Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network

Zhibin Duan“! Dongsheng Wang“! Bo Chen'! Chaojie Wang '
Wenchao Chen! YewenLi' Jie Ren! Mingyuan Zhou?

Abstract

Hierarchical topic models such as the gamma be-
lief network (GBN) have delivered promising re-
sults in mining multi-layer document represen-
tations and discovering interpretable topic tax-
onomies. However, they often assume in the prior
that the topics at each layer are independently
drawn from the Dirichlet distribution, ignoring the
dependencies between the topics both at the same
layer and across different layers. To relax this
assumption, we propose sawtooth factorial topic
embedding guided GBN, a deep generative model
of documents that captures the dependencies and
semantic similarities between the topics in the em-
bedding space. Specifically, both the words and
topics are represented as embedding vectors of
the same dimension. The topic matrix at a layer
is factorized into the product of a factor loading
matrix and a topic embedding matrix, the trans-
pose of which is set as the factor loading matrix of
the layer above. Repeating this particular type of
factorization, which shares components between
adjacent layers, leads to a structure referred to as
sawtooth factorization. An auto-encoding vari-
ational inference network is constructed to opti-
mize the model parameter via stochastic gradient
descent. Experiments on big corpora show that
our models outperform other neural topic mod-
els on extracting deeper interpretable topics and
deriving better document representations.

1. Introduction

Probabilistic topic models, such as latent Dirichlet allocation
(LDA) (Blei et al., 2003) and Poisson factor analysis (PFA)
(Zhou et al., 2012), have the ability to discover the underly-
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ing semantic themes from a collection of documents, achiev-
ing great success in text analysis. In general, a topic model
represents each document as a mixture of latent topics, each
of which describes an interpretable semantic concept. While
being widely used, vanilla topic models assume that topics
are independent and there are no structures among them,
which limits those models’ ability to explore any hierarchi-
cal thematic structures. To remove its limitation, a series of
hierarchical extensions, including nonparametric Bayesian
hierarchical prior based topic models (Blei et al., 2010; Pais-
ley et al., 2014), deep PFA (Gan et al., 2015; Henao et al.,
2015), gamma belief network (GBN) (Zhou et al., 2015;
Cong et al., 2017), and Dirichlet belief network (DirBN)
(Zhao et al., 2018a), have been proposed. Commonly, these
models learn directed acyclic graph (DAG)-structured hier-
archical topics, which assumes that the topics in the upper
layers are more general/abstract than those in the lower lay-
ers. Consequently, revealing hierarchical relations between
topics provides the user an intuitive way to better understand
text data.

With the development of deep neural networks (DNN), there
is a growing interest in developing neural topic models
(NTMs). Specifically, most neural topic models are based
on variational auto-encoders (VAEs) (Kingma & Welling,
2013; Rezende et al., 2014), which employ a variational
inference network (encoder) to approximate the posterior
distribution and are equipped with a decoder to reconstruct
the document’s Bag-of-Words (BOW) representation (Miao
et al., 2016; Srivastava & Sutton, 2017; Card et al., 2017).
However, most NTMs rely on Gaussian latent variables,
which often fail to well approximate the posterior distri-
butions of sparse and nonnegative document latent repre-
sentations. To address this limition, Zhang et al. (2018)
develop Weibull hybrid autoencoding inference (WHAI) for
deep LDA, which infers posterior samples via a hybrid of
stochastic-gradient MCMC and autoencoding variational
Bayes. As a hierarchical neural topic model, WHAI shows
attractive qualities in multi-layer document representation
learning and hierarchical explainable topic discovery. Com-
pared with traditional Bayesian probabilistic topic models,
these NTMs usually enjoy better flexibility and scalability,
which are important for modeling large-scale data and per-
forming downstream tasks (Zhang et al., 2019; Wang et al.,
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2020c; chen et al., 2020; Wang et al., 2020a; Duan et al.,
2021; Zhao et al., 2021).

