRM estimator f =argming Lps (f), of which the proof is given
below.

Theorem 4.1. There exists an absolute constant ¢ > 0, with probability at least 1 — 0, the ERM estimator [ =
argmin ;.  Lps(f) satisfies the following:

E(f) <min€(f) + eI’ log(1/9)
H
+ CZ (REM(Fn) + RE (V).
h=1

Proof of Theorem 4.1. We apply the uniform concentration inequalites in Lemma G.1. Let fT be a minimizer of the Bellman
error within the function class F, i.e. fT € arg mingc r E(f). By noting that Lps(f) € [ — 2H?, 4H2] , we have with
probabliity at least 1 — 6,

21og(2/0)

E,Lps(f) — EuLps(f1) < (Los(f) — Los(f1)) + 2R ({Lps(f) | f € F}) + 6H? (10)

We use the relations E,, Lps(f) = £(f), B, Lps(fT) = E(fT) = minjer E(f) and Lps(f) < Lps(fT) and reduce eq. (10)
to

E(f) <min&(f) + 2R, ({Lps | f € F}) + 6H? 21og(2/9) (11)

feF n

It then remains to simplify the form of Rademacher complexity R,, ({ Lps(f) | f € F}).

Due to the sub-additivity of Rademacher complexity, we have

H
Rn({Lps(f) | f € F}) < %Znn({EDS(fh;fh—i-l) | fu € Fh, fug1 € Fuyr})- (12)

h=1

In order to tackle the term R, ({éDs( frs foa1) | fn € Fn, fra1 € ]—"h+1}) on the right hand side, we apply the vector-form
contraction property of Rademacher complexity in Lemma G.7. By letting

Ona = fu(s,a),  Gno=rn+ Vi, () and @pz =1y +Vy,,, (3),
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we can write

L Pna i 2 -2 0
EDS(fhafh—i—l):§(¢h,1,¢h,2v¢h,3) A oo withA=1| -2 1 1
®h3 0 1 -1

Since the spectral norm ||A||2 < 4 and H (éh’h qghﬁz, q@h,d) H2 < +/3H due to the boundedness of f;, and Tif frg1, we find
that fps(fr, frt1) is (4v/3H)-Lipschitz with respect to the vector ((bh,l, ¢h’2, ¢h’3) . Lemma G.7 then implies

R ({los(Fns Sni) | fu € Fis frsr € Fin}) < 10H (Ru({dn1}) + Ru{dna}) + Rufdna})).  (13)

Recalling that s” and §’ are i.i.d. conditioned on (s, a), we use the sub-additivity of Rademacher complexity and find that

Ro({dn1}) < REM(F)
Ro({dn2}) = Ru({n3}) < Ral{rn}) +R2 (VE,.,),

where v, is the marginal distribution of s’ in the h'" step. Note that {rj,} is a singleton, therefore, R, ({rs}) = 0. It follows
from eqs. (13) and (14) that

R ({los(fr: fn+1) | fr € Fro frr € Fugr}) < 10H (REM(F) + 2RE (Vy,yy))- (15)

(14)

Combining eqs. (12) and (15), we learn that

H
Ro({Los(f) | f € F}) <103 (REH(Fp) + 2R% (Vi ). (16)
h=1

Plugging eq. (16) into eq. (11), we finish the proof.

O
B. Proof of Results for FQI (Theorems 5.2 and 5.3)
In this section, we analyze the FQI estimator defined in Algorithm 1. For any f;, € F}, and fr4+1 € Fp11, we denote
2
E(fhn fh+1)(s7 a,T, SI) = (fh(37 a) —-—r—= th,+1 (8/)) 3 (17)
therefore, 1, (fi, frs1) := Z(S ars hyepy Lfns fas1)(s, a,r, s"). Note that each iteration in FQI solves an empirical
loss minimization problem fh = argming, ¢z, Eh( Ins fh+1) The empirical loss Eh( In, fh+1) approximates
hg(fha fh+1) =K I:Z(fhm fh+1) | (87 CL) ~ [h, Sl ~ Ph( | S, a)]
=[fn— E*chrl”ih + Euh\/val"s/NIP)h(~|8,a)(th+1 (s")-
Recall that )
fi = argmin | fi = T3 fura - (18)

fh€Fn
f,z minimizes E,,, £(fn, fri1)-

In the sequel, we develop upper bounds for Bellman error &( f ) based on (local) Rademathcer complexities.

B.1. Analyzing FQI with Rademacher Complexity (Theorem 5.2)

Theorem 5.2 (FQI, Rademacher cpmplexity). There exists an absolute constant ¢ > 0, under Assumption 2, with probability
at least 1 — 6, the output of FQI f satisfies

log(H /4)

<€—|—CZR” Fin) + cH?
n

)
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Proof of Theorem 5.2. By Lemma G.1, with probability at least 1 — §, for any fj, € Fp,

By, O(fr, frs1) — Euhg(f;Ea Frs1) S(éh(fhyfh+l) - éh(f:mfh-&-l))

} ; (19)
+ 2R ({6(fns Frsr) = £(fS, Fusn) | o € Fi}) + 4H? 21%(2/5)’

where f] is defined in eq. (18) and we have used £(fn, fri1) — £(f), fas1) € [~2H?, 2H?).

Specifically, we take f, = fh in eq. (19). Due to the optimality of fh, we have éh(fh, th) < @h(f}t, fhﬂ). We further
use the relation

fn = Tt Frl%, = (B b(fr Fos1) — B €FL, Fosn)) + I = T a2, - (20)
and Assumption 2. It follows that
R . R N 2log(2/6
V= Tl < 2R (£ Fun) — 5 Fr) | S € Fi}) a2y 2D

We now simplify the Rademacher complexity term in eq. (21). Due to the symmmetry of Rademacher random variables, we

have Rn({ﬁ(fh, fh+1) - E(f,]:, fh+1) | fn € fh}) = Rn({ﬁ(fh, fh+1) | fn € ]-"h}). We also note that the loss function £
is (4H)-Lipschitz in its first argument. In fact, since |f,| < H forall f, € Fpandr + V| (s") € [-H, HJ, it holds that

for any fn, f;, € Fh,
C(fn, Fagr)(s,a,m,8") = €(fh, foia) (s, a,m, )]
=|fn(s.a) = fr(s, )| fuls,a) + fi(s.a) = 2r =2V (5] (22)
<4H|fn(s,a) = fi(s,a)l.

According to the contraction property of Rademacher complexity (see Lemma G.6), we have
Ry ({4 f, Fria) = 0(f), farn) | fn € Fun}) = Ra({(fn, Frt1) | fn € Fu}) < 2HRLM(Fh). (23)
Plugging eq. (23) into eq. (21) and applying union bound, we find that with probability at least 1 — 9,

2log(2H/§
BCHTD)

)

X LA R H
EF) =5 D= Titdsaly, <83 REN(Fi) + 4>
h=1 h

=1

which completes the proof. O

B.2. Analyzing FQI with Local Rademacher Complexity (Theorem 5.3)

Theorem 5.3 (FQI, local Rademacher comp}exity). There exists an absolute constant ¢ > 0, under Assumption 2, with
probability at least 1 — 0, the output of FQI f satisfies

5(f)§e+cVe-A—|—cA, (8)
H
A;:HZT;JFH?@.
h=1

Here 1} is the critical radius of local Rademacher complexity RE({fn € Fn | |fn — f):”ih < r}) with f;{ =

argming, ¢z, ||fo — T, ol un-

Proof of Theorem 5.3. Recall that we have shown in eq. (22) that (£, g) is (4H)-Lipchitz in its first argument f. Under
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Assumption 2, for f,]; shown in eq. (18), we have

Var[é(fh,fhﬂ) - f(foh—H)]

E[(¢(fus far1) — £(ff, farn))?] < 16H2E|:‘fh(8h>ah) - f}t(Smah)‘Q}
=1682| fu = FHI[%, < 320 (|10 = T S 1L, + 154 = T )
:32H2K||fh - T;L*fh+1f|ih — 7 - h*fh—HHih) +2||ff - h*fh-HHHh]

<32H” (Euh [ fns Fagr) — € Frgn)] + 26)-

When applying Theorem G.3, we are supposed to take a sub-root function larger than

drqu(r) = 32H* Ry {€(fu, fur) = €0FF, fuvn) | S € Fio 3212 (B[, Fuvn) = 0], Fuvn)] +2¢) < v

Note that

Yrqi(r) <32H*R ({ (fis frar) = LCFL Frsn) ‘fhefmlGHsz _th,“ = })
§128H3 n({fh_fh‘fhe}—h’IGHszh_th,uhST})

_ 3 2 1112 3 r

—128H Rn({fh € Fn ) 161 — A2, < 7“}) < 128H ’l’h(W)

where 4, is a sub-root function satisfying ¢4 (r) > R ({fr € Fi | Ilfn — filI2, <r}) and the positive fixed point 17
of 1y, is the corresponding critical radius. In the second inequality, we have used the contraction property of Rademacher
complexity (see Lemma G.6) and the Lipschitz continuity of ¢. The equality in the last line is due to the symmetry of

Rademacher random variables. According to Lemma G.5, the positive fixed point of 128 H3, (16#) is upper bounded by
1024H*r5

We apply eq. (90) in Theorem G.3 and use the eq. (20) and Zj,(fr, fat1) < gh(f,t, fae1). It follows that for a fixed
parameter 0, with probability at least 1 — 6,

|| fu — ﬁ*thHih — I - 77:fh+1||ih

2 2
<0Hzr;+dfbg(1/5>+c(9_1)<H2r;+cH 1og<1/6>> +02e17
n n —

where ¢ > 0 is a universal constant. By union bound and Assumption 2, we have

H H )
g(f)se+cHZr;+cH2@ ( S Hlogl/é))+ 2

-1
h=1 h=1

We further take 0 == 1 + < (= S°7 7 + 108H0) ™2 444 find that

)

H
e < etem Y ry + o2 f(HZ PRLELIY

h=1
which completes the proof. O

C. Proof of Results for Minimax Algorithm (Theorems 5.4, 5.5 and C.1)

In this part, we prove the statistical guarantees for minimax algorithm in Section 5.3.
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Notations We first introduce some notations that will be used later in the analyses. For any vector-valued function

f=(f1, s fir) € L(ma) x ... x L2(upr), we denote || |, == /& Sh_, (| fnl|2, for short. Parallel to the optimal

Bellman operator 7,*, we define 7;3 and th as

. ~ 1 2
Tl s o ssgmin g T fuss . and T i avgmin s 37 (o) =~ Vi (49)"
gh€EGh gn€Gn M (s,a,r,s’,h)EDy,

Let 7+, 7T, T be their vector form, given by

T*f ::(ﬂ*f% v 7TI§fH+1)’
T =T for. . T fu), (24)
Tr=(Tifoy s Tufrsr),

forany f € F.

