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Abstract

An ambitious goal for machine learning is to cre-
ate agents that behave ethically: The capacity to
abide by human moral norms would greatly ex-
pand the context in which autonomous agents
could be practically and safely deployed, e.g.
fully autonomous vehicles will encounter charged
moral decisions that complicate their deployment.
While ethical agents could be trained by reward-
ing correct behavior under a specific moral the-
ory (e.g. utilitarianism), there remains widespread
disagreement about the nature of morality. Ac-
knowledging such disagreement, recent work in
moral philosophy proposes that ethical behavior
requires acting under moral uncertainty, i.e. to
take into account when acting that one’s credence
is split across several plausible ethical theories.
This paper translates such insights to the field
of reinforcement learning, proposes two training
methods that realize different points among com-
peting desiderata, and trains agents in simple en-
vironments to act under moral uncertainty. The
results illustrate (1) how such uncertainty can help
curb extreme behavior from commitment to single
theories and (2) several technical complications
arising from attempting to ground moral philos-
ophy in RL (e.g. how can a principled trade-off
between two competing but incomparable reward
functions be reached). The aim is to catalyze
progress towards morally-competent agents and
highlight the potential of RL to contribute towards
the computational grounding of moral philosophy.

1. Introduction

Reinforcement learning (RL) has achieved superhuman per-
formance in increasingly complex benchmark tasks (e.g.
Go (Silver et al., 2017) and Starcraft (Vinyals et al., 2019)).
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While such accomplishments are significant, progress has
been less straight-forward in applying RL to unstructured
environments in the real world (e.g. robots that interact with
humans in homes). A considerable challenge is that such
real-world environments constrain solutions in much more
elaborate ways than do typical benchmarks. For example,
there are myriad unacceptable ways for a robotic vacuum
to clean a room, e.g. by breaking a vase, or by harming
a cat. In particular, robots often have affordances in such
environments with ethical implications: they may be able to
harm or help others, and break or abide by human social and
ethical norms (such as the golden rule, or legal codes). The
design of algorithms that embody ethical theories has been
pursued by the machine ethics research community (Abel
et al., 2016; Murray, 2017; Vamplew et al., 2018)!, and
ideas from that community could inspire reward functions
encoding moral theories that could be maximized by RL to
create ethical agents.

While research into implementing specific ethical theories
is progressing, a more fundamental uncertainty remains:
which ethical theory should an intelligent agent follow?
Moral philosophy explores many theories of ethics, but
there is no consensus over which theory is correct within
that field, or across society in general, and attempts to rec-
oncile multiple ethical theories into a single unified theory
(e.g. Parfit, 2011) are themselves controversial. As a re-
sult, if a real-world RL agent is to act ethically, it may be
necessary that it exhibits moral uncertainty. To that end,
we adapt philosophical work on moral (or normative) un-
certainty (MacAskill, 2014; Lockhart, 2000) to propose a
similarly-inspired framework for RL.

In the case where ethical reward functions are comparable
on a shared cardinal scale, a composite reward function
(composed by adding together individual reward functions
weighted by their credence, i.e. the degree of belief in that
theory) can be optimized in a straightforward way. How-
ever, it is often not clear how to create such a shared reward
scale between theories. Indeed, while related to the con-
cept of non-dominance from multi-objective optimization,
when ethical rewards are fundamentally incomparable, it
is not clear how to apply multi-objective RL to arrive at a
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single policy. That is, multi-objective RL aims to solve the
problem of finding the set of efficient trade-offs among com-
peting objectives, but does not address how to choose which
such trade-off policy to deploy. We propose several possi-
ble solutions to this problem, motivated by the principle of
proportional say, i.e. an ethical theory should influence out-
comes proportional to its credence, irrespective of the scale
of its rewards. While our focus here is on moral uncertainty,
these techniques may also be useful for RL in other con-
texts (e.g. it may sometimes be easier for an experimenter to
balance “proportional say” rather than linear weight factors
across reward functions that interact in complex ways).