Despite their attractive performance, existing hierarchical
topic models such as GBN often assume in the prior that
the topics at each layer are independently drawn from the
Dirichlet distribution, ignoring the dependencies between
the topics both at the same layer and across different layers.
To relax this assumption, we propose the Sawtooth Factorial
Topic Embeddings Guided GBN (SawETM), a deep genera-
tive model of documents that captures the dependencies and
semantic similarities between the topics in the embedding
space. Specifically, as sketched in Fig. 1, both the words
and hierarchical topics are first converted into the shared em-
bedding space. Then we develop the Sawtooth Connection
technique to capture the dependencies between the topics at
different layers, where the factor loading at layer [ is the fac-
tor score at layer [ — 1, which enables the hierarchical topics
to be coupled together across all layers. Our work is inspired
by both GBN (Zhou et al., 2015), a multi-stochastic-layer
hierarchical topic model, and the embedding topic mod-
els (Dieng et al., 2019; 2020), which represent the words
and single layer topic as embedding vectors. The proposed
Sawtooth Connector is a novel method that combines the
advantages of both models for hierarchical topic modeling.

We further note that previous work on NTMs has been
restricted to shallow models with one or three layers of
stochastic latent variables, which could limit their ability.
Generally, due to the well-known component collapsing
problem of VAEs (Sgnderby et al., 2016), constructing a
deep latent variable model is challenging work. As dis-
cussed in Child (2020), the hierarchical VAEs with a suffi-
cient depth can not only learn arbitrary orderings over ob-
served variables but also learn more effective latent variable
distributions, if such distributions exist. Moving beyond
text modeling, the recent development on image generation
has shown its promising performance and outstanding gen-
eration ability (Maalge et al., 2019; Vahdat & Kautz, 2020;
Child, 2020). Inspire by their work, we carefully design
the inference network of SawETM in a deep hierarchical
VAE framework to improve the model’s ability of modeling
textual data. In particular, we propose the integration of a
skip-connected deterministic upward path and a stochastic
path to approximate the posterior of the latent variables and
obtain hierarchical representations of a document. We also
provide customized training strategies to build deeper neural
topic models. To the best of our knowledge, SawETM is the
first neural topic model that well supports a deep network
structure (e.g., 15).

Our main contributions are summarized as follows:
» To move beyond the independence assumption between

the topics of two adjacent layers in most hierarchical
topic models, the Sawtooth Connection technique is

developed to extend GBN by capturing the dependen-
cies and semantic similarities between the topics in the
embedding space.

* To avoid posterior collapse, We carefully design a resid-
val upward-downward inference network for SawETM
to improve the model’s ability of modeling count data
and approximating sparse, non-negative and skewed
document latent representations.

e QOverall, SawETM, a novel hierarchical NTM equipped
with a flexible training algorithm, is proposed to in-
fer multi-layer document representations and discover
topic hierarchies in both the embedding space and
vocabulary space. Experiments on big corpora show
that our models outperform other NTMs on extracting
deeper interpretable topics and deriving better docu-
ment representation.

2. Related work

The proposed model in this paper marries a hierarchical
neural topic model with word embedding, resulting in a
deep generative framework for text modeling. The related
work can be roughly divided into two categories, one is the
research on constructing neural topic model and the other is
on leveraging word embedding for topic models.

Neural topic models Most existing NTMs can be re-
garded as an extension of Bayesian topic models like LDA
within the VAE framework for text modeling, where the la-
tent variables z can be viewed as topic proportions. NTMs
usually utilize a single-layer network as their decoder, e.g.,
¢(z) = softmax(W z) (Srivastava & Sutton, 2017), where
W is a learnable weights between topics and words. Differ-
ent NTMs may place different distributions on latent vari-
able z, such as Gaussian and Dirichlet distributions (Miao
et al., 2016; Burkhardt & Kramer, 2019; Nan et al., 2019;
Wang et al., 2020b). Different from these models that only
focus on a single layer latent variable model, Zhang et al.
(2018) propose WHALI, a hierarchical neural topic model
that employs a Weibull upward-downward variational en-
coder to infer multi-layer document latent representations
and use GBN as a decoder. All of these works focus on rela-
tively shallow models with one or three layers of stochastic
latent variables. We note that our work is based on WHALI,
but different from it, we propose a new decoder to capture
the dependencies of topics and a new powerful encoder to
approximate the posteriors, which result in a deeper neural
topic model.