Similar to the definition of ¢ in eq. (17), for any g, € G, U Fj, and f+1 € Fr41, We take

£(gn., fh+1)(sva" T, Sl) = (gh(s’ a) -r- th+1(5/))2'

Forany f € F,g € FUG and {(sp, an,rh,s)) 1, € (S x Ax R x 8)H, let

H H
2
(g, Z (9ns fr1)(Snhy an, T, 83) Z gn(snyan) =i = Vi, (s3)) "
Denote
1 H H
Eltg(g7f) = EZ]E/L}L (ghafh-‘rl - Z ghafh—i—l (s,a,r,s’) ’ (570’) N,U'haSIN]P)h(' | Sva’)]
h=1 h=1
1
:Hg - T*in + E ZEuhvars/NIF’h('|57a)(th,+1(S/))
h=1
H 1 9
and Z gh, fh+1 ﬁ Z (gh(s, a) - 7r— th-%—l (S/>) .

h=1 (s,a,r,s’,h)€D
The loss function in minimax algorithm then can be written as
LMM(f7g) = g(f? f) - ((g’ f)7
EpLvu(f, 9) :=Eul(f, f) — Eul(g, f) (25)
Lwwi(f,9) = U(f. f) = Ug. ).
Note that B, L (f, 9) = lf = T*fIZ = lg = T*fI7 = €(f) — g — T*£1}.-

With our newly-defined notations, we formulate the minimax estimator as

f = arg min max Ly (f, ¢) = arg min Ly (f, 7A'f) (26)
fer 9€¢ feF

In the analysis of minimax algorithm, we take f T as the function in F that minimizes the Bellmen risk, i.e.

fT:=argmin &£(f).
fer
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Main results

Theorem 5.4 (Minimax algorithm, Rademacher complexity). There exists an absolute constant ¢ > 0, under Assumption 3,
with probability at least 1 — 0, the minimax estimator f satisfies:

log(1/4)

(f)<m1n5(f)+e+cH2 -

o3 (R B+ R (G0) + R (V)
h=1

Theorem 5.5 (Minimax algorithm, local Rademacher complexity). There exists an absolute constant ¢ > 0, under
Assumptions 3 and 4, with probability at least 1 — 0, the minimax estimator f satisfies:

E(f)<min(f)+e+q [ (min€(f)+e)A+eA, ©)

H

A= H? Z {é(r}h +ront f;h) + \/@]

h=1

n

where C'is the concentrability coefficient in Assumption 4, and 7’} ho r; b f} ,, are the critical radius of the following local
Rademacher complexities respectively:

RE({fn € Fu | Ifn— FI2, <))

R ({9n € Gn | llgn —thMh <r}),
R ({Viuis | frsr € Frga,

2
| fas1 — ffTL-i-l”uthnif(A) <r}).

Aside from Theorems 5.4 and 5.5, we also have an alternative statistical guarantee for &( f ) using local Rademacher
complexity for composite function Ly (f, 77 f). See Theorem C.1 below.

Theorem C.1 (Minimax algorithm, local Rademacher complexity, alternaltive). There exists an absolute constant ¢ > 0,
under Assumption 3, with probability at least 1 — 0§, the minimax estimator f satisfies:

(f)<mm£(f)+e+c /(%125(f)+e)A+cA, (27)

log(H/4)

H
A:=H?** + H * H?
i+ ng,h + -

where v} and r; ,, are the critical radius of the following local Rademacher complexities respectively:

R ({Loas (F, T) | f € FE[Lu(f, T f)?] <))

R ({n € Gu | lon = gillz, <7}) -
In contrast to Theorem 5.5, Theorem C.1 does not rely on the additional Assumption 4. In general, Theorem C.1 provides a
tighter upper bound for £( f) than Theorem 5.5 when the function class {LMM( LT | ferF } has a clear structure and

] is easy to estimate. For instance, this is the case if both f and G have finite elements. Based on Theorem C.1, we can
recover the sharp results for finite function classes in Chen & Jiang (2019).

Assumption 3 used in our analysis of minimax algorithm can be relaxed to:
“There exist constants € > 0 and ¢ € [0, 1) such that ing lg—T* I < e+ CE(f) forany f € F
ge
In this way, we only need a high-quality approximation of 7* f in G when f lies within a neighborhood of the optimal

Q-function. We can easily generalize our analyses to this case. However, in order to avoid unnecessary clutter, we stick to
the current Assumption 3.
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Proof outline Our analyses in this section are devoted to the proofs of Theorems 5.4, 5.5 and C.1.

1. We first translate the estimation of £( f) into deriving uniform concentration bounds for Ly (f, 71 f)— Ly (f1, 71 £1)
and {(g, f) — £(TT £1, fT) (Lemma C.2 in Appendix C.1). The error decomposition lemma is shared among the proofs

of Theorems 5.4, 5.5 and C.1.

2. We then develop the desired uniform concentration bounds using Rademacher complexities (Appendix C.2) and local
Rademacher complexities (Appendix C.3) separately. In particular, when tackling Lyw (f, 77 f) — Lam (fT, TT £1),
we have two alternative analyses involving local Rademacher complexities of different types of function classes. One

leads to Theorem 5.5 and the other results in Theorem C.1.

3. In Appendix C.4, we integrate the error decomposition result and uniform concentration bounds, and finish the proofs

of theorems.

C.1. Error Decomposition

We provide a decomposition of the Bellman error &( f ) and upper bound the error using some uniform concentration

inequalities.

Lemma C.2 (Error decomposition). Suppose there exist oo > 0 and Erry¢, Errg > 0 such that the following concentration

inequailities hold simultaneously.

1. Forany f € F,

2. Forany g € G, ) A
E.L(g, f1) —E (T f, 1) < a(l(g, f7) — LTI, 1)) + Erry.

Then under Assumption 3, the Bellman error satisfies

(f) <m1n5(f)+Errf+ETTg+e.

Proof. By definition of function E, Lmm(f, ¢) in eq. (25), we find that for any f € F,

EuLwu (f, T f) =Eul(f. ) =Bul(T f ) = 1f =TI = ITTf =T fI = ) = 1T = T*fII7

We learn from Assumption 3 that |77 f — 7 f||2 < e for any f € F, therefore,

EuLav (f; T f) = Bl (F1, TTfT) =ECF) = EUT) = ITTf = TFI + T = T £

>E(f) —E(fT) — e,
which implies

E(f) <miné&(f) + (EMLMM(ﬂTTf) —]ENLMMUT’TTfT)) te

feFr

By virtue of eq. (28),
£(f) < ming(f) + oL (£, T F) — D (£, T1)) + Brrg +c.

In the following, we leverage eq. (29) to estimate Ly (f, 71 f) — Laam (f1. 7T f1).
We use the definition of Ly and find that
L (F, TV) = Lo (F1, TT) = 807, ) = 6T ) = 26T, 71 + 6T 1 )
=(Lan(f,TF) +UTF ) T f A) (iMM (LTSN TS N) + LT )

A~ A

= (L (f, TF) = D (F1 TF0) + (UT 1, 1) = UTTF, D) = (AT 17, 1) = 6T 7, 1),

(28)

(29)

(30)

€1y

(32)

(33)
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Since (f,g) := (f, ’7A’f) solves the minimax optimizaiton problem eq. (26), we have Ly (f, 7A’f) < I (fT7 7A‘fT). Due
to the optimality of 7, it also holds that /(7 f, f) < /(T f, f). To this end, eq. (33) reduces to
L (f, TVF) =t (F1TTFT) < = (AT f1, 07 = LT A7, 1)), (34)
Additionally, eq. (29) implies
UTF AN = AT 1) = o7 (Bl(THY £1) — (T 1)) =0 B,

Note that B, ¢ (T fF, f1) =B, b (TH 1, f1) = 1T =T 12 =TT =T 112 and | TF1=T*fH |, > | T FF =T 1,
by definition of 77, therefore, L K
E(Tf—’-, fT) - Z(TTfT7 fT) Z _a_lETTQ'
It then follows from eq. (34) that
Lwm (£, TTf) = L (f1, T 1) < @7 ' Erry. (39)

Combining eq. (32) and eq. (35), we obtain eq. (30). O

C.2. Analyzing Minimax Algorithm with Rademacher Complexity

In what follows, we develop uniform concentration inequalities eqs. (28) and (29) using Rademacher complexities.
Lemma C.3. With probability at least 1 — 6,

EuLit (Fs TTF) = EuLaane (f1, TTFD) < (Loaa (£, TV ) — Lo (F1, TTFY)) + Evrp forany f € F,
where

ul 21og(2/9)
Erry = CZ (RE™(Fn) + RE(Gr) + RE(VE,,,)) + 4H? 7gn

h=1
for some universal constant ¢ > 0.

Proof. Note that | Ly (f, 77 f) — Lmm (fT, 77 f1)| < 8H2. We apply Lemma G.1 and find that

EyLvv (f: TTf) = EpLnam (f1, TTfT)

S(iMM(ﬂ TTf) - fJMM(fTa TTfT))

+ 2R, ({Lm (£, TTf) — Lam (f1, TT 1) | f € F}) + 16H? 21%(2/5).

Due to the symmetry of Rademacher random variables, we have
Ro({ L (£, TV) = L (F1 T 1) [ € F}) = Ru({Lamna (£, T 1) | £ € F}).

We now use Lemma G.7 to simplify the term R, ({ Lym (f, 77 f) | feF}).
Note that

L (£, T1F) = Zm £ A(F), whereA::(_ll ‘01),

D) = (falsnoan) = T frsa (s an)s i+ Vs (1) = T fusr (snoan))

Since ||¢n(f)||2<V2H and ||A|2= ‘f"'l , we learn that ¢, (f) T Ay (f) is (‘/\%1 H)-Lipschitz with respect to ¢, (f).
According to Lemma G.7,

H
Ro({Lmu(£. T f) | f € F}) = ! 7 2 Ral{en(f) " An(f)| f € F})
h:l

i (Ra({on1 (1) | £ € FY) + Rul{ona() |1 € F})).

h=1
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Here,
Ro({on1(f) | f € F}) =Ra({fn = T} frsr | fr € Fio far1 € Fuga})
SRn({fh — gh ’ fh S ]:}ugh S gh}) S Rﬁh(‘/—:h) + Rﬁh(gh)a
Ro({on2()|feF}) =Rn({rn+ Vipn — T frr | fat1 € Fri1})
<R (Vryyy) + Ra({T frsn | fran € Frgn}) S RY (VL) + RES(Gr).
Integrating the pieces, we finish the proof of Lemma C.3. O

Lemma C.4. With probability at least 1 — 6, for any g € G,
El(g, 1) =B (TS f7) < (U9, £7) = €(TTf1, 7)) + Erry,
where

H
2log(2/0
Err, ;zngghr(gh)JﬂlHZ M_

n
h=1
Proof. Note that [£(g, f1) — ¢(TTf1, f1)| < 2H?. By Lemma G.1, with probability at least 1 — §, for any g € G,

E,l(g, fT) = Bul (T 11 1) <(Eg, 1) = L(TTST, 1))

(36)
+ 2R, ({09, 1) — €(T 1, 11) | g € G}) + 4m* 21%@/5)
We observe that
| A
Ra({lg, /1) = 0(TTf1.f1) |9 € G}) =Rn({lg, 1) |9 € G}) < i S Ra({llgn fio) | €Gr}). BT
h=1
Similar to eq. (22), we can show that £(gp, f ;[H) is (4H)-Lipschitz with respect to g, therefore,
R ({£(gn, F1. 1) | gn € Gn}) < AHREM(G). (38)
Combining eq. (36) - eq. (38), we complete the proof. 0

C.3. Analyzing Minimax Algorithm with Local Rademacher Complexity

In this part, Lemmas C.5 and C.6 are devoted to the uniform concentration of Lm ( £,7t f) — Ly ( ANl fT) and

Lemma C.7 is concerned with £(g, fT) — £(TT 1, ff). The proof of Theorem C.1 uses Lemmas C.5 and C.7, while
Theorem 5.5 uses Lemmas C.6 and C.7.