We introduce the complications of applying moral uncer-
tainty to RL using grid-world environments based on moral
dilemma (trolley problems (Foot, 1967)) common in moral
philosophy, highlighting how moral uncertainty can reach
intuitively reasonable trade-offs between ethical theories.
Each of the methods introduced here to deal with incompa-
rable reward functions has its relative disadvantages; some
disadvantages may result from impossibility results in social
choice theory, but we also hope by introducing this problem
that researchers in multi-objective optimization and multi-
agent RL may further improve upon our initial algorithms.
A final motivation for our work is to introduce a productive
bridge between the fields of RL, machine ethics, and moral
philosophy, in hopes of grounding out philosophical ideas
in a concrete and testable way, similarly as to how Al as a
whole offers grounding for philosophical speculations about
intelligence; in other words, we believe that RL has an un-
derappreciated potential to make significant contributions
to such fields.

2. Philosophical Background

Here we briefly introduces the moral theories that serve as
representative examples in this work. One broad class of
ethical theories are utilitarian, and claim that what is ethical
is what maximizes happiness or well-being for the most.
For example, a utilitarian might tell a lie in order to save
a person’s life. Another class of ethical theories are deon-
tological and (loosely speaking) judge the morality of an
action by whether it abides by a set of rules. Given the rule
“lying is wrong,” a deontologist might commit to telling the
truth, even if a person might lose their life as a consequence.
A common conflict between utilitarianism and deontology
is that causing harm (e.g. punching a stranger) under many
deontological theories is worse than failing to prevent that
harm (e.g. not stopping a stranger from punching an inno-
cent victim), while causing and failing to prevent harm are
often considered to be equally wrong under utilitarianism.
While there are many potentially incomparable variants of
utilitarianism and deontology (and entire other families of
theories), only the high level distinction between utilitarian-

ism and deontology is required to understand the illustrative
examples in this work.

Moral uncertainty is a relatively new exploration within
moral philosophy (Lockhart, 2000; Bostrom, 2009). Im-
portantly, MacAskill (2014) gives an extensive account of
moral uncertainty which explores how to handle the com-
parability of moral theories (whether the preferences of
such theories can be expressed in comparable units) and
how to combine preferences across ordinal and cardinal
theories (whether a given theory’s preferences assign a spe-
cific score to various options, or simply order them from
best to worst). Crucially, proposals in moral philosophy
typically do not explicitly consider the sequential nature of
decision making. In MacAskill’s framework, for example,
theories have preferences over “options,” which correspond
to “possible worlds”. In contrast, in RL, an agent cannot
directly bring about possible worlds but rather takes (often
very granular) actions, which have long term effects both
in the consequences that they bring about and in how they
shape the ethically-charged decision situations an agent may
encounter in the future. To disambiguate philosophical and
RL actions is one of the key contributions of this work.

3. Formalism of Moral Uncertainty

As in MacAskill (2014), we assume the primary relevant
feature of an ethical theory is its preference ordering over
actions and their immediate outcomes across different states
of the world, which we call its choice-worthiness function
W, and which is assumed to be complete (i.e. is defined
for all possible state-action pairs). Any preference order-
ing which satisfies the von Neumann—Morgenstern axioms
for rationality can be represented as a cardinal utility func-
tion (Cotton-Barratt, 2013), where all affine transformations
of said utility function represent the same preferences. As
such, we will limit ourselves to considering cases where W
is cardinal (although see SI A for further discussion).

We assume a modified version of the standard Markov De-
cision Process (MDP) framework (Sutton & Barto, 1998),
in which an agent can be in any of a number of states s
and take an action a (the action space is assumed to be dis-
crete) to end up in a next state s’. The key difference with
the standard MDP framework is the absence of a reward
function R(s, a, s’) for transitioning from state s to s’ using
action a. Rather, the cardinal choice-worthiness function
Wi(s,a,s’) can be seen as analogous to a standard reward
function for theory i. Indeed, from the point of view of any
given theory, the optimal policy is that which maximizes
the (possibly discounted) sum of choice-worthiness across
time. The crucial distinction is that a morally uncertain
agent must find a compromise between maximizing multi-
ple choice-worthiness functions rather than maximizing a
single reward function (similar to multi-objective RL (Roi-
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jers et al., 2013), although with credences across objectives,
see later in this section).

