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Abstract
This paper considers batch Reinforcement Learn-
ing (RL) with general value function approxima-
tion. Our study investigates the minimal assump-
tions to reliably estimate/minimize Bellman error,
and characterizes the generalization performance
by (local) Rademacher complexities of general
function classes, which makes initial steps in
bridging the gap between statistical learning the-
ory and batch RL. Concretely, we view the Bell-
man error as a surrogate loss for the optimality
gap, and prove the followings: (1) In double sam-
pling regime, the excess risk of Empirical Risk
Minimizer (ERM) is bounded by the Rademacher
complexity of the function class. (2) In the single
sampling regime, sample-efficient risk minimiza-
tion is not possible without further assumptions,
regardless of algorithms. However, with com-
pleteness assumptions, the excess risk of FQI and
a minimax style algorithm can be again bounded
by the Rademacher complexity of the correspond-
ing function classes. (3) Fast statistical rates can
be achieved by using tools of local Rademacher
complexity. Our analysis covers a wide range of
function classes, including finite classes, linear
spaces, kernel spaces, sparse linear features, etc.

1. Introduction
Statistical learning theory, since its introduction in the late
1960’s, has become one of the most important frameworks
in machine learning, to study problems of inference or func-
tion estimation from a given collection of data (Hastie et al.,
2009; Vapnik, 2013; James et al., 2013). The development
of statistical learning has led to a series of new popular
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algorithms including support vector machines (Cortes &
Vapnik, 1995; Suykens & Vandewalle, 1999), boosting (Fre-
und et al., 1996; Schapire, 1999), as well as many success-
ful applications in fields such as computer vision (Szeliski,
2010; Forsyth & Ponce, 2012), speech recognition (Juang
& Rabiner, 1991; Jelinek, 1997), and bioinformatics (Baldi
et al., 2001).

Notably, in the area of supervised learning, a considerable
amount of effort has been spent on obtaining sharp risk
bounds. These are valuable, for instance, in the problem
of model selection—choosing a model of suitable complex-
ity. Typically, these risk bounds characterize the excess
risk—the suboptimality of the learned function compared
to the best function within a given function class, via proper
complexity measures of that function class. After a long
line of extensive research (Vapnik, 2013; Vapnik & Chervo-
nenkis, 2015; Bartlett et al., 2005; 2006), risk bounds are
proved under very weak assumptions which do not require
realizability—the prespecified function class contains the
ground-truth. The complexity measures for general function
classes have also been developed, including but not limited
to metric entropy (Dudley, 1974), VC dimension (Vapnik &
Chervonenkis, 2015) and Rademacher complexity (Bartlett
& Mendelson, 2002). (See e.g. (Wainwright, 2019) for a
textbook review.)

Concurrently, batch reinforcement learning (Lange et al.,
2012; Levine et al., 2020)—a branch of Reinforcement
Learning (RL) that learns from offline data, has been in-
dependently developed. This paper considers the value
function approximation setting, where the learning agent
aims to approximate the optimal value function from a re-
stricted function class that encodes the prior knowledge.
Batch RL with value function approximation provides an
important foundation for the empirical success of modern
RL, and leads to the design of many popular algorithms
such as DQN (Mnih et al., 2015) and Fitted Q-Iteration with
neural networks (Riedmiller, 2005; Fan et al., 2020).

Despite being a special case of supervised learning, batch
RL also brings several unique challenges due to the addi-
tional requirement of learning the rich temporal structures
within the data. Addressing these unique challenges has
been the main focus of the field so far (Levine et al., 2020).
Consequently, the field of statistical learning and batch RL
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have been developed relatively in parallel. In contrast to the
mild assumptions required and the generic function class
allowed in classical statistical learning theory, a majority of
batch RL results (Munos & Szepesvári, 2008; Antos et al.,
2008; Lazaric et al., 2012; Chen & Jiang, 2019) remain
under rather strong assumptions which rarely hold in prac-
tice, and are applicable only to a restricted set of function
classes. This raises a natural question: can we bring the
rich knowledge in statistical learning theory to advance our
understanding in batch RL?

This paper makes initial steps in bridging the gap between
statistical learning theory and batch RL. We investigate the
minimal assumptions required to reliably estimate or mini-
mize the Bellman error, and characterize the generalization
performance of batch RL algorithms by (local) Rademacher
complexities of general function classes. Concretely, we
establish conditions when the Bellman error can be viewed
as a surrogate loss for the optimality gap in values. We
then bound the excess risk measured in Bellman errors. We
prove the followings:

• In the double sampling regime, the excess risk of a
simple Empirical Risk Minimizer (ERM) is bounded
by the Rademacher complexity of the function class,
under almost no assumptions.

• In the single sampling regime, without further assump-
tions, no algorithm can achieve small excess risk in
the worse case unless the number of samples scales up
polynomially with respect to the number of states.