Concentration inequality eq. (28), Lvv (f, 71 f) — Lmm (f1, 77 1)  Lemma C.5 below will be used as a buiding block
of the proof of Theorem C.1.

Lemma C.5. There exists a universal constant ¢ > 0 such that under Assumption 3, for any fixed parameter 6 > 1, with
probability at least 1 — §, we have

By Lo (1, T ) ~ Byl (7T 1) < 22 (Lo (F.T10) = Lo (71, T4 71)) + By (39)
forany f € F, with
log(1/6) c
T

Erry := cH?r} + cOH? (EUT) +e).
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Proof. We consider using Theorem G.3 to analyze the concentration of Inim ( £, 7t f) — Fam ( frTtf T). Similar to
eq. (22), we can show that for any f € F,

H
|Lam (. TTf)] < QZ | fu(snsan) = T, fraa(snoan).

h=1

By Cauchy-Schwarz inequality,
E[Lwa (£, T )" <4 f =T L < 8E2(|f =T L+ [T = T7|L) < 8H(E() +¢),  40)
where we have used Assumption 3. It follows that
Var[Lyw (f, T'f) = L (fY, T )] < E[(Laaa (£, T1) = Lana (F7,T717))7]
<R [Laa (f, TTF)?] + 2B [ L (F1, TTF1)?] < 16H2(E(F) + E(fT) + 2¢).
We also learn from eq. (31) that
E[Lvm (£, T1f) = Lam (T, TTf7)] = £(f) = €(fT) — €. 1)
We combine eq. (40) and eq. (41) and find that
Var [ Ly (f, TTf) — L (F1, 7T 1)) < 16H2(E[Laana (£, TTF) — L [£T, TTFT]] + 26 () + 3¢).
We now apply Theorem G.3 and aim to find a sub-root function v, such that ¢ (1) > t(r) for
) =16 R ({ L (£, T11) = Lo (1T fT) | £ € 7,
V6H (B[ L (£, 71 F) = L (F1, TTF1)] + 26(F1) + 3€) < r})
=16H*R,, ({ Tami (.7 ) ’ fer
165 (B[ Ly (£, 7' £) = L (£, 71 1)) + 26 (1) + 3¢) < v ).

(42)

Note that by eqs. (40) and (41), we have
16 H2(E[Lawi (£, T F) = Lana (f1, TTFD)] +26(f1) + 3€) = 2B [Laawi (£, TT £)?],

therefore,
o(r) 316H2Rn({LMM(f, T'f) ‘f € F 2R [Lwu(f, T11)?] < r}) < 16H2wL(%),

where

vr() = R ({Lan (£, T71) | £ € F.B[Lan(£,775)7] <7 }).

Let 7} be the positive fixed point of 17,. Lemma G.5 implies the positive fixed point of mapping r + 16 H?1, (7’ / 2) is
upper bounded by 128 Hr% . We then obtain eq. (39) by applying eq. (90) in Theorem G.3. O

While Lemma C.5 above uses the local Rademacher complexity of a composite function Ly (f, TTf), Lemma C.6 below
provides an alternative concentration inequality for Ly ( £, Tt f ) — Lym ( VAN AN T) , which involves the complexities of
—Fh, gh and V]:h,+1'

Lemma C.6. Suppose Assumptions 3 and 4 hold. There exists a universal constant ¢ > 0 such that for any fixed parameter
0 > 1, with probability at least 1 — 6,

By L (1. T ) = Byl (P70 < 22 (Lo (7. T10) = L (71, TH71)) 4+ By @3)

>
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forany f € F, with

H
~ = log(1/4) c
_— 3 * * ~* * 2
Erry:=cCH g (Tf,h+7”g,h+7”f,h+1JFW/E’"g,h/C) +c0H - + 9_1(€(ﬂ)+6).

h=1

Here, C' is the concentrability coefficient in Assumption 4.

Proof. In this proof, we estimate the critical radius of QZ(T) in eq. (42) in an alternative way. In particular, we use
parameters 7% ,, ry , and 7}, defined in the statement of Theorem 5.5. The key step is to upper bound ¥(r) by the
local Rademacher complexities RE: ({ f, € F, ‘ | fn — f,t||ih < r}), RE({gn € G ] llgn — g,t||ih < r}) and
Ry ({th,+1 | Jhv1 € Faga, ([ far — f}]:—&-l”l?/thnif(A) < r})

We take a shorthand F(r) := {f € }" 16H?(E[Lvm (f, TTf) — Liam (fT, TTfT)] + 28(fT) + 3€) < r} and rewrite

U(r) as ¥(r) = 16H2R,, ({Lmm(f, TTf) | f € F(r)}). Similar to Lemma C.3, one can show that there exists a univeral
constant ¢ > 0 such that

H
7 < cH? Z (Vn,1 (1) + n2(r) + vps(r)).
h=1

where ¢, (r) == Ri* ({fu | £ € F(r)})s dna(r) := R ({ Tl fasr | | € F(r)}) and s (r) == Ry ({ Vo | f €
F(r)}). In the sequel, we simplify 15,1, 15,2 and ¢y, 3.

For any f € F(r), due to eq. (41), we have

[ =70 =T =TI, <2l =T+ 2 =T = 2600 + 280
<2E Ly [£, 71 F] = Laa (f1, T £1)] + 46 + 26 < 5.
We use Lemma F.1 and find that under Assumptions 3 and 4, for any f € F,
2 Cr
Hfh - f;”uh < ?,

T i = TG L, <(IT fa = T Fla |, +2v6)

C
2 +86§£+867

1220

<2\ T s — T |
Cr
=

(| frsr — ff]:+1||12/h><Unif(A) <

It follows that
onst) =R (5] 1€ 70D < i ({1 A |- 115, < )
2 <O s,

C
1 € Fugn, || frsr = fi];JrlHithnif(A) < %})

Una(r) = RE({T frar | f € F(r)}) < RE ({gh € Gn ’ lgn — T i1

Una(r) =R (Vi | £ € FO)Y) <R ({Vh,

Recall that r ,,, r7 |, and ?}’ ny1 are respectively the fixed points of
V() =RE({fn € Fu | 1o — £LI2, < 7)),

Yg.n(r) =Ry ({gh € Gn ‘ th - ﬁjf}i-i-ﬂﬁh < T}) and
/l:/;ﬁh(r) = th({vf}1+1 | fh+l e fh-‘rlv ||fh+1 - f;‘f‘lethrl S T})



Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning

According to Lemma G.5, the positive fixed points of vy, 1, ¥ 2 and v, 3 are upper bounded by 8C~'r},h, 457’2’,1 +
v/ 32657’; 5 and SCN'Ff,h, therefore, the critical radius 7 of J(r) satisfies

I 2
7 §c2H4<Z (\/Sér}yh + \/46'71‘;7,1 + \4/32657“;’,1 + \/8577}_’}1))
h=1
~ H o~
<J/CH?® Z <r;‘,h + T;’h + ?},h + \/er;’h/c>,

h=1

where ¢, ¢’ > 0 are universal constants.

We then apply eq. (90) in Theorem G.3 and obtain eq. (43). O

Concentration inequality eq. (29), / (g f T) -/ (7'T i f T)

Lemma C.7. Suppose Assumption 3 holds. Then there exists a universal constant ¢ > 0 such that for any fixed parameter
0 > 1, with probability at least 1 — 6,

9

E.l(g, f1) —EL(TTf1, f1) < ( (g, f1) = E(TT 11, £1)) + Erry, 44)
with — Errg = c0H ng p o+ OH* log(f/d) + 96_6 1

h=1

Proof. Note that

T

0g, 17 — o(TTf1 f1) = 12 (Cgns Fon) = €T s FLi)).

h=

We can analyze the concentration of ¢(gs, f,i )4 (7’hT f; w0 /n +1) in a way similar to Theorem 5.3. It follows that for
any h € [H]|, with probability at least 1 — 0,

E,U,é(glw f}];.t,_l) - E,Ltg(ﬁf}t-fl? f}t-i-l)
)Hzlog(1/§) n 2¢

Sm (é(ghv f;£+1) - é(’]-}:rf;rb.:,_la f}t-‘,—l)) + 8610H2 . g,h + (202 + 86 0 0 _ 17
for any g5, € Gy, where c1, ¢, c3 are the constants in Theorem G.3. By union bound, we can further derive eq. (44). O
C.4. Proof of Theorems 5.4,5.5 and C.1
Proof of Theorem 5.4. Combining Lemmas C.2 to C.4, we obtain Theorem 5.4. O

Proof of Theorems 5.5 and C.1. Plugging Lemmas Lemmas C.5 and C.7 into Lemma C.2 yields that with probability at
least 1 — 6,

log(H/9)

n

R 1 I
E(f) <§rg£8(f)+e+c9H2<rz+H;r;hjL ) + efl(é’(ﬂ)—i-e)

for a universal constant ¢ > 0. By letting

, E(fT) +e
0 = 1 + \/ H2 * log(H/é) )
¢ (TL+HZh 17g, T )

n

we have

H
() <m1n5(f) + €+ cH? (rz + % ngh + 1Og(f/6)>
h=1

H
el <§%i£5<f”“><7““IZZT;ﬁW),

n
h=1
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which finishes the proof of Theorem C.1.
Similarly, by combining Lemmas C.2, C.6 and C.7, we prove Theorem 5.5. O

D. Examples (Propositions 6.1 to 6.4)

In this part, we provide estimates for the (Iocal) Rademacher complexities of four special function spaces, namely function
class with finite elements, linear function space, kernel class and sparse linear space. The results presented here slightly
generalize Propositions 6.1 to 6.4.

D.1. Function class with finite elements (Proposition 6.1)

Lemma D.1 (Full version of Proposition 6.1). Suppose F is a discrete function class with |F| < oo and f € [0, D] for any

f € F. Then for any distribution p,
Rﬁ(f)ggpmax{ﬂbgﬂ’bgm}. (45)
n n

For any function f° with range in [0, D], we have

o rlog|F| Dlog|F
RE((S € F1F = P2 <)) < 000, where v(r) = 2max {2 ZREEIL )
1 is a sub-root function with positive fixed point
- 2(D Vv 2)log | F|
S —
We remark that Proposition 6.1 is a corollary of Lemma D.1 with D := H.
In order to prove Lemma D.1, we first present a preliminary lemma that will be used later. See Lemma D.2.
Lemma D.2. Suppose a random variable X satisfies | X| < D and E[X] = 0. Then for any A > 0, we have
e —1-AD
E[e’\X} < exp {)\QVar[X] ()\QDQ ) } . 47)

. T . . AX AD
Proof. Note that X < D and the mapping = — ¢—5=% is nondecreasing, therefore, £—F172X < € Z1AD ¢ follows

IZ )\2X2 — /\2D2
that
M —1-2X e —1-\D
Ele*¥] =1+ AE[X] + \’E {XQ (W)] < 1+ A?Var[X] (W) (48)
where we have used the fact E[X] = 0. Since 1 + 2 < e” for any = € R, eq. (48) implies eq. (47). O

We are now ready to prove Lemma D.1.