We define the function Q; (s, a), which represents the ex-
pected discounted sum of future choice-worthiness for the-
ory ¢ starting from taking action a at state s, with all future
actions given by the current policy, 7, which is the compro-
mise policy reached by aggregating the preferences of the
theories. In other words,
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where ; € [0, 1] is a discount factor. Although not explored
here, other discounting frameworks such as hyperbolic dis-
counting (Fedus et al., 2019) or an average reward frame-
work (Mahadevan, 1996) could be used, and likely have
distinct ethical implications (e.g. how much moral priority
the present has over the future (Pearce, 1983; Schulze et al.,
1981; Beckerman et al., 2007)), meaning that in practice
different discount functions may be implied by and used
for each moral theory. All the experiments in this work use
short, episodic environments, allowing us to set y; = 1 (i.e.
undiscounted rewards) across all of them for simplicity.

Each theory also has a level of credence C;, which rep-
resents the degree of belief that the agent (or the agent’s
designer) has in theory 7. Credences are probabilities and
therefore sum to one across theories for a given agent. Here
we assume the credences of theories are set and fixed, e.g.
by the system designer’s beliefs, or by taking a survey of
relevant stakeholders, although an ambitious and interesting
research direction would explore how an RL agent could
revise its own credences from experience.

4. Methods

At first blush, it may appear that a morally uncertain agent
ought to attempt to maximize expected choice-worthiness
(MEC) across the theories it has credence in. This can
easily be accomplished with ordinary RL using a reward
function corresponding to a credence-weighted sum of the
choice-worthiness according to each theory:

R(s,a,s’) = ZCl-Wl-(&a,s’) )

The MEC approach is scale-sensitive: if W, is measured
in “utils” and W5 in “micro-utils”, theory 2 will be given
undue weight under MEC. Therefore it is critical that choice-
worthiness functions be normalized to a common scale
(ST F.1). However, it is not at all clear how to find a scaling
function under which such divergently-motivated theories
as utilitarianism and deontology are resolved into a common
scale. Indeed, it appears that these theories’ judgments may
be fundamentally incomparable.

This problem of incomparability prompts a search for a
principled way to adjudicate between incomparable theories.
Following MacAskill (2014), we suggest that all theories
that are comparable are first aggregated into a single “virtual”
theory using MEC before handling the set of remaining
incomparable theories.

4.1. Voting Systems

In the absence of knowledge on how different theories might
compare, we suggest that theories should be treated accord-
ing to a principle of Proportional Say, according to which
theories should have an influence that is proportional only
to their credence and not to the particular details of their
choice-worthiness function (i.e. its scale). Several math-
ematical interpretations of this principle are possible and
may lead to different decision systems, and much of the
philosophical work on moral uncertainty revolves around
identifying the best formal definition (MacAskill, 2014;
Bostrom, 2009; Lockhart, 2000). However, the principle as
a whole points to a voting system as the decision procedure,
with the particular form of voting resulting primarily from
the precise definition of Proportional Say.

Discussing voting systems naturally evokes Arrow’s desir-
ability axioms, according to which desirable properties for
a voting system include:

e Non-dictatorship: the outcome should not only reflect
the preferences of a single, predetermined theory.

e Pareto efficiency (Pareto): if all theories prefer action
A to action B at a given state, action B should not be
chosen at that state.

¢ Independence of irrelevant alternatives (IIA): if, in
a given state, action A is chosen rather than action B,
adding a new action to the action set (with no other
changes) should not result in B being chosen instead.

Arrow’s impossibility theorem (Arrow, 1950) shows that
any deterministic voting system which satisfies Pareto and
ITA must be a dictatorship. A dictatorship cannot reasonably
be called a voting system and does not satisfy any reasonable
definition of Proportional Say. Thus, the standard approach
in designing deterministic voting systems is to strategically
break Pareto or ITA in a way that is least detrimental to the
particular use case. Stochastic voting systems may seem
like a possible escape from this impossibility result, but
have significant issues of their own (SI B).