• In the single sampling regime, under additional com-
pleteness assumptions, the excess risks of Fitted Q-
Iteration (FQI) algorithm and a minimax style algo-
rithm can be again bounded by the Rademacher com-
plexity of the corresponding function classes.

• Fast statistical rates can be achieved by using tools of
local Rademacher complexity.

Finally, we specialize our generic theory to concrete ex-
amples, and show that our analysis covers a wide range
of function classes, including finite classes, linear spaces,
kernel spaces, sparse linear features, etc.

1.1. Related Work

We restrict our discussions in this section to the RL results
under function approximation.

Batch RL There exists a stream of literature regarding
finite sample guarantees for batch RL with value function
approximation. Among the works, fitted value iteration
(Munos & Szepesvári, 2008) and policy iteration (Antos
et al., 2008; Farahmand et al., 2008; Lazaric et al., 2012;

Farahmand et al., 2016; Le et al., 2019) are canonical and
popular approaches. When using a linear function space, the
sample complexity for batch RL is shown to depend on the
dimension (Lazaric et al., 2012). When it comes to general
function classes, several complexity measures of function
class such as metric entropy and VC dimensions have been
used to bound the performance of fitted value iteration and
policy iteration (Munos & Szepesvári, 2008; Antos et al.,
2008; Farahmand et al., 2016).

Throughout the existing theoretical studies of batch RL,
people commonly use concentrability, realizability and com-
pleteness assumptions to prove polynomial sample com-
plexity. Chen & Jiang (2019) justify the necessity of low
concentrability and hold a debate on realizability and com-
pleteness. Xie & Jiang (2020a) develop an algorithm that
only relies on the realizability of optimal Q-function and
circumvents completeness condition. However, they use
a stronger concentrability assumption and the error bound
has a slower convergence rate. While the analyses in Chen
& Jiang (2019) and Xie & Jiang (2020a) are restricted to
discrete function classes with a finite number of elements,
Wang et al. (2020a) investigate value function approxima-
tion with linear spaces. It is shown that data coverage and
realizability conditions are not sufficient for polynomial
sample complexity in the linear case.

Off-policy evaluation Off-policy evaluation (OPE) refers
to the estimation of value function given offline data (Precup,
2000; Precup et al., 2001; Xie et al., 2019; Uehara et al.,
2020; Kallus & Uehara, 2020; Yin et al., 2020; Uehara et al.,
2021), which can be viewed as a subroutine of batch RL.
Combining OPE with policy improvement leads to policy-
iteration-based or actor-critic algorithms (Dann et al., 2014).
OPE is considered as a simpler problem than batch RL and
its analyses cannot directly translate to guarantees in batch
RL.

Online RL RL in online mode is in general a more dif-
ficult problem than batch RL. The role of value function
approximation in online RL remains largely unclear. It re-
quires better tools to measure the capacity of function class
in an online manner. In the past few years, there are some
investigations in this direction, including using Bellman
rank (Jiang et al., 2017) and Eluder dimension (Wang et al.,
2020b) to characterize the hardness of RL problem.

1.2. Notation

For any integer K > 0, let [K] be the collection of
1, 2, . . . ,K. We use 1[·] to denote the indicator function.
For any function q(·) and any measure ρ over the domain of
q, we define norm ‖·‖ρ where ‖q‖2ρ := Ex∼ρq2(x). Let ρ1

be a measure over X1 and ρ2(· | x1) be a conditional distri-
bution over X2. Define ρ1 × ρ2 as a joint distribution over
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X1×X2, given by (ρ1×ρ2)(x1, x2) := ρ1(x1)ρ2(x2 | x1).
For any finite set X , let Unif(X ) define a uniform distribu-
tion over X .

2. Preliminaries
We consider the setting of episodic Markov decision process
MDP(S,A, H,P, r), where S is the set of states which
possibly has infinitely many elements; A is a finite set of
actions with |A| = A; H is the number of steps in each
episode; Ph(· | s, a) gives the distribution over the next
state if action a is taken from state s at step h ∈ [H]; and
rh : S ×A → [0, 1] is the deterministic reward function at
step h. 1

In each episode of an MDP, we start with a fixed initial
state s1. Then, at each step h ∈ [H], the agent observes
state sh ∈ S, picks an action ah ∈ A, receives reward
rh(sh, ah), and then transitions to the next state sh+1, which
is drawn from the distribution Ph(· | sh, ah). Without loss
of generality, we assume there is a terminating state send
which the environment will always transit to at step H + 1,
and the episode terminates when send is reached.

A (non-stationary, stochastic) policy π is a collection of
H functions

{
πh : S → ∆A

}
h∈[H]

, where ∆A is the
probability simplex over action set A. We denote πh(· | s)
as the action distribution for policy π at state s and time
h. Let V πh : S → R denote the value function at step h
under policy π, which gives the expected sum of remaining
rewards received under policy π, starting from sh = s, until
the end of the episode. That is,

V πh (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣ sh = s

]
.