Proof of Lemma D.1. We can easily see that eq. (45) is a corollary of eq. (46) by letting f° = 0 and r = D?, therefore, we
focus on proving eq. (46). By definition of Rademacher complexity and the symmetry of Rademacher variables, we have

Ro({feFlIf=Flp<r)) =Ro{f = foeF|If = fIl; <7})
:Emax{iZ@(f(Xi)_fo(Xi)) feFf-rl; ST}.

i=1
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For any A\ > 0, it holds that

RE({FeF|If=rlz<ry) —Elog max eXp{AZJi(f(Xi)_fo(Xi))}
If=fol2<r '

g)\—lnElog Z exp{/\ Ui(f(Xi)_fo(Xi))}

feF: i=1 (49)
If=folz<r
1 . .
< log > Eexp{)\ oi(f(Xi)— f (XZ-))},
fEF: i=1
If=relp<r
where the last line is due to Jensen’s inequality. Since (o1, X1), ..., (o, X,,) are i.i.d. samples,
n
Eexp {Azai (F(X0) — f°<Xi))} = (Bexp {hon (F(X0) = F2(X0)}) (50)
i=1
Note that |0y (f(X1) — f°(X1))| < D and E[o1(f(X1) — f°(X1))] = 0 since E[o1] = 0. For any f € F such that

| f = f°lI2 < r, we have Var[oy (f(X1) — f°(X1))] = E[(f(X1) —fO(Xl))Q} = ||f — f°|I> < r. We apply Lemma D.2
and derive that

Eexp {Ao1(f(X1) — f°(X1))} < exp{)\QT (W) } (51)

Combining egs. (49) to (51), we obtain
1 n
RE{FeF|If =2} s-tog > (Bexp Doa(f(X0) - £(X0)})

feF:
IF=rolz<r

1 e —1-\D (52)
< 20— 77
< log <|]: exp {n)\ r( 2Dz )})
~log | F| e*? —1-AD
= TV \2D2 ‘

For r > %, by letting \ := \/loglfl eq. (52) implies R ({f € F | IIf — folI2 < r}) < 2\/7"1°g|f‘ where

we have used the fact ex;i’x < lforany z < 1. When0 < r < %gl]:\’ by letting A\ := 5, eq. (52) ensures
Rn({f eF | P(f—f°)? < r}) < %g\ﬂ. Integrating the pieces, we complete the proof of eq. (46).

2(DV2)log | F|
2ADV2) log| 7] O

It is easy to see that the right hand side of eq. (46) is a sub-root function with positive fixed point

D.2. Linear Space (Proposition 6.2)

Lemma D.3 (Full version of Proposition 6.2). Let ¢ : S x A — R? be a feature map to d-dimensional Euclidean space
and p be a distribution over S x A. Consider a function class

F={f=w'e¢|weR"|f| < B},
where B > 0. It holds that

2Bd

P <
RAF) <4/~

For any f° € F, we have

Ro({feF|If=rol5<r}) <olr), where(r) := @
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1 is sub-root and has a positive fixed point

Proposition 6.2 in Section 6 is a corollary to Lemma D.3. In Proposition 6.2, conditions ||w|| < H and ||¢(s,a)|| < 1 ensure
[ flloc < H for f =w" ¢ and therefore || f||2 < H?. By letting B := H? in Lemma D.3, we obtain Proposition 6.2.

Proof of Lemma D.3. Lemma D.3 can be viewed as a consequence of Lemma D.4 in Appendix D.3. Without loss of
L lfz - ].’ Define a
0 ifi#j.

kernel function k((s, a), (s',a’)) = ¢(s,a) T ¢(s, a’). The RKHS associated with kernel k is the linear space spanned
by ¢ endorsed with inner product (f, ') := w'w’ for f = ¢ w, ' = ¢ w'. In this way, we have || - ||, = || - ||k
For any f € F, ||f||> < B implies ||f|x < v/B. We apply the results in Lemma D.4 with D = v/B. It follows that

ROF) < B EZ 1A (N < /222 and RE({F € F | |If = 213 < 7)) < /2552 r A (4BA) < /222 since
A; = 0fori > d. O]

generality, suppose that ¢ is orthonormal in L?(p), that is, [, , #i(s,a)¢;(s,a)p(s, a)dsda =

D.3. Kernel Class (Proposition 6.3)

We now consider kernel class, that is, a sphere in an RKHS 7 associated with a positive definite kernel £ : X x & — R. In
our paper, X =S x A. Let p be a distribution over X'. We are interested in Rademacher complexities of function class

F={feH|Iflx<D.IfI%< B} &9

Here, || - ||« denotes the RKHS norm and D, B > 0 are some constants. Suppose that E,k(X, X) < oo for X ~ p. We
define an integral operator 7 : L%(p) — L?(p) as

9f:/%mwﬂwmw@.

It is easy to see that .7 is positive semidefinite and trace-class. Let {)\;}5°, be the eigenvalues of .7, arranging in a
nonincreasing order. By using these eigenvalues, we have an estimate for (local) Rademacher complexities of F in
Lemma D.4 below.

Lemma D.4 (Full version of Proposition 6.3). For function class F defined in eq. (53), we have

2 (o]
RL(F)<,| =~ ; B A (4D2)\). (54)

Let f° be an arbitrary function in F. The local Rademacher complexity around f° satisfies

2 oo
RQ({f e F ’ IIf - f°||f) < 7“}) <(r), wherep(r):= - Zr A (4D2)\i). (55)
i=1
1 is a sub-root function with positive fixed point

(56)

In Proposition 6.3, we assume that k(x,z) < 1 forany x € X and ||f||x < H for any f € F. It is then guaranteed
that | f(z)| = [(f, k(-,2))x| < ||f|\;¢”k(,;v)||,C = ||fllk\/k(x,2) < H, which further implies || f||2 < H?. To this end,
Proposition 6.3 is a consequence of lemma D.4 by taking D := H and B := H?.

We remark on the rate of r* with respect to sample size n. Firstly, it is evident that r* < n~2. When \; <im*fora > 1,
r% has order n~ T+« which is typical in nonparametric estimation. When the eigenvalues {\;}72; decay exponentially
quickly, i.e. \; < exp(—p3i®) for o, B > 0, 7* can be of order n=* (logn)/.

Our proof of Lemma D.4 is based on a classical result shown in Theorem D.5.
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Theorem D.5 (Theorem 41 in Mendelson (2002)). For every r > 0, we have

RE({F e # | Il < LIFIZ <)) <

Now we are ready to prove Lemma D.4.

Proof of Lemma D.4. Since eq. (54) is a corollary of eq. (55) by setting » = B, we only consider eqgs. (55) and (56).

Due to the symmetry of Rademacher random variables,
RO eF =l <) =Ro({F =12 [ FeF = £l <)) (57)

Since || f||x < D implies || f — f°[|x < 2D, wehave F C {f € H | || f — f°|lx < 2D}. It follows that

RE({FeF|If -2 <ry) <RO{S— 17| FEH,If = ol <2D,|f — ]2 < r})
=RL({f e M| |Ifllx <2D,|IfIZ<r})

fi=fn/(2D) -
b= 2D.Rg<{f' e ’H,‘ 11l < 1072 < 4D2}>,

where we have used the translational symmetry of RKHS 4. We apply Theorem D.5 and derive that

4D?

i=1

RE({F e FINf~ PR <r) <2D, | 23" A= i;rA(4D2Ai):w(r>_

It is evident that 1) is sub-root. In the following, we estimate the positive fixed point 7* of .

If r < r*, then r < ¢(r), which implies

9 _ 2 — 2y
T §£ZTA(4D /\Z)g

i=1

SRR

(jr+4D2 > )\i> for any j € N.

i=j+1

Solving the quadratic inequality yields

TS—J+2D forany j € N.
n
It ensures that
J oo
* < 2mi = — A
1=j5+1

D.4. Sparse Linear Class (Proposition 6.4)

Let ¢ : S x A — R? be a d-dimensional feature map and p be a distribution over S x .A. We are interested in function class
Fo={f=w"d|weR" |lullo <s[Ifl} <B}.

In the following, we provide an estimate for (local) Rademacher complexities of F; based on the transportation 7% inequality.
Proposition 6.4 would be a special case of our result in this part since Gaussian distributions always satisfy T5 inequality.
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Notations We denote by o C [d] an index set with s elements. Let Z := {a C [d] | || = s}. Note that |Z| < d*. For any
o € T, let ¢, be the subvector of ¢ with ¢4 := (¢, Pags -+ Pa,) - Denote covariance matrix ¥ :=E, [¢¢T] € Réx4,
Let ¥, :=E, [gba(bg] € R*** be the principal submatrix of ¥ with indices given by «.

We use Orlicz norms || - ||, and || - ||, in the spaces of random variables. For a real-valued random variable X, define
(1 X |, = inf{c >0 | Elexp(|X|/c) — 1] < 1} and || X ||y, := inf {c >0 ‘ Elexp(X?/c?) — 1] < 1}. For a random
vector X € R, define || X ||, := sup,cgi-1 [|u Xy, and | X ||y, := sup,ega-1 [|[u” X ||y,

For any positive semidefinite (PSD) matrix M € R?*4, let M T denote its Moore—Penrose inverse and v Mt € R?*4 be the
unique PSD matrix such that (v/ MT)2 = M. We define a MT-weighted vector norm || - || 57+ as || x| 31 = VX T Mix :=
||\/MTX||2 for any x € R%,

For any two distributions 1 and v on a same metric space (X, d), we say a measure p(X,Y") over X x X is a coupling of 1

and v if the marginal distributions of p are x and v respectively, i.e. p(-, X) = p and p(X, -) = v. The quadratic Wasserstein
metric of p and v is defined as

Wa(u,v) = inf Eld(X,Y)?],
)= it B YT

where C(pu, V) is the collection of all couplings of y, v.

Main results Before the statement of main results, we first introduce the notion of 75 property. See Definition D.6 below.

Definition D.6 (75 (o) distribution). Suppose that a probability measure p on metric space (X, d) satisfy the quadratic
transportation cost (1s) inequality

Wa(p,v) < +/202KL (v,p) for all measures v on X,
then we say p is a T»(o) distribution.

We remark that 75 is a broad class that contains many common distributions as special cases. For example, Gaussian
distribution NV (-, M) satisfies T» (/]| M ||2)-inequality. Strongly log-concave distributions are T5. Suppose p is a continuous
measure with a convex and compact support set. If its smallest density is lower bounded within the support, then p is 75.

We have an estimate of the (local) Rademacher complexities of F, in Lemma D.7.

Lemma D.7 (Full version of Proposition 6.4). Suppose that for X ~ p, the distribution of ¢o(X) € R* satisfies T> (o (cv))-
inequality for any o € T. Let 02, () be the smallest positive eigenvalue of ¥, = E, [d)aqbl]. Let ns be a constant such

min

that ng > o(@)/omin (@) for any a € I. There exists a universal constant ¢ > 0 such that when n > cslogd,

| Bslogd
Rﬁ(fs) § C(]- +775) %

Moreover, when n > cslogd, for any f° € Fy, the local Rademacher complexity of F satisfies

RE{FEF NI~ IR <)) <o), withi(r) = ey/r(1 WW-

Here, 1)(r) is a sub-root function with a unique positive fixed point

logd
r* :02(1+7]S)2'5 (;g .

When ¢(X) follows a non-degenerated Gaussian distribution with covariance matrix ¥ € R4%4 we have ola) <

vV Amax(Xa). Since E, (90 ] = Za, it also holds that oyin () = \/)\min (Ep[¢add]) = v/ Amin(Ea). According to
Lemma D.7, we take a parameter k4(X) such that £5(2) > Apax(Za)/Amin(Xa) > 1 for all @ € Z. In this way, the result
in Lemma D.7 holds for ns = /s(2) and reduces to Proposition 6.4.
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Proof of main results In the sequel, we prove Lemma D.7. We first present some preliminary results.