Word embedding topic models Word embeddings can
capture word semantics at low-dimensional continuous
space and are well studied in neural language models (Ben-
gio et al., 2003; Mikolov et al., 2013a;b; Levy & Goldberg,
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Figure 1. (a) Gamma belief network and (b) overview of the pro-
posed SawETM and its corresponding hierarchical upward and
downward encoder networks

2014). Due to their ability to capture semantic information,
there is a growing interest in applying word embeddings to
topic models. Pre-trained word embeddings, such as GloVe
(Pennington et al., 2014) and word2vec (Mikolov et al.,
2013b), can serve as complementary information to guide
topic discovery, which is effective to alleviate the sparsity
issue in topic models (Zhao et al., 2017; 2018b; Li et al.,
2016). Dieng et al. (2020) propose an embedding-based
topic model (ETM), which directly models the similarity in
its generative process, rather than via a Dirichlet distribu-
tion. What should be noted is that our model is related to
ETM in modeling the correlation between words and topics
using their semantic similarities. Different from ETM, the
Sawtooth Connection can be seen as injecting the learned
knowledge information of a lower layer to a higher layer,
which alleviates the sparsity issue in the higher layer.

3. The proposed model

In this section, we develop SawETM for text analysis, which
aims at mining document’s multi-layer representations and
exploring topic hierarchies. The motivation for designing
SawETM focuses on tackling two main challenges: (i) a
hierarchical decoder to construct the dependencies between
topics; (i4) designing expressive neural networks to approx-
imate the posterior distribution more accurately. Below, we
will first describe the decoder and encoder of SawETM, and
then discuss the model’s properties. Finally, we will provide
details of model inference and stable training techniques.

3.1. Document decoder: Sawtooth Factorial Topic
Embeddings Guided GBN

To explore hierarchical thematic structure from a collection
of documents, SawETM adapts GBN of Zhou et al. (2015)
as its generative module (decoder). Different from GBN,
where the interactions between the topics of two adjacent

layers are modeled as a Dirichlet distribution, SawETM
utilizes the Sawtooth Connection (SC) technique to couple
hierarchical topics across all layers in the shared embedding
space. Specifically, assuming the observations are multi-
variate count vectors x; € ZXo  the generative model of
SawETM with L layers, from top to bottom, can be ex-
pressed as

O;L) ~ Gam(r, c;-LH))7
@,gl) = Softmax(oz(l*l)Toz;(f))7 l=1,---,L
Tj~ Pois(‘IZ'(l)HJ(-l)) (D

where, the count vector x; (e.g., the bag-of-word of doc-
ument j) is factorized as the product of the factor loading
matrix ®() (topics), and gamma distributed factor scores

0;1) (topic proportions), under the Poisson likelihood; and

the hidden units 0§l) € }Rf " of layer [ are further factorized

into the product of the factor loading ®(+1) ¢ Rfl XK

and hidden units of the next layer to infer a multi-layer latent
representations. K; denotes the topic numbers at layer /. the
vector a,&l) € RP is a distributed representation of the k"
topic at layer [ in the semantic space of words. Especially,
a® ¢ RP*V is the word embedding matrix. 'I>,(€l) captures
the relationship between topics of two adjacent layers and is
calculated by the SC technique. In detail, SC first calculates
the semantic similarities between the topics of two adjacent
layers by the inner product of their embedding vectors and
then applies softmax normalization to make sure the sum of
each column of ®() is equal to one. Note that, the factor
loading at layer [ is the factor score at layer [ — 1, which
constructs the dependency between the parameters of the
adjacent layers. Repeating this process, the hierarchical
topic can be coupled together across all layers.

To verify the role of SC, we also consider two simple vari-
ants for ablation study, formulated as

3 = Softmax (W), 1=1,---L )
@,(Cl) = Softmax(a(l),ﬁg)), l=1,---,L 3)

where, Eq. (2) directly models the dependence via the learn-
able parameters W, which is a common choice in most
NTMs. Eq. (3) employs a similar decomposition form as
SC but does not share topic embeddings between two ad-
jacent layers. We refer to the first variant as a deep neural
topic model (DNTM), and the second as a deep embedding
topic model (DETM). Note that when the number of layers
is set to one, the DETM has the same structure as SawETM.
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3.2. Document encoder: upward and downward
encoder networks

The goal of encoder is to reparameterize the variational pos-
terior distribution ¢(6;), which denotes topic proportions.
While the gamma distribution, satisfying the nonnegative
constraint and encouraging sparsity, appears to be a nat-
ural choice, it is not reparameterizable and therefore not
amenable to gradient descent based optimization. Here
we consider Weibull distribution because 4), latent variable
x ~ Weibull(k, \) can be easily reparameterized as:

= XM—In(1—¢)"* &~ Uniform(0,1). (4
11), The KL divergence from the gamma to Weibull dis-
tributions has an analytic expression (Zhang et al., 2018):

K L(Weibull(k, \)||Gamma(a, 8)) = % — alogh+

logk + BAT'(1 + %) — v —1—alog(p) + logl' ().

where + is the Euler-Mascheroni constant. What’s more,
designing a capacious inference network is necessary for
deep VAEs training. Inspired by the series of studies about
deep generative models (Sgnderby et al., 2016; Zhang et al.,
2018; Vahdat & Kautz, 2020; Child, 2020), we develop
an upward-downward inference network, which contains
a bottom-up residual deterministic path and a top-down
stochastic path.