Accordingly, the action-value function Qπh : S ×A → R at
step h is defined as,

Qπh(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣∣ sh = s, ah = a

]
.

Since the action spaces, and the horizon, are all finite, there
always exists (see, e.g., (Puterman, 2014)) an optimal policy
π? which gives the optimal value V ?h (s) = supπ V

π
h (s) for

all s ∈ S and h ∈ [H].

For notational convenience, we take shorthands Ph,Pπh,P?h
as follows, where (s, a) is the state-action pair for the cur-
rent step, while (s′, a′) is the state-action pair for the next

1While we study deterministic reward functions for notational
simplicity, our results generalize to randomized reward functions.
Note that we are assuming that rewards are in [0, 1] for normaliza-
tion.

step,

[PhV ](s, a) :=E
[
V (s′)

∣∣ s, a],
[PπhQ](s, a) :=Eπ

[
Q(s′, a′)

∣∣s, a],
[P?hQ](s, a) :=E

[
max
a′

Q(s′, a′)
∣∣ s, a].

We further define Bellman operators T πh , T ?h : RS×A →
RS×A for h ∈ [H] as

(T πh Q)(s, a) := (rh + PπhQ)(s, a),

(T ?h Q)(s, a) := (rh + P?hQ)(s, a).

Then the Bellman equation and the Bellman optimality equa-
tion can be written as:

Qπh(s, a) = (T πh Qπh+1)(s, a), Q?h(s, a) = (T ?h Q?h+1)(s, a).

The objective of RL is to find a near-optimal policy, where
the sub-optimality is measured by V ?1 (s1) − V π1 (s1). Ac-
cordingly, we have the following definition of ε-optimal
policy.

Definition 2.1 (ε-optimal policy). We say a policy π is ε-
optimal if V ?1 (s1)− V π1 (s1) ≤ ε.

2.1. (Local) Rademacher complexity

In this paper, we leverage Rademacher complexity to char-
acterize the complexity of a function class. For a generic
real-valued function space F ⊆ RX and n fixed data points
X = {x1, . . . , xn} ∈ Xn, the empirical Rademacher com-
plexity is defined as

R̂X(F) := E

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

∣∣∣∣∣ X
]
,

where σi ∼ Uniform({−1, 1}) are i.i.d. Rademacher ran-
dom variables and the expectation is taken with respect to
the uncertainties in {σi}ni=1. Let ρ be the underlying distri-
bution of xi. We further define a population Rademacher
complexityRρn(F) := Eρ[R̂X(F)] with expectation taken
over data samples X . Intuitively,Rρn(F) measures the com-
plexity of F by the extent to which functions in the class F
correlate with random noise σi.

This paper further uses the tools of local Rademacher com-
plexity to obtain results with fast statistical rate. For a
generic real-valued function space F ⊆ RX , and data distri-
bution ρ. Let T be a functional T : F → R+, we study the
local Radmacher complexity in the form of

Rρn({f ∈ F | T (f) ≤ r}).

A crucial quantity that appears in the generalization error
bound using local Rademacher complexity is the critical
radius (Bartlett et al., 2005). We define as follows.
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Definition 2.2 (Sub-root function). A function ψ : R+ →
R+ is sub-root if it is nondecreasing, and r → ψ(r)/

√
r is

nonincreasing for r > 0.
Definition 2.3 (Critical radius of local Radmacher complex-
ity). The critical radius of the local Radmacher complexity
Rρn({f ∈ F | T (f) ≤ r}) is the infimum of the set B,
where set B is defined as follows: for any r? ∈ B, there
exists a sub-root function ψ such that r? is the fixed point
of ψ, and for any r ≥ r? we have

ψ(r) ≥ Rρn({f ∈ F | T (f) ≤ r}). (1)

We typically obtain an upper bound of this critical radius by
constructing one specific sub-root function ψ satisfying (1).

3. Batch RL with Value Function
Approximation

This paper focuses on the offline setting where the data in
form of tuples D = {(s, a, r, s′, h)} are collected before-
hand, and are given to the agent. In each tuple, (s, a) are
the state and action at the hth step, r is the resulting reward,
and s′ is the next state sampled from Ph(·|s, a). For each
h ∈ [H], we have access to n data, that are i.i.d sampled
with marginal distribution µh over (s, a) at the hth step. We
denote µ = µ1×µ2×. . .×µH . For each h ∈ [H], we further
denote the marginal distribution of s′ in tuple (s, a, s′, h)
as νh , and let ν = ν1 × ν2 × . . . × νH . Throughout this
paper, we will consistently use µ and ν to only denote the
probability measures defined above.