Lemma D.8. For arbitrary random variables X1, X, ..., Xy > 0 (m > 2) satisfying || Xilgx, <r} |y, < ko and
1 Xily 1 x, >Ryl < K1 fori=1,2,...,m and some parameter R > 1, we have

E ax X; < c(m logm + m(ky + R)e*CR/’“),

where ¢ > 0 is a universal constant.

Proof. We first note that E[maxlgigm XZ-] < U+ V with U := ]E[maxlgigm Xz']l{X,;gR}] and V =
E [ maxi<i<m Xi]l{\Xi\zR}]- In what follows, we analyze U and V separately.

By definition of 12-norm and our assumption ||X,;]l{‘xi‘§pb} ||¢2 < K9, we have E[exp(Xf]l“X”SR} /K3) — 1] < 1 for
i=1,2,...,m. It follows that

X 1 Jensetfs
X |<R mequdlty

El max M <
1<i<m I{Q

Xfﬂ{xi@}ﬂ

log E (
8 L?@n P K3

m X2, x,
<log (ZE[QXP (W)}) <log(2m) < 2logm.

K
i=1 2

Therefore, by Jensen’s inequality U = E[ maxi<;<m X;1{|x,/<r}] < \/]E[Hl&)ﬁgigm X1y x,1<ry] < K2v/2logm.

Recall that || X; 1 x,|>r}|ly, < #1, which implies there exists a universal constant ¢ > 1 such that P(|X;|1¢ x,/>r} >
t) < ce~°*/%1. Using this fact, we find that

1% <E|: max |X |]1{|X >R}:| (/ / ) max |X |]1{\X |>R} >t>dt

union
bound

< mRP(|Xi|1yx,>r} > R) +m/ (1 X 1g x>y > t)dt

<mR - ce °F/m 4 m/ ce~ U dt = emRe /51 4o mke R/ < em(ky + R)efCR/'“.

Integrating the pieces, we finish the proof. O

Lemma D.9. Let X1, Xo, ..., X,, € R? be i.i.d. random vectors satisfying Ts(o)-inequality and E[X,1 X ] = M € R*4,
Suppose that n > d. Let 01,09, ...,0, be Rademacher random variables independent of X1, Xa,...,X,. ThenY :=

|25 n ) okXnl|,,; satisfies

n

Y —EY)n{]y —EY]| < (L+ o/}, < <+U ||MT||2>

and Il — ER)ja{|y - E[Y]| > (1+ 0/}, < ( ” ”2>

Proof. We take shorthands X := [X1, Xo, ..., X,,] € R", 0 := (04,...,0,)" € R"andrewrite Y as Y = 1 || Xo| 5.
Note thatY —EY = (Y — E,[Y | X]) + (Eo[Y | X] — EY). In the following, we analyze these two terms separately.

Note that V,Y = n~![|Xo| ;X" M Xo and |[V,Y |2 < n - therefore, Y is (n~'||v/MTX||,)-Lipschitz
with respect to ¢ in the Euclidean norm. Moreover, Y is convex in o and the Rademacher random variables are independent
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and bounded. We use Talagrand’s inequality (See Theorem 4.20 and Corollary 4.23 in (van Handel, 2014).) and obtain that
there exists a universal constant ¢ > 0 such that

]P<|Y —Eo[Y | X]| > tin™H||VMIX], ’ X) < ce~c!i for any t; > 0. (58)
‘We next consider the concentration of H v M TXHQ. For random vector X, we define

.
[ Xl i= sup [l Xy,
ueRr?, [ufl<1

Since X satisfies T5(o)-inequality, according to Gozlan’s theorem (Theorem 4.31 in van Handel (2014)), we find that
|VMT(X — EX)ng < co+/|[M1]; for some universal constant ¢ > 0. Additionally, we have ||[VMTEX||, <

\/HE[\/MTXXT\/MT] |, = 1. Therefore, [|[VMTX|| < |[VMI(X -EX)||, + [|[VMIEX|, <1+ coy/[MF]s.
We now apply Theorem 5.39 in Vershynin (2010) and obtain that

)sz

P([|VAIX(, > v+ e(Vd+ )| VMIX]|, ) < ce™
which further implies
P([[VAMIX|, = v+ e(Va+ 1) (1+ 0 /TMT]2) ) S ce™® forallty > 0. (59)
Combining eq. (58) and eq. (59), we learn that
IP(|Y —E [V | X]| > tin % +ctin (VA +t2) (140 ||MT||2)) < cfe=etl 4 emetd). (60)

As for the second term E,[Y | X] — EY, we use the T»(0) property of sample distribution and Gozlan’s theorem

(Theorem 4.31 in van Handel (2014)). We first show that E,[Y | X] is 4/ W-Lipschitz with respect to Frobenius norm
|- | 7. In fact,

1 1
[Eo[Y | X] = Eo [V | X'| = ~|Eo|[Xo||art = Bo[X'ollart| < —Eo[Xe s — [X'ol]

MT
JIMlX = XoEo oo < o/ P02 1% — xp.

n

| —

1
SﬁEUH(X =X, < "

We then apply Gozlan’s theorem and find that there exists a universal constant ¢ > 0 such that

Mt
IP’<|]EU[Y | X] - E[Y]| > ti0 |2> < ce~chi for any ¢; > 0. (61)
n

Integrating eq. (60) and eq. (61) and using the condition n > d, we find that
P(|Y ~EIY]| > tin ™3 (14 en™b2) (1 4+ 0/MT]2) ) < (et + e7etd).
If 0 < t; < +/n, then by letting t5 = /n, we have
P(‘Y ~EY]|>ctin? (140 HMTH2)) < ce
Otherwise, when t; > /n, we take to = t; and obtain
P(|Y ~EIY]| > ctin™' (14 0/[MT[5) ) < ceet.

We then finish the proof by combining these two cases. O
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We are now ready to prove Lemma D.7.
Proof of Lemma D.7. Note that ’Rfl({f e Fs | IIf - fOHI% < 1"}) = Rﬁ({f - f° | feFslf - f°||2 < T}) <

RL({f € Fas | [If]I2 < r}). Therefore, we can easily obtain upper bounds for RS, ({f € Fs | [[f — f°|2 < r}) by
analyzing R, ({f € F, | ||f||? < r}). To this end, in the following, we focus on the local Rademacher complexity

Ro({feFs [ IfI5 <7}).

To simplify the notation, we write 2 := (s, a). Note that
RO{feF | If12 <)) ESUP{ Zakf ) ‘Jcé]‘-ﬂf2 }

1
_ 1 . T
E sup { . ,;Zl Opdal(Tr) W

acel,we RS,wTan < r}.

We fix o, {0} }?_, and {z}}?_, and then optimize w € R*. Since z;, € supp(p), one always has + Zk 10kba(Tr) €
range(X,, ) with probability one. The supremum is therefore acheived at

VL[ Y okdalan)]
[ESSHTrNEs] .

It follows that

1 n
Rﬁ({f e F, | IfI? <r ) = ﬁErélea%(Ya, where Y,, := Hn;(Tk%(xk)

=t
We further upper bound the local Rademacher complexity by
2
RE({feF | IfIE<r}) < \/F(rélea%cE[Ya] +E| max (Y — E[Y.))] ) (62)
——
E; Es

In the following, we estimate the two terms in the right hand side of eq. (62) separately.

Define o := (01,...,0,)" € R" and @4 := [¢a(z1),...,Pa(xy)] € R¥*™. Wereform Y, as Y, = n!|@qo| 1. It
follows that

1 1 1
E[YS] = SE[|0aol3; ] = SE[(®a0) ' Zh(R00)] = SE[T(Z Paca’ @,)].

We use the relations %]E [<I>QCI>;H =Y, and E[oo "] = I, where I, represents the identity matrix in R***. The inequality

above is then reduced to
1
S \/ ]E[YO?] S T\/ rank(za) S \/? (63)
n n

To this end, we have E; < \/s/n.
Now we focus on Es. Since ¢, (x) satisfies T5 (o(«r) ) -inequality. Applying Lemma D.9, we find that if n > s,

o(a)

Vo — EYL][L{|Ya —E[Ya]| < (1+0(a)/omm(a )}H%_ <+Jmm(a)> 7(1—1—775)

and 1¥a — EVa[1{|Ya — E[¥all > (1 +0(0)/omin(@) }]],, < ( ) <4y,

Umln a
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We further use Lemma D.9 and obtain
Emax Yo — E[Ya]| <c(1+7, ( -3 /log [Z] + |Z|e *cn)
<c(1+ ns)(n_% slogd +exp (—cn+ slogd)).

If n > ¢’slog d for some sufficiently large constant ¢/, then

log d
= Emax |V, — E[Ya]| < ¢(1+ o)1/ o (64)
acl n

Plugging eqgs. (63) and (64) into eq. (62), we complete our proof. O

E. Proof of Lower Bound (Theorem 5.1)

In this section, we will prove a stronger version of Theorem 5.1, which is Theorem E.1. In Theorem E.1, we show that
in the same setting as Theorem 5.1, even if additionally assuming Assumption 1 holds with C' = 1, i.e., uy, is the true
marginal distribution of the single-action MDP, and the algorithm knows {zu, }£L |, it still takes 2( f) samples for the
learning algorithm 2 to achieve € optimality gap for Bellman error. This further justifies the necessity of Assumption 2 and
Assumption 3 in the single sampling regime.

Theorem 5.1. Let 2 be an arbitrary algorithm that takes any dataset D and function class F as input and outputs an
estimator f € F. Forany S € N*T and sample size n > 0, there exists an S-state, single-action MDP paired with a function
class F with | F| = 2 such that the | output by algorithm 2 satisfies

R ) ) 31/2
ES(f)Zmlgc‘f(f)—f—Q(mln{l, - }) (6)

fe

Here, the expectation is taken over the randomness in D.

Theorem E.1. For any e < 0.5 and S > 2, there is a family of single-action, S + 5-state MDPs (H = 3) with the same
underlying distributions py, (satisfying Assumption 1 with C' = 1) and the same reward function (thus the MDPs only differ
in probabiilty transition matrices) and a function class F of size 2, such that all learning algorithm 2 that takes n pairs of

states (s, a,r,s') and output a value function in F must suffer () expected optimality gap in terms of mean-squared
@)

bellman error w.r.t pif n = O(%2).
Mathematically, it means for any learning algorithm 2, there is a single-action, S + 5-state MDP defined above, such that

Sfor D = Up{(84,a4,7i, s, b))}y sampled from M and p, if n = (‘/Zg), we have

Ep [Erp (UD))] Z minEp (f) + Q(e?).

Below we will prove Theorem E.1. To better illustrate the idea of the hard instance, we will first prove a slightly weaker
version with C' = 2 (Theorem E.2) in Appendix E.1 and in Appendix E.2 we will prove Theorem E.1 by slightly twisting
the proof in Appendix E.1.

E.1. Warm-up with C = 2

We construct the hard instances for single sampling in the following way.