Upward-downward inference model: Like most neural
topic models, the exact posterior distribution for ) is in-
tractable and needs to be approximated. Following VAEs
(Kingma & Welling, 2013; Rezende et al., 2014), we define
the variational distribution as ¢(0;|x;), which need to be
flexible enough to well approximate the true posterior dis-
tribution. The variational distribution is factorized with a
bottom-up structure as

q(0;1z;) = q(65"|z;) [] a6{* 168y 5
=1

Here we emphasize that this hierarchical structure makes
the top stochastic latent variables tend to collapse into the
prior, especially when the layer is large (Sgnderby et al.,
2016). To address this problem, SawETM first parameters
a skip-connected deterministic upward path to obtain the
latent representations of input x:

>

W _ p(-1) -1
W= h{'"Y 4 MLP(R{ ™)

kD = Relu(Linear(hg-l)))
(

J
N : 0
;) = Relu(Linear(h;"))

where h(®) = , MLP is a two layer fully connected net-
work, Linear is a single linear layer, and Relu applies non-
linear activation function. SawETM combines the obtained

latent features with the prior from the stochastic up-down
path to construct the variational posterior:

(812D BV 01y = Weibull(k{”, A)  (6)
kY = Softplus(Linear(’l’(lH)0§l+1) D I;:j(l)))

(

f)

)\;l) = Softplus(Linear(<I>(l+1)0§l+1) & X;l)))

where @ denotes the concatenation at topic dimension, and
Softplus applies log(1 + exp(-)) nonlinearity to each ele-
ment to ensure positive Weibull shape and scale parame-
ters. The Weibull distribution is used to approximate the
gamma-distributed conditional posterior, and its parameters
ki§-l) e R®! and /\§-l) e RE? are both inferred by combining
the bottom-up likelihood information and the prior infor-
mation from the generative distribution using the neural
networks. The inference network is structured as

L—-1

q(0]) = q(0[z) [T a(6®10" D 2). (7
=1

compared with Eq. (5), the residual upward pass in
SawETM allows all the latent variables to have a deter-
ministic dependency on input z, thus the top stochastic
latent variables could receive efficient information and will
be empirically less likely to collapse. Note that, compared
with the inference network in WHAI (Zhang et al., 2018),
we construct a more powerful residual network structure to
better approximate the true posteriors.

3.3. Model properties

SawETM inherits the good properties of both deep topic
model and word embeddings, as described below.

Semantic topic taxonomies: The loading matrices ®(*)
in Eq. (1) capture the semantic correlations of the topics of
adjacent layers. Using the law of total expectation, we have

@ (t) ! Ill (l)
t t
E |:(BJ|0J ,{Q( )7Cj }t 1:| = q)( )
t=1

J

1 0
[Ti— C§- )(8
)
Therefore, [ i;i <I>(t)} ®! is naturally interpreted as the

projection of topic ®() to the vocabulary space, providing
us with a way to visualize the topics at different semantic
layers. The topics in the bottom layers are more specific and
become increasingly more general when moving upward, as
shown in Fig.4.

Hierarchical topics in the same embedding space: In
SawETM, both words and hierarchical topics are repre-
sented with embedding vector (e.g., oY) € RP*X1) and the
topic can be defined by the Sawtoorh Connection (e.g. the

I layer topic is defined as @) = softmax (D" a®)).



Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network

The first advantage is that the learned words and hierarchi-
cal topics can be projected into the same embeding space,
which is shown in Fig. 3. And the second advantage is
that SawETM can establish dependencies between differ-
ent layers, which can be seen as the learned knowledge
information of a lower layer can be injected into a higher
layer. The intuition is there is semantic relation between the
same layer topics, such as the topic about ‘basketball’ have
a strong relation with the topic about ‘game’, which should
be considered by the higher layer topics. Note that, other
hierarchical topic models such as GBN usually assume the
hierarchical topic is independent and ignore this semantic
structure (Blei et al., 2007), while SawETM try to capture
this structure in the embedding space.