We assume data distribution µ is well-behaved and satisfies
the following assumption.
Assumption 1 (Concentrability). Given a policy π, let Pπh
denote the marginal distribution at time step h, starting from
s1 and following π. There exists a parameter C such that

sup
(s,a,h)∈S×A×[H]

dPπh
dµh

(s, a) ≤ C for any policy π.

Assumption 1 requires that for any state-action pair (s, a),
if there exists a policy π that reaches (s, a) with some de-
scent amount of probability, then the chance that sample
(s, a) appears in the dataset would not be low. Intuitively,
Assumption 1 ensures that the dataset D is representative
for all the “reachable” state-action pairs. The assumption is
frequently used in the literature of batch RL, e.g. equation
(7) in Munos (2003), Definition 5.1 in Munos (2007), Propo-
sition 1 in Farahmand et al. (2010), Assumption 1 in Chen
& Jiang (2019), etc. We remark that Assumption 1 here is
the only assumption of this paper regarding the properties
of the batch data.

We consider the setting of value function approximation,
where at each step h we use a function fh in class Fh to

approximate the optimal Q-value function. For notational
simplicity, we denote f := (f1, · · · , fH) ∈ F with F :=
F1×· · ·×FH . Since no reward is collected in the (H+1)th

steps, we will always use the convention that fH+1 = 0 and
FH+1 = {0}. We assume fh ∈ [−H,H] for any fh ∈ Fh.
Each f ∈ F induces a greedy policy πf = {πfh}Hh=1 where

πfh(a | s) = 1
[
a = arg max

a′
fh(s, a′)

]
.

In valued-based batch RL, we take the offline dataset D
as input and output an estimated optimal Q-value function
f and the associated policy πf . We are interested in the
performance of πf , which is measured by suboptimality in
values, i.e., V ?1 (s1)− V πf1 (s1). However, this gap is highly
nonsmooth in f , which is similar to the case of supervised
learning where the 0− 1 losses for classification tasks are
also highly nonsmooth and intractable. To mitigate this
issue, a popular approach is to use a surrogate loss—the
Bellman error.

Definition 3.1 (Bellman error). Under data distribution µ,
we define the Bellman error of function f = (f1, · · · , fH)
as

E(f) :=
1

H

H∑
h=1

‖fh − T ?h fh+1‖2µh . (2)

Bellman error E(f) appears in many classical RL algorithms
including Bellman risk minimization (BRM) (Antos et al.,
2008), least-square temporal difference (LSTD) learning
(Bradtke & Barto, 1996; Lazaric et al., 2012), etc.

The following lemma shows that under Assumption 1, one
can control the suboptimality in values by the Bellman error.

Lemma 3.2 (Bellman error to value suboptimality). Under
Assumption 1, for any f ∈ F , we have that ,

V ?1 (s1)− V πf1 (s1) ≤ 2H
√
C · E(f), (3)

where C is the concentrability coefficient in Assumption 1.

Therefore, the Bellman error E(f) is indeed a surrogate
loss for the suboptimality of πf under mild conditions. In
the next two sections, we will focus on designing efficient
algorithms that minimize the Bellman error.

4. Results for Double Sampling Regime
As a starting point for Bellmen error minimization, we con-
sider an empirical version of E(f) computed from samples.
A natural choice of this empirical proxy is as follows

L̂B(f) :=
1

nH

∑
(s,a,r,s′,h)∈D

(
fh(s, a)− r − Vfh+1

(s′)
)2
,

(4)
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where Vfh+1
(s) := maxa∈A fh+1(s, a). Unfortunately, the

estimator L̂B is biased due to the error-in variable situa-
tion (Bradtke & Barto, 1996). In particular, we have the
following decomposition.

E(f) = EµL̂B(f)− 1

H

H∑
h=1

EµhVars′∼Ph(·|s,a)(Vfh+1
(s′)).

(5)

That is, the Bellman error and the expectation of L̂B differ by
a variance term. This variance term is due to the stochastic
transitions in the system, which is non-negligible even when
f approximates the optimal value function Q?. A direct
fix of this problem is to estimate the variance by double
samples, where two independent samples of sh+1 are drawn
when being in state sh (Baird, 1995).

Formally, in this section, we consider the setting where for
any (s, a, r, s′, h) in dataset D, there exists a paired tuple
(s, a, r, s̃′, h) which share the same state-action pair (s, a)
at step h, while s′, s̃′ being two independent samples of
the next state. Such data can be collected for instance if
a simulator is avaliable, or the system allows an agent to
revert back to the previous step. For simplicity, we denote
this dataset as D̃ = {(s, a, r, s′, s̃′, h)} without placing ad-
ditional constraints.