Hard Instance Construction: We first generate a uniform random bit ¢ € {—1, 1}, and a Radamacher vector o € {£1}7.
For each ¢, o, we define MDP M: , = (S, A, H,P; ,,r) below, where 0 < ¢ < 0,5. The claim is the distribution of
M serves as the distribution of hard instances. Note that only ¢ , in the tuple defining Mg , depends on c and o. Here

the probability transition matrix Mg , is the same forallh =1,2,..., H.

Let S = {sgarn} U{L,..., St U{tjr}jkeq-1,13, H = 2, |A| = 1 and the initial state is s.x. Since there’s only one action,
below we will just drop the dependence on action and thus simplify the notation. We will always define the probability
transition matrix in the way such that in the 2nd step, we will reach some state among 1, ..., .S and in the 3rd step, we will
reach some state among ¢ .
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o o

fa

RoVe
© @

fa=0
(b) Ilustration of f; and f_,. They only differ

(a) Ilustration of the 3-stage, single action MDP. Each state can ont_yi; and t_1 ;. For h = 3, the Bellman
be visited for at most one h = 1,2,3. r is the reward for each error || for — Tf:afe/ ||§7u3 = 0.5, regardless of
state.(action omitted since there’s only one) ¢ and c.
1+¢€
1 —
Py = Pe=1

o= @6
© ©

_1+e Py =

Pooy ==

(c) Illustration of @;oi. When ¢ = 1, there are two different but equally likely types of state i,
depending on their probability transition matrix for the next step.

1—e€ 1+e€
4 i

()
6 &)

1+¢€ 1—¢€
4 Peer ==

Pe=—y =

Pe—y =

(d) Mlustration of @S_lm. When ¢ = 1, there are two different but equally likely types of state %,
depending on their probability transition matrix for the next step.

Figure 1. Graphical illustration of the hard instances M, .. As shown in Equation (65), the total Bellman error is only determined by the

Bellman error for h = 2, which is equal to optimal error + %]1 [c # '] if for is the returned function. The main idea of the proof is to

show it’s difficult to guess c via the observed dataset D if D only contains single-sampled data. As a sanity check, for any ¢ and sample

(4,t5,%), if 05 ~" {%1}, the marginal distribution of ¢;  is always uniform, but for double sampling of form (i, ¢; %, t;/ /), we can
decide ¢ by simply looking at histogram of (¢; x,t;/ k).
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Function class: F = {f1, f_1}, where fo(sqan) = 3, fo(i) = 3,V1 < i < Sand fo(tjx) = %, Ve, i k €
{#£1}. Compared to the notation in the main paper, we drop the dependency on h for f € F. This is because the MDP will
reach a disjoint set of states for each step h (see below).

Probability Transition Matrix: We define the probability transition matrix below. Specifically, fori € {1,...,S} and
=~
gk € {1}, PL ,(tjk | 9) =P, (k) := 0.25(1 + ek max(—c, j)o;).

From o) g lili=1,...,8) L Send
Sstart 0 % 0 0
i(i=1,...,9 | 0 0 P.,.(tjx) = 0.25(1 + ek max(—c,j)o;) | O
tin 0 0 0 I

Table 1. Probability Transition Matrix PZ , for MDP M¢ . Starting from s, the process terminates as it reaches seng in the 4th step.

Reward Function: 7 (sgu) = 0,7(1) =0,V1 <3 < S, r(tjr) = %,Vj,k e {-1,1}.

Underlying distribution: We define the underlying distribution for batch data y as pi2(i) = & and p3(t; %) = %, we can
check that Assumption 1 is satisfied with C' = 2 as ¢ < 0.5. Define 7., 72, 7.2, be the Bellman operator of ./\/l
have Vo € {—1,1}°, Ve, ¢ € {—1,1},

Vo = Ty el = fer = 71y = P1j # kmnax(e!, )] = 0.5,

(/0"

2
”fC’_ITc?afc = Z PCU ]k| )fC(jk)
J.ke{£1} 2,p2
2 2
k% max(j, ¢) max(j, —) —1[c#C],
2,p2
| fer — 7;%ch/||%,/143 = ||f6(sstart) = fe(i) 5 = 0.
Thus
1g 1 e2
gc,o’(fc ) SMC o fC = g Z ||fc’ ﬂ?afc’”%,,u,h = §(05 + Z]l [C 7& Cl])‘ (65)

From eq. (65) we can see minimizing Bellman error in this case is equivalent to predict —c. And any algorithm predicts ¢
wrongly, i.e., outputs f., with ¢’ # ¢ with constant probability, will suffer 2(¢2) expected optimality gap. More specifically,
we can show that for random o, it’s information-theoretically hard to predict ¢ correctly given D, which leads to the
following theorem.

Theorem E.2. Forc % { 1,1}, o % {=1,1}%, D = U3 _ {(si, ai, i, 8}, h) Y1y sampled from M, , and p, we have
for any learning algorithm A with n = O(g) samples,

E.oEp [Eco (A(D))] >1Ec,,{ min  Eo (fcl)} Q).
ce{-1,1}

Or equivalently (and more specifically), if we view gl(D) as the modified version of 2, whose range is {—1,1} and satisfies
A = f. with c = A(D). Then we have

E..Ep {]1 {5{(1)) ” CH > Q(e2).

Towards proving Theorem E.2, we need the following lower bound, where pz o IPf ; is defined as the joint distribution of
(s,s'), where s ~ pz and s’ ~ P, 5. Note that when ¢ = 0, P (- | %) becomes uniform distribution for every 1 < i < S,
and thus is independent of ¢, o, which could be denoted by PO therefore.
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Lemma E3. Ifn < 0.15°,

o (2 0Ps )" — (u2 o PO)" |7y < 0.1, forall c € {—1,1}.

Proof. For convenience, we denote (,u2 o ]P’O)n by P and E, (,u2 o ]P’i’a)n by (. By Pinsker’s inequality, we have
|1P — Qllrv < /2K L(P,Q), for any distribution P, Q). Thus it suffices to upper bound K L(P, Q) by 0.05.

We define E; as arandom subset, i.e., B; = {I|1 <1 < n,s; =i}, given D = {(s;, s;)}7_;. Then for both E¢- (112 © Piya)n
and (o o IP’O)n, 51,...,5, are i.i.d. distributed by u5. Note that

Qs y 8 | 81,0, 8n)
= Z p(a)Q(s), ..., 80 | 81,y 8n,0)
oe{-1,1}%
S S
= > J]plo: H (s'5, | B, 01) (66)
oc{—1,1}5i=1 =1
S

=TI 3 »po)QsklE.) |,

=1 Uie{—l,l}

and

g
P(s},..., 8, 817-~~,Sn)=HP(s’Ei|EZ-). (67)
i=1

For any tuple (s1,...,s,) and subset E C {1,...,n}, we define sg as the sub-tuple of s with length | F| selected by E.

Define Pg,, QE, as the distribution of s}, conditioned on E;. In detail, Qp,(s,) = > p(0i)Q(sk,|Ei, 0:) and
o, e{-1,1}

Pp,(sl,) = P(s’, |E;). Note that for Q, s, are i.i.d. conditioned on E; and 0y, i,.e., Q(s, | By, 0;) = HleE . m( s7).
Therefore the distribution Q z, only depends on |E;|, so does P, .

Thus we can write the KL divergence as:

KL ((Mz OPO)" Eo (Mz OPi,o‘)n) =KL(P,Q)= DIEP [log gggﬂ

[ P(Sllv ;8 | 81, . 5n) P(s1, ..,Sn):|
= E_|lo - +1lo
D~P | & Q(Slla ySn | 51, 7571) & Q(Sl7 '~7Sn)
[ TIL, Pl | P(s1,- .. 50)
= E 10g = - +1lo P(s1, »Sn :QS; y Sn
D~p | Hisle(S}:i E;) Q(s15---,5n) (P(s1 ) (51 ) 68)
g[S log i)
D~P Li=1 QEq(S/E7)
- Z [log PE‘(S/Ei)]
—~p~p | Qr(sh,)

By the definition of P and @, given ¢ € £1 and € > 0, we can see that Ep~.p [log o5 (( o ))] only a function of | E;|, and

we denote it by G, . (| E;|). Thus we have
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KL ((M2 o Po)n JEo (Mz ° Pi,cr)n)
=KL(P,Q)

S E,

i=1 m=0

Z log )

i

IE | =m| P(|Ei| =m)

(69)

The last step is because E; are i.i.d. distributed. For convenience, we will denote P(|E;| = m) by Py(m).

It can be shown that G, .(m) is independent of ¢, and thus we drop c in the subscription. We could even simplify the
expression of G.(m) by defining R, .(j) = 0.5(1+ joe) over {—1, 1} (For ¢ = 1, this is effectively grouping (¢1,1,t_1,-1)
into a state, say 1, and (¢1,_1,t_1,1) into another state, say —1.)

Ge(m) = KL ((Unif{—l, ", (R/—lva)m; ( 1,5)m> |

Below are some basic properties of G (m).

o Ge(0) =
e G(1)=

° Ge(m) S 6m28+m€4 + m e

2
2 1—e2 — <

1
5
The first two properties can be verified by direct calculation, and the third property is proved in Lemma E.4.

Now it remains to calculate Py (1) and Ep [|E1|?]. We have

and
]}@[|E12]:11@[(i§11[si:1})21:1}@ Z]l[&-:l]—kuz ‘]l[si:sjzl} =%+%.

Thus we conclude that

=9 Z Py(m)G.(m) < S Z Py(m) - 2m?e* = 2( Z Py (m)m?)Se*
m=2 m=2

=2 (I};l, (1] ~ PN(1)> Set =2 ( (nS; ) 52>Z_2 < 4”;5

) < 1/0.08 < 0.1, which completes the proof. O]
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Lemma E4. Fore? < %, we have

6m2 +m m et
Gg(m) < T€4 + 5 1_ 52 < 2m2€4.

Proof of Lemma EA4. Letxq,...,x, b {—1,1}, we have

m m
G:(m)=—E |log (H(l —x8) + H(l + a:ﬁ))] .
* i=1 i=1
For convenience, we define |x| := | > .~ x;|. Note that

m m

[T~ @ie) + [[ (1 + 2ie) = ((1 —o)lel (14 5)'“”') (1—¢?)

i=1 =1

m—|x|

Thus
m — |z|
2

Gelm) = ~E [1og ((1 —e)lel 4 (14 s)lw\)] - E [log(1 — ?)] .

xr

For the first term, we have

~E [1og ((1 —o)lel 4 (14 s)\m\)}

<-E [log (1 n 5'3|(|‘”2|—1>€2>}
<R [_le(l-’f;l D, |:,38454}

For the second term, we have

9 g2 g2 9 gt
—E |log(1 — =E |log(1 < = .

Thus G.(m) only contains €* terms, i.e.,

6m?+m , m et 9 4

Gs(m)ST 912 < 2me”,
the last step is by assumption £2 < % [
Proof of Theorem E.2. In our case, since r is known and |A| = 1, we can simplify the each data in D into the form

of (s,s’,h). Further since the probability transition matrix for h = 1 and h = 3 are known, below we will assume D
only contains n pairs of (s,s’,2), and we will call these states by {s;}7; and {s;}!" . Since ||fo — T2, fc|3 ., and
| fer — T2, ferllb ., are constant for all ¢, ¢/, we only need to consider || for — T2, fe |3 ,,, as our loss.