3.4. Inference and estimation

Similar to VAEs, the training objective of SawETM is the
maximization of an Evidence Lower Bound (ELBO):

1
£ =3 E o i, 5,60
j=1
J L ©)
ZZKL 0(1) ) 9(0\@ I+1) 0(l+1))))
Jj=11=1
where, ) = softmax(a(L_l)Ta(l)) (9(-0) is the

Weibull variational distribution in Eq. (6), and p(G( ))
the gamma prior distribution in Eq. (1). The first term is
the expected log-likelihood or reconstruction error, while
the second term is the Kullback-Leibler (KL) divergence
that constrains q(@ﬁ-l)) to be close to its prior p(0](-l)) in the
generative model. Thanks to the analytic KL expression
and easy reparameterization of the Weibull distribution, the
gradient of the ELBO with respect to {a() }6:0) and other
parameters in the inference network can be accurately eval-
uated. As describe in Algorithm. 1, the encoder parameters
Q and decoder parameters W in SawETM are updated by
SGD, which makes faster inference at both train and test
stages compared to Gibbs Sampling. This also helps differ
SawETM from WHALI, which updates the global parameters
by SG-MCMC and is limited to update local and global
parameters alternately.

3.5. Stable training

It is a great optimization challenge to train a deep hierar-
chical VAE in practice, due to the well-known posterior
collapse and unbounded KL divergence in the objective
(Razavi et al., 2019; Child, 2020). Here, we propose three
approaches for stabilizing the training. We emphasize that
all these approaches are applied in WHAI and other hierar-
chical neural topic model variants for fair comparison when
we perform experiments.

Algorithm 1 Upward-Downwar Autoencoding Variational
Inference for SawETM
Set mini-batch size m and the number of layer L
Initialize the encoder parameters {2 and decoder parame-
ters W,
foriter=1,2, - - do
Randomly select a mini-batch of m documents to form
asubset X = {z;}, ;

Dram random noise {&! }:ilL ,— from uniform distri-
bution;
Calculate Vo ¢ L (Q U; X, {e }m’ll 1) according

to Eq. (10), and update encoder parameters €2 and
decoder parameter W jointly ;
end for

Shape parameter skipping of Weibull distribution: As
shown in Eq. (4), when the sampled noise € is close to 1,
e.g., 0.98, and the Weibull shape parameter k is less than
le-3, the = will be extremely huge, which could destabilize
the training process. In practice, we constrain the shape
parameter k such that £ > 0.1 to avoid extreme value. A
similar setting can be found in Fan et al. (2020), who view
k as a hyperparameter and set it as 0.1.

Warm-up: The variational training criterion in Eq. (10)
contains the likelihood term p(z;|® (1), 0§1)) and the varia-
tional regularization term. During the early training stage,
the variational regularization term causes some of the latent
units to become inactive before their learning useful repre-
sentation (Sgnderby et al., 2016). We solve this problem
by first training the parameters only using the reconstruc-
tion error and then adding the KL loss gradually with a
temperature coefficient:

J
L= ZEQ(lej)[lnp(wj|<I>(1), 951))]
j—1

—5ZZKL (0)][p(6" |21V (DY) (10)

j=11=1

where [ is increased from O to 1 during the first N training
epochs. This idea has been considered in previous VAE-
based algorithms (Raiko et al., 2007; Higgins et al., 2016).

Gradient clipping: Optimizing the unbounded KL loss
often causes the sharp gradient during training (Child, 2020),
we address this by clipping gradient with a large L2-norm
above a certain threshold, which we set 20 in all experiments.
This technique can be easily implemented and allows net-
works to train smoothly.
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Figure 2. (a)-(c): Comparison of per-heldout-word perplexity (the lower the better). (d)-(f): Comparison of topic quality (the higher the

better).

4. Experiments

In this paper, SawETM is proposed for extracting deep la-
tent features and analyzing documents unsupervised. So
we evaluate the effectiveness of the proposed model by un-
supervised learning tasks in this section. Specifically, four
widely-used performance measure of topic models are used
in the experiments, which include perplexity, topic quality,
and document clustering accuracy/normalized mutual in-
formation metric. The experiments are conducted on four
real-world datasets including both regular and big corpora.
In order to further understand the proposed model and verify
our motivation, we visually inspect the learned word and
topic embeddings as well as topic hierarchies. Our code is
available at https://github.com/BoChenGroup/
SawETM.