We construct the following empirical risk, which further
estimates the variance term in (5) via double samples,

L̂DS(f) :=
1

nH

∑
(s,a,r,s′,s̃′,h)∈D̃

[(
fh(s, a)−r−Vfh+1

(s′)
)2

− 1

2

(
Vfh+1

(s′)− Vfh+1
(s̃′)
)2 ]

.

We can show that, for any fixed f ∈ F , EL̂DS(f) = E(f),
i.e., L̂DS is an unbiased estimator of the Bellman error. Our
algorithm for this setting is simply the Empirical Risk Mini-
mizer (ERM), and we prove the following guarantee.
Theorem 4.1. There exists an absolute constant c > 0,
with probability at least 1 − δ, the ERM estimator f̂ =
arg minf∈F L̂DS(f) satisfies the following:

E(f̂) ≤min
f∈F
E(f) + cH2

√
log(1/δ)

n

+ c

H∑
h=1

(
Rµhn (Fh) +Rνhn (VFh+1

)
)
.

Here, we use shorthand VFh+1
:= {Vfh+1

| fh+1 ∈ Fh+1}
for any h ∈ [H]. Theorem 4.1 asserts that, in the dou-
ble sampling regime, simple ERM has its excess risk
E(f̂) − minf∈F E(f) upper bounded by the Rademacher
complexity of function class {Fh}Hh=1, {VFh+1

}Hh=1 and a
small concentration term that scales as Õ(1/

√
n).

Most importantly, we remark that Theorem 4.1 holds with-
out any assumption on the input data distribution or the
properties of the MDP. Function class F can also be com-
pletely misspecificed in the sense the optimal value function
Q? may be very far from F . This allows Theorem 4.1 to be
widely applicable to a large number of applications.

However, a major limitation of Theorem 4.1 is its reliance
on double samples. Double samples are not available in
most dynamical systems that have no simulators or can not
be reverted back to the previous step. In next section, we
analyze algorithms in the standard single sampling regime.

5. Results for Single Sampling Regime
In this section, we focus on batch RL in the standard single
sampling regime, where each tuple (s, a, r, s′, h) in dataset
D has a single next step s′ following (s, a). We first present
a sample complexity lower bound for minimizing the Bell-
man error, showing that in order to acheive an excess risk
that does not scale polynomially with respect to the number
of states, it is inevitable to have additional structural assump-
tions on function class F and the MDP. Then we analyze
fitted Q-iteration (FQI) and a minimax estimator respec-
tively, under different completeness assumptions. In addi-
tion to Rademacher complexity upper bounds similar to The-
orem 4.1, we also utilize localization techniques and prove
bounds with faster statistical rate in these two schemes.

5.1. Lower bound

Recall that when double samples are available, the excess
risk of ERM estimator is controlled by Rademacher com-
plexities of function classes (Theorem 4.1). In the single
sampling regime, one natural question to ask is whether
there exists an algorithm with a similar guarantee (i.e. the
excess risk is upper bounded by certain complexity mea-
sure of the function class). Unfortunately, without further
assumptions, the answer is negative.
Theorem 5.1. Let A be an arbitrary algorithm that takes
any dataset D and function class F as input and outputs an
estimator f̂ ∈ F . For any S ∈ N+ and sample size n ≥ 0,
there exists an S-state, single-action MDP paired with a
function class F with |F| = 2 such that the f̂ output by
algorithm A satisfies

EE(f̂) ≥ min
f∈F
E(f) + Ω

(
min

{
1,
S1/2

n

})
. (6)

Here, the expectation is taken over the randomness in D.

Theorem 5.1 reveals a fundamental difference between the
single sampling regime and the double sampling regime.
The lower bound in inequality (6) depends polynomially on
S—the cardinality of state space, which is considered to be
intractably large in the setting of function approximation.
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Algorithm 1 FQI

1: initialize f̂H+1 ← 0.
2: for h = H,H − 1, . . . , 1 do
3: f̂h ← arg minfh∈Fh

ˆ̀
h(fh, f̂h+1) :=

1
n

∑
(s,a,r,s′,h)∈Dh

(
fh(s, a)−r−Vf̂h+1

(s′)
)2
.

4: return f̂ = (f̂1, . . . , f̂H).

In batch RL with single sampling, despite the use of func-
tion class F , the hardness of Bellman error minimization
is still determined by the size of state space. This also sug-
gests that minimizing Bellman error in the single sampling
regime, is intrinsically different from the classic supervised
learning due to the additional temporal correlation structure
presented within the data.

We remark that unlike most lower bounds of similar type in
prior works (Sutton & Barto, 2018; Sun et al., 2019), which
only apply to certain restrictive classes of algorithms, The-
orem 5.1 is completely information-theoretic, and applies
to any algorithm. Recently, (Jiang, 2019) proved the impos-
sibility of estimating the bellman error in single sampling
regime for all algorithms. Our results is stronger since the
impossibility of minimization implies the impossibility of
estimation, but not vice versa.