4.2. Nash Voting

To arrive at an appropriate voting system, we return to the
principle of Proportional Say and provide a partially for-
malized version in which the credence of a theory can be
thought of as the fraction of an imagined electorate which
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favors the given theory, and in which each member of the
electorate is allocated a voting budget (an alternative for-
mulation in which the budget is scaled but the electorate is
fixed is discussed in SI C):

Principle of Proportional Say Theories have Proportional
Say if they are each allocated an equal voting budget and
vote following the same cost structure, after which their
votes are scaled proportionally to their credences.

Thus formalized, the principle of Proportional Say suggests
an algorithm we call Nash voting because it has Nash equi-
libria (Nash, 1951) as its solution concept. At each time step,
each theory provides a continuous-valued vote for or against
(in which case the vote is negative) each of the available
actions. The action with the largest credence-weighted vote
at each time step is executed. The cost of the theories’ votes
(which is a function of the votes’ magnitudes) at a given
time step is then subtracted from their remaining budget. If a
theory overspends its remaining budget, its votes are scaled
so as to exactly match the remaining budget, resulting in a 0
budget for all subsequent time steps (until the episode ends).
Each theory tries to maximize its (possibly discounted) sum
of choice-worthiness in a competitive, multi-agent setting
(where each separate theory is treated as a separate sub-
agent that influences controls of the singular object-level
RL agent).

It is possible to train theories under Nash voting using multi-
agent RL (SI E.1), which aims towards convergence to a
Nash equilibrium among competing theories. Nash voting is
analogous to cumulative voting when an absolute value cost
function is used and quadratic voting when a quadratic cost
function is used (Pacuit, 2019), though these systems do
not normally allow negative votes. While a quadratic cost
is generally considered superior in the mechanism design
literature (Lalley & Weyl, 2018), we found that our imple-
mentation of Nash voting produced significantly more stable
results with an absolute value cost. Thus, all Nash voting re-
sults presented in the main text of this work use an absolute
value cost, (quadratic cost results and their instabilities are
discussed in ST ).

Because Nash equilibria are not guaranteed to be Pareto
efficient in general (Ross, 2019), and because we empir-
ically find Nash voting to be more resistant to irrelevant
alternatives than variance voting (Sec. 5.3), we speculate
that Nash voting satisfies (of Arrow’s axioms) ITA but not
Pareto, though we provide no formal proof.

A drawback of Nash voting is that it can exhibit two flaws:
Stakes Insensitivity (increasing the stakes for one theory
and not the other does not increase the relative say of the
theory for which more is at stake) and No Compromise (if
an action is not any theory’s most preferred action, it cannot
be chosen, even if it is seemingly the best “middle ground”

option). It is possible to produce situations in which these
flaws are exhibited in seemingly unacceptable ways, as de-
tailed in Sections 5.1 and 5.2. Further, we empirically find
that it is often difficult to obtain a stable equilibrium in Nash
voting, and it some cases it may even be impossible (SI K).
A final concern, not investigated in this work, is whether
Nash voting provides an incentive for theories to produce
high-stakes situations for other theories so as to bankrupt
their voting budgets to gain an advantage, i.e. creating po-
tentially undesirable anti-compromises. Such a pathology
would be reminiscent of issues that arise in multi-agent
RL, and may be addressed by mechanisms for encouraging
cooperation explored in that field (Leibo et al., 2017; Yu
et al., 2015; Foerster et al., 2016). While Nash voting has
its disadvantages, it is appealing because it strongly satisfies
the principle of Proportional Say by allocating each theory
equal voting budget and enabling them to use it to optimize
their own choice-worthiness.

4.3. Variance Voting

The Stakes Insensitivity and No Compromise flaws occa-
sionally exhibited by Nash voting result from factical voting
rather than voting that faithfully represents the true prefer-
ences of each theory: e.g. if a theory very slightly prefers
action A to action B, it may put all of its budget into action
A, leading to the No Compromise issue, and if a theory is
in a relatively low-stakes episode for it, it has no reason to
spend any less of its budget than in a high-stakes episode,
leading to the Stakes Insensitivity issue. Thus, forcing votes
to be a true representation of theories’ preferences would
alleviate these issues.