4.1. Experimental settings

Datasets. We run our experiments on four widely used
benchmark corpora including R8, 20Newsgroups (20NG),
Reuters Corpus Volume I (RCV1), and PG-19. The RS
dataset is a subset of the Reuters 21578 dataset, which con-

sists of 7,674 documents from 8 different review groups.
R8 is partitioned into a training set of 5,485 ones and a
testing set of 2, 189 ones. The 20NG dataset, with a vo-
cabulary size 36, 534, consists of 18, 774 documents from
20 different news groups and its average document length
is 221. 20NG is split into a training set of 11,314 ones
and a testing set of 7,532 one. The RCV1 dataset, with
a vocabulary size 50, 000, consists of 804,414 documents
(Lewis et al., 2004) and its average dcoument length is 140.
The PG-19 dataset is extracted from Project Gutenberg (Rae
et al., 2019) and contains 28, 752 book. We first build a
vocabulary with 20, 000 words from this dataset, and then
split each book with 1024 tokens, which result in 613, 386
documents. For data processing, we first preprocess all the
datasets by cleaning and tokenizing text, then removed stop
words and low frequency words appearing less than 5 times,
and finally select the N most frequent words to build a vo-
cabulary. Note that, the R8 and 20NG datasets are used for
document clustering experiments as there are ground-truth
labels.

Baselines. We compare SawETM with basic Bayesian topic
models and neural topic models: 1. LDA Group, single layer
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topic models, including Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), which is a basic probability topic model;
LDA with Products of Experts (AVITM) (Srivastava & Sut-
ton, 2017), which replaces the mixture model in LDA with a
product of experts and uses the variational inference update
parameters; LDA with word embeddings (ETM) (Dieng
et al., 2020), a generative model of documents that marries
traditional topic models with word embeddings. 2. DLDA
Group, hierarchical topic models, including Deep latent al-
location inferred by Gibbs sampling (DLDA-Gibbs) (Zhou
et al., 2015) and by TLASGR-MCMC (DLDA-TLASGR)
(Cong et al., 2017); and Weibull hybrid autoencoding in-
ference model for Deep latent allocation (WHAI) (Zhang
et al., 2018), which employs a deep variational encoder
to infer hierarchical document representations and updates
the parameters by a hybrid of stochastic-gradient MCMC
and variational inference. 3. Variants Group, variants of
SawETM, including deep neural topic model (DNTM) as
introduced in Eq. 2, which directly models the dependence
via the learnable parameters 1; and deep embedding topic
models (DETM) as introduced in Eq. 3, which employs a
similar decomposition form as SC but does not share topic
embeddings between two adjacent layers. These two Vari-
ant models use the same encoder with SawETM. For all
the baseline models, we use their official default parameters
with best-reported settings.

Setting. The hyperparameter settings used for the GBN
group are similar to the ones used in Zhang et al. (2018).
For the hierarchical topic models, the network structures
of 15-layer models are set as [256, 224, 192, 160, 128,
112, 96, 80, 64, 56, 48, 40, 32, 16, 8]. For the embedding-
based topic models such as ETM, DETM, and SawETM,
we set the embedding size as 100. For the NTMs, we set the
hidden size as 256. For optimization, the Adam optimizer
(Kingma & Ba, 2014) is utilized with a learning rate of 1e 2.
The mini-batch size is set as 200 in all experiments. All
experiments are performed on Nvidia GTX 8000 GPU and
coded with PyTorch.

4.2. Per-heldout-word perplexity

Per-heldout-word perplexity is a widely-used performance
measure of topic models. Similar to Zhou et al. (2015), for
each corpus, we randomly select 80% of the word token
from each document to form a training matrix T, holding
out the remaining 20% to form a testing matrix Y. We use T
to train the model and calculate the per-held-word perplexity
as

1 vV N
exp {—y Z Zym In

Cv=1ln=1

ONED DAL }
S Vv K1 1)s 5(1)s ’
2521 ZU:I k=1 ¢1()k) 6/(673

where S is the total number of collected samples and y.. =

\4 N
Zv:l En:l Yon-

Fig. 2 (a)-(c) show how the perplexity changes as a func-
tion of the number of layers for various models over three
different datasets. For both RCV1 and PG19, which are
too large to run Gibbs sampling, we omit DLDA-Gibbs
and only include DLDA-TLASGR for comparison. In the
LDA group, ETM gets the best performance compared with
LDA and AVITM, which can be attributed to the powerful
word embeddings decoder (Dieng et al., 2020). LDA has
the better performance compared with AVITM, which is
not surprising as this batch algorithm can sample from the
true posteriors given enough Gibbs sampling iterations. But
these models are limited to single-layer shallow models,
which can’t benefit from the deep structure and results in
the gap with the second group of models.