To circumvent the hardness result in Theorem 5.1, additional
structural assumptions are necessary. In the following, we
provide statistical gurantees for two batch RL algorithms,
where different completeness assumptions on F are used.

5.2. Fitted Q-iteration (FQI)

We consider the classical FQI algorithm. We assume that
function classF = F1×. . .×FH is (approximately) closed
under the optimal Bellman operators T ?1 , . . . , T ?H , which is
commonly adopted by prior analyses of FQI (Munos &
Szepesvári, 2008; Chen & Jiang, 2019).
Assumption 2. There exists ε > 0 such that, for all h ∈
[H], supfh+1∈Fh+1

inffh∈Fh ‖fh − T ?h fh+1‖2µh ≤ ε.

The FQI algorithm is closely related to approximate dy-
namic programming (Bertsekas & Tsitsiklis, 1995). It starts
by setting f̂H+1 := 0 and then recursively computes Q-
value functions at h = H,H − 1, . . . , 1. Each iteration
in FQI is a least squares regression problem based on data
collected at that time step. For h ∈ [H], we denote Dh as
set of data at the hth step. The details of FQI are specified
in Algorithm 1.

In the following Theorem 5.2, we upper bound the excess
risk of the output of FQI in terms of Rademacher complex-
ity.
Theorem 5.2 (FQI, Rademacher complexity). There exists
an absolute constant c > 0, under Assumption 2, with

probability at least 1− δ, the output of FQI f̂ satisfies

E(f̂) ≤ ε+ c

H∑
h=1

Rµhn (Fh) + cH2

√
log(H/δ)

n
. (7)

We remark that Assumption 2 immediately implies that
minf∈F E(f) ≤ ε. Therefore, although the minimal Bell-
man error minf∈F E(f) does not explicitly appear on the
right hand side, inequality (7) is still a variant of excess risk
bound.

For typical parametric function classes, the Rademacher
complexity scales as n−1/2 (see Section 6). Therefore, The-
orem 5.2 guarantees that the excess risk decrease as n−1/2,
up to a constant error ε due to the approximate completeness
(in Assumption 2). However, since Bellman error is the av-
erage of squared L2-norms (Definition 3.1), one may expect
a faster statistical rate in this setting, similar to the case of
linear regression. For this reason, we take advantage of the
localization techniques and develop sharper error bounds in
Theorem 5.3.

Theorem 5.3 (FQI, local Rademacher complexity). There
exists an absolute constant c > 0, under Assumption 2, with
probability at least 1− δ, the output of FQI f̂ satisfies

E(f̂) ≤ ε+ c
√
ε ·∆ + c∆ , (8)

∆ := H

H∑
h=1

r?h +H2 log(H/δ)

n
.

Here r?h is the critical radius of local Rademacher com-
plexity Rµhn ({fh ∈ Fh | ‖fh − f†h‖2µh ≤ r}) with f†h :=

arg minfh∈Fh ‖fh − T
?
h f̂h+1‖µh .

On the RHS of inequality (8), the first term ε measures
model misspecification. The other two terms c(

√
ε ·∆ + ∆)

can be viewed as statistical errors since ∆→ 0 as sample
size n → ∞. For typical parametric function classes, the
critical radius of the local Rademacher complexity scales as
n−1 (see Section 6), which decreases much faster than stan-
dard Rademacher complexity. That is, Theorem 5.3 indeed
guarantees faster statistical rate comparing to Theorem 5.2.

Finally, we remark that f†h in Theorem 5.3 depends on f̂h+1

and therefore is random. We will show later in Section 6 for
many examples, the critical radius can be upper bounded in-
dependent of the choice of f†h, in which case the randomness
in f†h does not affect the final results.

5.3. Minimax Algorithm

The (approximate) completeness of F in Assumption 2 can
be stringent sometimes. For instance, if there is a new func-
tion fh attached to Fh, for the sake of completeness, we
need to enlarge Fh−1 by adding several approximations of
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T ?h−1fh. The same goes for Fh−2, . . . ,F1. After amplify-
ing the function classes one by one for each step, we may
obtain an exceedingly large F .

To avoid the issue above posted by the completeness as-
sumptions on F , we introduce a new function class G =
G1×· · ·×GH , where Gh consists of functions mapping from
S ×A to [−H,H]. We assume that for each fh+1 ∈ Fh+1,
one can always find a good approximation of T ?h fh+1 in
this helper function class Gh.

Assumption 3. There exists ε > 0 such that, for all h ∈
[H], supfh+1∈Fh+1

infgh∈Gh ‖gh − T ?h fh+1‖2µh ≤ ε.