Recall we define jip o P, , as the joint distribution of (s, s"), where s ~ piz and 5" ~ P |5. Thus the dataset D can be
viewed as sampled from E. o (12 0 P. )", i.e., D is sampled from a mixture of product measures.
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By Lemma E.3, we know

HEG (,u2 O]P)ia)n —Eo (“2 °© I[Ds—l.,cr)n HTV
"_E

SHEG (W © Pi,a) o (/‘2 © Po)n HTV + HEU (“2 © IP)E—l,a)n —Eo (/‘2 °© Po)n HTV
<0.2.

Thus if we denote the distribution of widetilde2(D) by X., where D ~ Eg (u2 o ]P’aa)n and o ~ {—1,1}5, and A can
be random, the above inequality implies P [X_; # X;] < 0.2, and therefore we have

IE:C,UIED [50,0 (Ql(D))] :% (]EG',D [Sl,a (Q[(D))] + EG,D [5—1,0 (Q[(D))D

2

I
o

+

(P[X1 # 1 +P[X 1 # —1])

2
(PIX1 # 1]+ B[X-1 # ~1] + P[X1 # X)) =~ P[X1 # X

52

—ﬂP[Xl # X_4] (70)
2

€

o1 24 x 0.2

VoIV

- - -
RO N[O N0 DN
bR N RN R % R

™

D= D= = O O

_|_
gl
o

E.2. Proof of Theorem E.1

Now we will prove Theorem E.1 by slightly twisting the distribution of hard instances (MDPs) constructed in the previous
subsection.

Proof of Theorem E.1. W.0.L.G, we can assume S is even and S = 25’ (0.w. we can just abandon one state.) The only
modification from the previous lower bound with C' = 2 is now the distribution of o is defined as the conditional distribution
of P on Zle =0,ie., P'(o) = P(o] Ef:l o; = 0), where P is the uniform distribution on {—1,1}*. The main idea is
that the data distribution (i.e., distribution of (s, s’)) shouldn’t be very different even if we add this additional ‘balancedness’
restriction. We further define a metric d on {—1,1}%. In detail, for o, 0’ € {—1,1}%, we define d(o,0’) = W
We have the following lemma:

Lemma E.5.

1
Wi(P,P) = ﬁEp ; (71)

s
> o
i=1

where W{(P, P') is definedas  min _ E[d(a,d”)).

o~P,o’'~P’

By Cauchy Inequality, we have

s 2
1
Ep (Z oz-) =373 (72)

Proof. For even S, we define B as the set of the “balanced” o, i.e., B = {o]| Zle o/ = 0}. Forevery o € {—1,1}", we

define Q. as the uniform distribution on U, = {o” | d(e, o) = 251701 1 B ie. o' € U, ifand only if ' € B and
d(o,0') = ming cpd(o,od’).
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Now we define I'(0,0') = P(0)Qs(0’). By definition the marginal distribution of I on o is P. By symmetry, the
marginal distribution of o’ is P’. Thus by definition of W7,

1
w(p, P < d N=-—F
1( ) )_a-,oI-ENI‘[ (U’U)] 25 P

s
> o
i=1

O
Lemma E.6.
H (Iug o ]P)i,o,)n — ('ug o ]P’io./)n HTV < Cey/nd(o,0’). (73)
Proof. First, note that
KL (,U'Q © Pi,o‘a 2 © IP)i,cr’)
=KL (p2, p2) + E [KL (P: o (- | 1),P5 o (- | 1))
irvpn
—0+ E [KL (P, Py )]
12 v
1+¢ 1+ 1-—¢ 1—¢
= i n. 1 1
Lo # ol ( 5 BT T3 °g1+g> (74)
1
= P [oi#0] clog
i~ L2 1—¢
2e?
= . .
_if\];P;LQ [UZ#O_Z] 1_6
<4d(o,0')e.
Thus we have
H (MQ °© Pi’a)n - (MQ °© Pi,a’)n ||TV
<\/2KL ((nzoPeg)" s (n2oPiy) )
(75)
S\/ZnKL (,ug oP¢ 5,20 IP’?U,)
<ey/8md(o,a’).
O

Let I'(o, ') be the joint probabilistic distribution on {—1,1}% x {—1,1}° which attains the eq. (71). Therefore the
marginal distribution of I" is P and P’. And thus we have for any ¢ € {—1,1},

HUINEP [(Mz o ]P’i,g)n] - UINEP, [(Mz o Pi,a/)n] v

< E [” (/1’2 o 1P)i,o’)n - (IU’Q o Pi,o”)n”TV}
o,0'~T

)

< E [evBndo, o)

o,0'~T"

Se\/n E [8d(o,07)]

o,0' ~T

=e\/8nWE(P, P')

§25n0'55_0'25.

(76)
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Therefore, when n < %, forany c € {—1,1},

| & [(u2oPe,)" = B [(uaoP,)" oy 0.1
o~P P’

o~
By Lemma E.3, we have

I E, [(p2 0P )" ] - E, [(20P%y o))" ]llrv <0.14+0.140.1+0.1=0.4.

o~

Thus using the same argument in eq. (70), In detail, denote the distribution of (D) by X, where D ~ E,, (/,62 ) Pi,a)",
o ~ {—1,1}%, the above inequality implies P[X_; # X;] < 0.4, and therefore we have

EeoEp [Eco (UD))] =3 (Bo.p [€1,6 (UD))] +Eo p [E-1,0 (A(D))])

[\)

1 ¢
=+ — X 1 X_ -1
c o (B £+ P X # 1))
1 &2 g?
=5 T o P AY+PX o # -1 +P[X1 # X)) - 7 P[X0 # X ]
2 2 77
!
-6 24 24 '
11,
6 40
2
*Eca c,o c R
ity o ()| g
O

F. Auxiliary Results

In this section, we prove some auxiliary lemmas. Appendix F.1 considers the relation between Bellman error and subopti-
mality in values (Lemma 3.2). Appendix F.2 provides a supporting lemma used in the proof of Theorem 5.5. Appendix F.3
presents a full version of Proposition 5.6.

F.1. Connections between Bellman error and suboptimality in value (Lemma 3.2)

In this part, we present several possible ways to connect Bellman error £( f) with the suboptimality gap V7*(s1) — V™ (s1).

Via concentrability coefficient

Lemma 3.2 (Bellman error to value suboptimality). Under Assumption 1, for any f € F, we have that,
Vi(s1) = Vi (s1) < 2H\/C - E(f), 3)
where C'is the concentrability coefficient in Assumption 1.

Lemma 3.2 gives a feasible method to upper bound V;*(s1) — V;"/ (s1) with £(f) using the concentrability coefficient
introduced in Assumption 1. We provide the proof of Lemma 3.2 below.

Proof of Lemma 3.2. The proof of Lemma 3.2 is analogous to Theorem 2 in (Xie & Jiang, 2020b). We place it here for the
self-containedness of our paper. In discussions below, we omit the subscript & in policy 7y, and simply write ¢ to ease the
notation. We first note that since 7 is greedy w.r.t f, therefore,

Vi(s1) = Vi (s1) < Vi(s1) = fi(s1, 7% (s1)) + fi(s1,mp(s1)) — Vi (s1). (78)
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Consider any policy . Since fr+1 = 0and Vi (s1) = E[ Zle Th | s1,7| by definition, we have

H
Z (fh(sh,ah) —Ef [rh + frt1 (She1sang) | SmahD

h=1

fi(s1,m(s1)) = Vi (s1) =E

Sl,W].

Therefore, combined with the fact 7 is the greedy policy w.r.t. f, we can show that

H

fi(s1, 7 (s1)) — Vi (s1) >E[Z (fo = T fas1) (sn, an) 81,7T*1 ; (79)
h;l

filst,mp(s1)) = Vi (s1) = [Z(fh_ﬁfh+l>(8hvah) Sl,ﬂf]- (80)
h=1

Plugging eqgs. (79) and (80) into eq. (78) yields

H

E| S (fu = T fusa) (s an)
h=1

Sl,W]

Vi(s1) =V (s1) < -E

81, T

H
Z (fo = T fus1) (s, an)
h=1

Sl,ﬂf].

Under Assumption 1, by Cauchy-Swartz inequality, it holds that for any policy 7

SI’W]

H

h=1

H
E| > (fo = Tpf frsr) (sn, an)
h=1

H
1
<VCH i Z | fr — 7—h*‘fh+1H1214h7
h=1

which finishes the proof. O

Via a weaker concentrability assumption We observe that Lemma 3.2 does not necessarily need an assumption as strong
as Assumption 1. In fact, the inequality V*(s1) — V¥ (s1) < 2H+/C - £(f) still holds if

E[(fa — Ty frs1) (snan) | s1,7] < \FCHfh *ﬁffhﬂ”uh form = 7% or m = 7y for f € F. (81)

If the function class F and T*F = {T*f = (T foy -, Th frsr) ‘ fe ]-"} have good structures, we may have a tighter
estimate of the required C'. For illustrative purpose, we take a simple example where F, is a subset of a finite dimensional
linear space and 7,* fy41 € Fp, forany fr11 € Fpy1. Letgp: S x A — R? be a basis of F, with ||¢(s,a)||2 < 1. Define

1
S =B, (09 € R Forany f = w'¢ € Fi, [flloo < [wllz < [1Z2wll2v/1/ Amin(En) = (11l un v/ 1/ Amin (En)-
Therefore, eq. (81) holds for C' = maxe[g1{1/Amin(Xn)}.

F.2. Proof of Supporting Lemmas in Minimax Algorithm Analysis

Lemma F.1. Suppose Assumption 4 holds. Denote f1 := mincx E(f). For h € [H], it holds that

I fn — th <CH(H —h+D)|(f-Tf) - (fF —T*fT)HZ for pn = pn or v, x Unif(A), (82)
and || Ty fosr = T fha ), < CHE = 0)|[(F = T4) = (/T =T/ (83)

Proof. 1. Let m be the greedy policy associated with f € F. Since fr41 = f;r{ 41 = 0, we have

H

Z [(fT(ST,aT) —E[rr + fre1(sr41,ar41) |ST’aTD

=" (84)
= (Fsrnar) = Blre + fleslririari) [ srva]) |

fu(s,a) — f;[(s,a) =K

Sp = S,ap = a,ﬂ'f‘|.
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Note that
E [TT + fr+1 (ST+17 Tfri1 (ST+1)) | Sty aT] = 7:—*f7+1(57'7 a‘r)a (85)
E [r‘r + fi+1 (ST+17 Tfrin (ST+1)) | Sty ar] < 7t:f:+1(57'7 CL-,—)~
Combining eqs. (84) and (85), we learn that
H
f(s,0) = s, 0) S B| ST (= T frnn) = (5 = T 1) | (5ma0r) | s = 5.0 = a,m] SO
T=h
By symmetry, it also holds that
H
f;TL(S,a) Jn(s,a) <E Z [ T*fi+1 —(fr - TT*fTH)} (sr,ar)|sn = s,ap = aJTff]- (87)

Under Assumption 4, by Cauchy-Swartz inequality, for any policy 7:

2
Sh, ahv,ﬂ‘|>

<5h7 ah) ~ h, ﬂ]

H
Z [(fr - 7;-*f‘r+1) - (f;[ - 7;*f1+1)} (87,ar)

h

]E(shaah)"’,uh <]E

H
Z {(f-r - 7;*f'r+1> - (ﬂf - ﬁ*fi+1)r(3nar)

T=

<(H-h+1E

T
=

2

C(H—h+1) Z [(fr = T frin) = (1 - T;f;fH)HNT
<CH(H ~h+1) H(f— T = (1 =T )]
Therefore, egs. (86) and (87) imply eq. (82).