Among these DLDA based models in group two, the DLDA-
Gibbs outperforms other models, attributed to the more
accurate posterior estimations, while DLDA-TLASGR is
a mini-batch algorithm and slightly degraded performance
in out-of-sample prediction. As a hierarchical neural topic
model, WHALI gets the worse performance compared with
DLDA-Gibbs/DLDA-TLASGR. Meanwhile, we can see
that WHALI with a single hidden layer clearly outperforms
AVITM, indicating that using the Weibull distribution is
more appropriate than using the logistic normal distribution
to model the document latent representation. Besides, the
performance of DLDA-Gibbs/DLDA- TLASGR can be ef-
fectively improved by increasing the number of layers, while
WHALI fails to improve its performance when the layer size
becomes greater than three. This maybe due to all layers
of the natural topic models are trained by SGD together,
which makes it difficult to learn meaningful prior (Wu et al.,
2021). And similar to deep VAE, this phenomenon is called
posterior collapse (Sg¢nderby et al., 2016; Maalge et al.,
2019).

With the powerful word embedding decoder and effective
Weibull upward-downward variational encoder, DETM of
the variants group gets significant performance improve-
ment with single layer. However, it also experience the
similar problem with WHALI that no clear performance im-
provement when the number of layers becomes greater
than three. Benefiting from the SC module between dif-
ferent layers, the learned knowledge at lower layers can
flow to the upper layer, which can help the higher layers
learn meaningful topics, resulting in better prior learned by
SawETM. We can see that SawETM further improve the per-
formance with the layer size becomes bigger, and get com-
parable performance with DLDA-Gibbs/DLDA-TLASGR.
Note that, although the improvement of SawETM is not that
significant compared with DLDA-Gibbs/DLDA-TLASGR,
DLDA-Gibbs/DLDA-TLASGR require iterative sampling
to infer latent document representations in the testing stage,
while SawETM can infer latent representations via direct
projection, which makes it both scalable to large corpora
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and fast in out-of-sample prediction. Besides, thanks to
SC and the improved encoder, SawETM can significantly
outperform other NTMs.

4.3. Topic quality

A good topic model can provide interpretable topics. In this
section, we measure the model’s performance in terms of
topic interpretable (Dieng et al., 2020). Specifically, topic
coherence and topic diversity are combined here to evalu-
ate topic interpretable/quality. Topic coherence is obtained
by taking the average Normalized Pointwise Mutual Infor-
mation (NPMI) of the top 20 words of each topic (Aletras
& Stevenson, 2013). It provides a quantitative measure of
the interpretability of a topic (Mimno et al., 2011). The
second metric is topic diversity (Dieng et al., 2020), which
denotes the percentage of unique words in the top 20 words
of all topics. Diversity close to 1 means more diverse top-
ics. Topic quality is defined as the product between topic
coherence and diversity.

Fig. 2 (d)-(f) show the topic quality results of different layer
for various models over three different datasets. Clearly,
DLDA performs the best in terms of topic quality especially
the higher layer, which is not surprising as all its parameters
are updated by Gibbs sampling/TLASGR-MCMC (Cong
et al., 2017). Thanks to the use TLASGR-MCMC rather
than a simple SGD procedure, WHALI consistently outper-
forms DNTM and DETM, which update all the parameters
by SGD. Although equipped with a powerful word embed-
dings decoder, the topic quality of DETM clearly decreases
as the number of layers increases. Through the above ex-
perimental phenomenon, we can find that it is difficult for
NTMs to learn meaningful hierarchical topics. This is prob-
ably because NTMs often suffer from the posterior collapse
problem in VAEs, making it hard to learn deeper semantic
structure. However, SawETM achieving comparable per-
formance to DLDA, which clearly outperforms the other
deep neural topic models. As discussed in the Sec. 4.2, this
improvement come from the SC module. The results of
topic quality also agree with the results of perplexity, which
are shown in Fig. 2 (a)-(c).