According to (5), we can approximate Bellman error E(f)
by subtracting the variance term from L̂B(f). If gh is close
to T ?h fh+1, then

(
gh(s, a)− r−Vfh+1

(s′)
)2

averaged over
data provides a good estimator of the variance term. Follow-
ing this intuition, we define a new loss

L̂MM(f, g) :=
1

nH

∑
(s,a,r,s′,h)∈D

[(
fh(s, a)−r−Vfh+1

(s′)
)2

−
(
gh(s, a)− r − Vfh+1

(s′)
)2]

.

The minimax algorithm (Antos et al., 2008; Chen & Jiang,
2019) then computes

f̂ := arg min
f∈F

max
g∈G

L̂MM(f, g).

Now we are ready to state our theoretical guarantees for the
minimax algorithms.

Theorem 5.4 (Minimax algorithm, Rademacher complex-
ity). There exists an absolute constant c > 0, under As-
sumption 3, with probability at least 1 − δ, the minimax
estimator f̂ satisfies:

E(f̂) ≤min
f∈F
E(f) + ε+ cH2

√
log(1/δ)

n

+ c

H∑
h=1

(
Rµhn (Fh) +Rµhn (Gh) +Rνhn (VFh+1

)
)
.

As is shown in Theorem 5.4, the excess risk is simul-
taneously controlled by the Rademacher complexities of
{Fh}Hh=1, {Gh}Hh=1 and {VFh+1

}Hh=1.

Similar to the results for FQI, we can also develop risk
bounds with faster statistical rate using the localization tech-
niques. For technical reasons that will be soon discussed, we
introduce the following assumption, which can be viewed
a variant of the concentrability coefficient in Assumption 1
under different initial distributions.

Assumption 4. For any policy π and h ∈ [H], let Pπh,t (or
P̃πh,t) denote the marginal distribution at t > h, starting

from µh at time step h (or from νh×Unif(A) at h+ 1) and
following π. There exists a parameter C̃ such that

sup
(s,a)∈S×A
h∈[H],t>h

(
dPπh,t
dµt

∨
dP̃πh,t
dµt

)
(s, a) ≤ C̃ for any policy π.

For notational convenience, we define

f† = (f†1 , . . . , f
†
H) := arg minf∈F E(f) and

g†h := arg mingh∈Gh ‖gh − T
?
h f
†
h+1‖µh .

Now we are ready to state the excess risk bound of the mini-
max algorithm in terms of local Rademacher complexity as
follows.

Theorem 5.5 (Minimax algorithm, local Rademacher com-
plexity). There exists an absolute constant c > 0, under
Assumptions 3 and 4, with probability at least 1 − δ, the
minimax estimator f̂ satisfies:

E(f̂)≤min
f∈F
E(f)+ε+ c

√(
min
f∈F
E(f)+ε

)
∆ + c∆ , (9)

∆ := H3
H∑
h=1

[
C̃
(
r?f,h + r?g,h + r̃?f,h

)
+
√
C̃r?g,hε

]
+H2 log(H/δ)

n
.

where C̃ is the concentrability coefficient in Assumption 4,
and r?f,h, r

?
g,h, r̃

?
f,h are the critical radius of the following

local Rademacher complexities respectively:

Rµhn
({
fh ∈ Fh

∣∣ ‖fh − f†h‖2µh ≤ r}) ,
Rµhn

({
gh ∈ Gh

∣∣ ‖gh − g†h‖2µh ≤ r}) ,
Rνhn

({
Vfh+1

∣∣ fh+1 ∈ Fh+1,

‖fh+1 − f†h+1‖
2
νh×Unif(A) ≤ r

})
.

Similar to Theorem 5.3, our upper bound in (9) can
also be viewed as a combination of model misspeci-
fication error (minf∈F E(f) + ε) and statistical error

(c
√(

minf∈F E(f) + ε
)
∆ + c∆). As n → ∞, the model

misspecification error is nonvanishing and the statistical
error tends to zero. Again for typical parametric function
classes, the critical radius of the local Rademacher complex-
ity scales as n−1 (see Section 6), and Theorem 5.5 claims
the excess risk of the minimax algorithm also decreases as
n−1 except a constant model misspecification error ε.

Intuitively, Assumption 4 is required in Theorem 5.5 to al-
low that E(f) close to E(f†) implies fh in the neighborhood
of f†h for each step h ∈ [H]. We conjecture such additional
assumption is unavoidable if we would like to upper bound
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the excess risk using the local Rademacher complexity of
Fh, Gh and VFh+1

for the minimax algorithm.

In Appendix C, we present an alternative version of Theo-
rem 5.3, which does not require Assumption 4 but bound
the excess risk using the local Rademacher complexity of a
composite function class depending on the loss, F , and G.
The alternative version recovers the sharp result in (Chen &
Jiang, 2019) when the function classes F and G both have
finite elements.