2. We now consider ||7,* fo+1 — ﬁl*fft-l-lHu; . Take Tp41(s) := argmax,c 4 { fat1(s,a) V f}L_l(s, a)}. Then we have

|th+1 (3) =V

fh,+1

()] < [fra1 (5, Fn41(5)) = flaq (5, Fnga(5)) |

It follows that
||7;L*fh+1 - ﬁ:f}i+1||uh :HE[th+1 (s') — Vflﬂ(sl) | S, a] ||Mh

SHVf’H—l - Vf,tﬂ vn = Hfh+1 - f]Lrl U XTFhg
Similar to eqgs. (86) and (87), we find that
2
Hfh+1 - fit+1Hyhx%h,+1
H 2
< W:,,rrrflaofiﬂﬂ E(Sh+1,ah+1)~1/h><7~7h+1 (E Z |:(f7' - 7;*f‘r+1) - (f;[ - 7?fi+1):| (577 a"r) Sh+1; Qh+1; 7"—‘| )
T=h+1
7 2
S(H - h) ﬂ:?flaoiifrﬂ E(sh+1,ah+1)~uh,><7~rh+1E Z |:(fT - 7;'*f7'+1) - (fjr - 7?fi+1):| (S‘rv CL-,—) Sh+1;Ah+1, W]

T7=h+1

H
<CH =0 Y |(fr =T frir) = (=TI <CHE=)|(F=TF) = (FF =T ).

T=h+1

Therefore, we conclude that ||’Th*fh+1 - 771*f2+1||ih < éH(H — h)”(f —T*f) = (ff - T*fT)Hi. O
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F.3. Proof of Proposition 5.6

Lemma F.2 (Full version of Proposition 5.6). Let fh+1 be any subset of Fp+1. We have the following inequality,
R (LT s | for € Fraa }) < RY (Vz,,,) < V2AR;w< 04 (Fht1)-
Proof. 1. Due to the symmetry of Rademacher random variables,
RE ({5 frs | fast € Frga}) =Rl ({Th +E[V,,, (53) | 50, an] ‘ frt1 € fh+1})
=Ry" ({E[Vle(S;L) ’ Shvah] ‘ Jnt1 € J?h-i-l})

By definition,

Rﬁh ({E[th+1(s;l) | Sh; ah] ’ fh+1 € flﬂrl}) = E,uh,

n
sup de]E [th,+1(s;€,h) | sk,haak,h}‘| .
Fre1€Fnt1 k=1

Switching the order of supremum and the inner expectation, we derive that

REn ({E[thﬂ(sﬁl) | Sh, an] ’ frnt1 € th}) < El sup ZakahH(s;’h) =RV (Vj:_hﬂ).
fr+1€Fh+1 k=1
2. For notational convenience, let A = [A]. Consider a vector function f,41 : & — R4 defined as fj41(s) =

(Frs1(s,1), frsa(5,2), -, frga(s, A))T € R4 Then for any fui1, friq € Fasrs [Vi, (s) = Vi (9)] < I frs1
ﬁz+1||oc < |\ fhe1 — f:’LH |2, i.e. the mapping R4 5 fj41(s) — Vus1 (8) is 1-Lipschitz. By Lemma G.7, we have

wvm)sm[ up zzak,afh+l<s;,a>],

fr+1€Fh+1 k=1acA

where s7, s5, ..., s}, are i.i.d. samples generated from vj. Let af, dj, ..., a), € Abe random variables such that IP(aj,
a|s))=A""fora € A. It follows that

n

sup Z Z O,afni1(sy, a)

fht1€Fnt1 k=1 ac A

n
I
sup E Uk,a;fh+1(3k7ak>
fr+1€Fh+1 k=1

L

E < AE

n
sup Y Okafnir(sh,a)

a€A fh+1E€EFh+1 k=1 ‘|

=AE = ARZ}‘ X Unif(A) (ﬁh+1) .

Therefore, R7 (Vi ) < V2ZAR A (Fyyy). m

G. Useful Results for (Local) Rademacher Complexity

In this section, we sumarize some useful results for (local) Rademacher complexity that are used throughout our analysis.

G.1. Concentration with Rademacher Complexity

Lemma G.1 below shows some uniform concentration inequalities with Rademacher complexity.
Lemma G.1. Let F be a class of functions with ranges in [a, b]. With probability at least 1 — §,
2log(2/6
Pf<P,f+2R,(F)+(b—a) M, forany f € F.

n

Also, with probability at least 1 — 0,

P.f <Pf+2R,(F)+ (b—a) M, forany f € F.

n
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Proof. Consider the empirical process sup s #(Pf — P,f). By McDiarmid’s inequality, with probability at least 1 — 9,

2log(2/6
sup (Pf — Pof) <Esup (Pf— P.f) + (b—a) M. (88)
fer fer n
The basic property of Rademacher complexity ensures that
E sup (Pf—Pnf) < 2R, (F). (89)
feF
Combining eqs. (88) and (89), we finish the proof. O

G.2. Concentration with Local Rademacher complexity

In this part, we present some auxiliary results regarding local Rademacher complexity. In particular, Lemma G.2 guarantees
the well-definedness of critical radius, Theorem G.3 provides concentration inequalities and Lemma G.5 gives some useful
properties of sub-root functions.

G.2.1. WELL-DEFINEDNESS OF CRITICAL RADIUS

Recall that in Definition 2.3, the critical radius 7* of local Rademacher complexity R2 ({f € F | T'(f) < r}) is defined as
the possitive fixed point of some sub-root functions (7). The following Lemma G.2 ensures that r* exists and is unique.
Lemma G.2 (Lemma 3.2 in Bartlett et al. (2005)). If v : [0,00) — [0,00) is a nontrivial sub-root function, then it is

continuous on [0, 00) and the equation 1 (r) = r has a unique positive solution r*. Moreover, for all v > 0, r > (r) if and
only if r* <.

G.2.2. CONCENTRATION INEQUALITIES

Throughout the paper, we use Theorem G.3 below to prove uniform concentration with local Rademacher complexity.
Theorem G.3 is a variant of Theorem 3.3 in Bartlett et al. (2005).

Theorem G.3 (Corollary of Theorem 3.3 in Bartlett et al. (2005)). Let F be a class of functions with ranges in [a, b]
and assume that there are some functional T : F — RT and some constants B and 7 such that for every f € F,
Var[f] < T(f) < B(Pf +n). Let i be a sub-root function and let v* be the fixed point of 1. Assume that v satisfies, for
anyr > 1%, (r) > BR,({f € F | T(f) <r}). Then for any 6 > 1, with probability at least 1 — §,

0 b, log(1/9) n
< —_ p— .
Pf—9,1P"f+ 5" + (c2(b— a) + c3B) - +071’ forany f € F (90)
Also, with probability at least 1 — 6,
0+1 0 log(1/6
Pnfg%Pf—i—%r*—i—(cz(b—a)—i—cSBG)%/)—l—% forany f € F.

Here, cq, co, c3 > 0 are some universal constants.

Proof. Theorem G.3 is proved in the same way as the first part of Theorem 3.3 in Bartlett et al. (2005), by applying the
following Lemma G.4 instead of Lemma 3.8 in Bartlett et al. (2005). O]

Givenaclass 7, A > Land r > 0, let w(f) := min {r\* |k € N,rA* > T(f)} and set G, := {atnf | f € F}. Define
Vit i=sup,cg, Pg— Pogand V,” :=sup,cg Png — Pg.

Lemma G.4 (Corollary of Lemma 3.8 in Bartlett et al. (2005)). Assume that there is a constant B > 0 such that for every
fFeFT(f) <BPf+mn). Fix0 >1,X>0andr > 0. If V;F < ~pg> then Pf < eo%anf—F spg + a0 Also, if
Vi < sk then Paf < SLPS + i+

Proof. When Vﬁ < Age’ following the same reasoning as Lemma 3.8 in Bartlett et al. (2005), we derive that Pf <

P, f+671(Pf +n) under the modified condition T'(f) < B(Pf +n). It immediately implies the first statement. Similarly,
the second part is proved by showing that P, f < Pf + 0~1(Pf + 7). O
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(G.2.3. PROPERTIES OF SUB-ROOT FUNCTIONS

We apply the following Lemma G.5 to simplify the forms of critical radii.

Lemma G.5. [f1):[0,00)— [0, 00) is a nontrivial sub-root function and r* is its positive fixed point, then

1. (r) < \r*r forany r > r*.

2. Forany c > 0, 1;(?”) := cp(c™1r) is sub-root and its positive fixed point 7* satisfies 7* = cr*.

3. Forany C > 0, 12(7“) := C(r) is sub-root and its positive fixed point 7* satisfies 7™ < (C? V 1)r*

4. For any Ar >0, 1;(7") := 1p(r+Ar) is sub-root and its positive fixed point 7 satisfies 7 <r* +/1*Ar.

If ;:]0,00) — [0, 00), i =1, ...,n are nontrivial sub-root functions and r} is the positive fixed point of 1;, then

5 J(r) = Y1, i(r) is sub-root and its positive fixed point T* satisfies T* < (Y1 /TZ-*)Q.

Proof. 1. Since 1 is a sub-root function, we have K\/? < w\;’;;) for any » > r*. Note that 7* > 0 is the fixed point and

w\(/’;) /r*. Therefore, ¥ (r) < \/r*r for r > r*.

2. Itis evident that w is sub-root. Additionally, if » > cr*, then by Lemma G.2, we have J(r) =cp(cir) <elec7tr)=r.
In contrast, if 0 < 7 < cr*, then ¥(r) = ctp(c~'r) > ¢(c1r) = r. To this end, we can conclude that 7 = cr*.

3. We use part 1 and derive that if 7* > r* then 7* = ¢ (7*) = C(7*) < CVr*7*, which further implies 7 < C2r*
Therefore, 7 < (C? V 1)r*

4. If 7 + Ar > r*, then we have 7* = ¢(7*) = (7 + Ar) < /r*(7* + Ar) due to part 1. It follows that

<A 4 /()2 + ArrAr) < rf+VrrAr

5. If 7 > max;e[,) 77, then we apply part 1 and obtain 7 = V(F*) = S () < S0 \/rir*. Hence, 7 <
n 2

(X V)™ O

G.3. Contraction property of Rademacher complexity

Our analyses use contraction properties of Rademacher complexity. See Lemmas G.6 and G.7.

Lemma G.6 (Contraction property of Rademacher complexity, Ledoux & Talagrand (2013), Theorem A.6 in Bartlett et al.
(2005)). Suppose F C {f : X — R}. Let ¢ : R — R be a contraction such that |¢p(x) — ¢(y)| < |y — /| for any y,y' € R.
Then for any X1, Xo,..., X, € &,

x(¢poF)=E, [;ggigffﬁ(ﬂ){i))} <E, [iggigaiﬂ){i)} = Rx(F).

Lemma G.7 (Vector-form contraction property of Rademacher complexity, Maurer (2016)). Suppose F is a collection
of vector-valued functions f : X — R% and h : R® — R is L-Lipschitz with respect to the Euclidean norm, i.e.
’h(y) — h(y')‘ < Llly — /|2 for any y,y' € R% Then for any X1, Xs,..., X, € X,

x(hoF) = [sup Zaz X; ]

FeF M

<V2LE,

d
sup fZZUme ; 1 < ﬂLZﬁX({f]’f € F}).

i=1 j=1