4.4. Document clustering

We consider the multi-class classification task for predicting
the clusters for test documents to evaluate the quality of
latent document representations extracted by these models.
In detail, we use the trained topic models to extract the la-
tent representations of the testing documents and then use
k-means to predict the clusters. As shown in Table 1, the
accuracy (AC) and normalized mutual information metric
(NMI) are used to measure the clustering performance, both
of which are the higher the better. Tab. 1 shows the cluster-
ing results of all the models on 20NG and R8 dataset. It can
be observed that with powerful word embeddings decoder

Table 1. Results of AC and NMI for document clustering task.

Model ‘ Layer ‘ 20News ‘ R8
\ | AC | NMI | AC | NMI
LDA 1| 46.52 | 45.15 | 51.41 | 40.47
AVITM 1 | 4831 | 4633 | 5243 | 41.20
ETM 1 | 4979 | 48.40 | 55.34 | 41.28
PGBN 1 | 46.62 | 45.43 | 51.67 | 40.76
PGBN 5 | 4833|4651 | 5421 | 41.21
WHAI 1 | 4943 | 46.56 | 57.86 | 4231
WHAI 5 | 49.51 | 46.98 | 60.45 | 43.98
DNTM 1| 49.17 | 46.32 | 57.58 | 42.12
DNTM 5 | 49.25 | 46.79 | 59.93 | 43.90
DETM 1| 50.24 | 48.69 | 61.21 | 43.45
DETM 5 | 5033 | 48.87 | 61.86 | 44.12
SawETM | 5 | 51.25 | 50.77 | 63.82 | 45.90

and the Sawtooth Connection, SawETM can extract more
expressive document latent representations and outperforms
the other models included for comparison.

4.5. Qualitative analysis

One of the most appealing properties of SawETM is in-
terpretability, we can visually inspect the inferred topics at
different layers and the inferred connection weights between
the topics of adjacent layers. Specifically, we conduct an
extensive qualitative evaluation on the quality of the topics
discovered by SawETM, including word embedding, topic
embedding, and topic hierarchies. In this section, we use a
15-layer SawETM trained on PG-19 for the visualization of
embedding space and hierarchical structure experiments.

Visualisation of embedding space The top 10 words
from six topics are visualized in Fig. 3(a) by t-SNE vi-
sualization (Van der Maaten & Hinton, 2008). As we can
see, the words under the same topic stay closer together, and
the words under different topics are far apart. Besides, the
words under the same topic are semantically more similar,
which can demonstrate the meaning of the learned word
embeddings. Apart from the visualization of word embed-
dings, we visualize the topic embeddings. As shown in
Fig. 3(b), we select the top 2 sub-topics of the topic at the
second layer. We can see that the sub-topic from the same
topic have semantic similarity, and are closer in the embed-
ding space. The above experiments show that the proposed
SawETM learns not only meaningful word embeddings but
also meaningful topic embeddings. More importantly, the
learned words and hierarchical topics embedding can be
projected into the same space, which can further support
our motivations.

Hierarchical structure of topic model: Limited by the
paper space, we only visualize topics at the top two layers
and the bottom two layers. As shown in Fig. 4, the semantic
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Figure 3. t-SNE visualisation of (a) word embeddings, which we choose the top ten words for each topic at layer one and (b) topic
embeddings, which we choose the top two sub topics for each topic at layer two. (Note that the Topic: ¢ _j denotes the j topic at ¢

layer.)
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Figure 4. An example of hierarchical topics learned from PG-19 by a 15-layer SawETM, We only show example topics at the top two

layers and bottom two layers.

meaning of each topic and the connections between the top-
ics of adjacent layers are highly interpretable. In particular,
SawETM can learn meaningful hierarchical topics at higher
layers, indicating that it is able to support a deep structure.

5. Conclusion

In this paper, we propose SawETM, a deep neural topic
model that captures the dependencies and semantic simi-
larities between the topics at different layers. We design
a skip-connected upward-downward inference network to
approximate the posterior distribution of a document. Note
that with the Sawtooth Connection technique, SawETM
provides different views to a deep topic model, and further
improves the performance of the neural deep topic model.

As a fully variational deep topic model, SawETM can be
optimized by SGD. Extensive experiments have shown that
SawETM achieves comparable performance on perplexity,
document clustering, and topic quality with the start-of-
the-art model. In addition, with learned word and topic
embeddings, and topic hierarchies, SawETM can discover
interpretable structured topics, which helps to gain a better
understanding of text data.
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