Finally, our upper bounds for the minimax algorithm con-
tain Radermacher complexities of the function class VF .
We can conveniently control them using the Radermacher
complexities of function class F as follows.

Proposition 5.6. LetF be a set of functions over S×A and
ρ be a measure over S. We have the following inequality,

Rρn(VF ) ≤
√

2A Rρ×Unif(A)
n (F),

where A is the cardinality of the set A.

6. Examples
Below we give four examples of function classes, each
with an upper bound on Rademacher complexity, as well
as the critical radius of the local Rademacher complexity.
Throughout this section we use notation r?,ρn (F , fo) to de-
note the critical radius of local Rademacher complexity
Rρn({f ∈ F | ‖f − fo‖2ρ ≤ r}).

Function class with finite element. First, we consider
the function class F with |F| <∞. Under the normaliza-
tion that f ∈ [0, H] for any f ∈ F , we have the following.

Proposition 6.1. For function class F defined above, for
any data distribution ρ and any anchor function fo ∈ F:

Rρn(F) ≤ 2H max

{√
log |F|
n

,
log |F|
n

}
,

r?,ρn (F , fo) ≤
2H log |F|

n
.

Linear functions. Let φ : S × A → Rd be the feature
map to a d-dimensional Euclidean space, and consider the
function class F ⊂ {w>φ | w ∈ Rd, ‖w‖ ≤ H}. Under the
normalization that ‖φ(s, a)‖ ≤ 1 for any (s, a), we have

Proposition 6.2. For linear function class F defined above,
for any data distribution ρ and any anchor function fo ∈ F :

Rρn(F) ≤ H
√

2d

n
,

r?,ρn (F , fo) ≤
2d

n
.

Functions in RKHS. Consider a Reproducing Kernel
Hilbert Space (RKHS) H associated with a positive ker-
nel k : (S × A) × (S × A) → R. Suppose that
k
(
(s, a), (s, a)

)
≤ 1 for any (s, a) ∈ S × A. Consider

the function class F ⊆ {f ∈ H | ‖f‖K ≤ H}, here
‖·‖K denotes the RKHS norm. Define an integral opera-
tor T : L2(ρ)→ L2(ρ) as

T f := E(s,a)∼ρ
[
k
(
·, (s, a)

)
f(s, a)

]
.

Suppose that E(s,a)∼ρ
[
k
(
(s, a), (s, a)

)]
< +∞. Let{

λi(T )
}∞
i=1

be the eigenvalues of T , arranging in a non-
increasing order. Then
Proposition 6.3. For kernel function class F defined above,
for any data distribution ρ and any anchor function fo ∈ F :

Rρn(F) ≤ H

√√√√ 2

n

∞∑
i=1

1 ∧
(
4λi(T )

)
,

r?,ρn (F , fo) ≤ 2 min
j∈N

 j

n
+H

√√√√ 2

n

∞∑
i=j+1

λi(T )

 .

Sparse linear functions. Let φ : S × A → Rd be the
feature map to a d-dimensional Euclidean space, and con-
sider the function class F ⊂ {w>φ | w ∈ Rd, ‖w‖0 ≤ s}.
Assume that when (s, a) ∼ ρ, φ(s, a) satisfies a Gaussian
distribution with covariance Σ. Assume ‖f‖ρ ≤ H for any
f ∈ F . Furthermore, denote κs(Σ) to be the upper bound
such that κs(Σ) ≥ λmax(M)/λmin(M) for any matrix M
that is a s× s principal submatrix of Σ. Then
Proposition 6.4. There exists an absolute constant c > 0,
for sparse linear function class F defined above, assume the
data distribution ρ satisfies the conditions specified above,
then for any anchor function fo ∈ F:

Rρn(F) ≤ cH
√
κs(Σ)

√
s log d

n
,

r?,ρn (F , fo) ≤ c2κs(Σ) · s log d

n
.

End-to-end results. Finally, to obtain an end-to-end re-
sult that upper bounds the suboptimality in values for spe-
cific function classes listed above, we can simply combine
(a) the result that upper bound the value suboptimality using
the Bellman error (Lemma 3.2); (b) the results that upper
bound the Bellman error in terms of (local) Rademacher
complexity (Theorems 4.1, 5.2-5.5); (c) the upper bounds of
(local) Rademacher complexity for specific function classes
(Propositions 6.1-6.4).

7. Conclusion
This paper studies batch RL with general value function
approximation from the lens of statistical learning theory.
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We identify the intrinsic difference between batch reinforce-
ment learning and classical supervised learning (Theorem
5.1) due to the additional temporal correlation structure pre-
sented in the RL data. Under mild conditions, this paper also
provides upper bounds on the generalization performance of
several popular batch RL algorithms in terms of the (local)
Rademacher complexities of general function classes. We
hope our results shed light on the future research in further
bridging the gap between statistical learning theory and RL.
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