While eliciting genuine preferences from humans is chal-
lenging, computing the preferences of an ethical theory
represented by an RL agent is in principle more straightfor-
ward. In this work, we will take the preferences of theory
¢ for action a in state s given the overall policy 7 to be
Qi(s, a) as defined in Sec. 3. As noted in that section, any
affine transformation of a cardinal preference function rep-
resents the same preferences. To transform these preference
functions into votes, we thus need to find the affine transfor-
mation of the (); functions that best satisfies the principle
of Proportional Say.

Recent philosophical work makes principled arguments
that (in the non-sequential case) the preferences of theories
should be variance-normalized (MacAskill, 2014; Cotton-
Barratt, 2013) across decision options, giving rise to vari-
ance voting. This approach is intuitively appealing given
the effectiveness of variance normalization in integrating
information across different scales in machine learning (e.g.
Ioffe & Szegedy, 2015). However, variance voting has not
previously been applied to sequential decision-making, and
previous works on variance voting do not address of what
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the variance to be normalized should be in that case. We
demonstrate that, under certain assumptions, a form of vari-
ance voting arises from allowing Nash voting to select the
values of the parameters of the affine transformation of Q;
rather than the direct vote of theory ¢ (proof in SI D). This
perspective on variance voting suggests that the (J; function
should be normalized by the expected value of its variance
across timesteps. In other words, if 11;(s) = + >, Qi(s, a),
we have

% > (@Qis,a) i)’ O

a

2
O'i = Est

where S is the distribution of states the agent can encounter
under the policy. The policy itself can then be defined as

R M

where ¢ is a small constant (1075 in our experiments) to
handle theories with o = 0. Such theories are indifferent
between all actions at all states (Q; (s, a) = Q;(s, a’) for all
s, a,a’) and thus have no effect on the voting outcome.

4)

Due to the multi-agent decision process, and because each
Q); is specific to just one theory, they cannot be learned
using ordinary off-policy Q-learning as that would result
in unrealistically optimistic updates (SI F.2). Rather, we
use the following target y; for theory ¢, similar to “local
SARSA” (Russell & Zimdars, 2003):

yi = Wi(s,a,5") +7Qi(s',d'), )

where a’ is the action taken by the policy 7 in state s’, which
may either be the action produced by variance voting or an
e-greedy action. In our implementation, € is annealed to
0 by the end of training (SI E.1). We call this algorithm
Variance-SARSA (pseudocode is provided in the SI).

If 02 are held constant, Eq. 4 can be written as 7(s) =
argmax, >, w;Qi(s, a) where w; = C;/(\/a? +€) (11i(s)
does not affect the argmax and is thus ignored). Russell &
Zimdars (2003) show that learning the individual @; with
Sarsa in this case is equivalent to learning a single Q(s, a)
on an MDP with reward R(s,a,s") = >, w;,W(s,a,s’)
with Sarsa. Thus Variance-Sarsa converges if 02 converge.
o? empirically converge in our experiments, though in SI H,
we present an example MDP in which convergence cannot
happen, as well as outline Variance-PG, a policy-gradient
variant of Variance-Sarsa which we hypothesize would con-
verge in all cases. Due to the greater simplicity of Variance-
Sarsa and the fact that non-convergence does not appear to
be a problem in practice, the main text of this paper focuses
on Variance-Sarsa rather than Variance-PG.

Variance voting satisfies the Pareto property: At conver-
gence, Q;(s,a) gives the preferences of theory i and o2

are fixed. If variance voting did not satisfy Pareto, there
would exist s,a, and o’ such that 7(s) = a although
Qi(s,a’) > Qi(s,a) for all i and Q;(s,a’) > Q;(s,a) for
some i. If so, ), C’iiQ*(i;%;’:(s) >, C’iiQ"(s’?;:’(s),
so m(s) # a by Eq. 4: a contradiction. Further, since
variance voting reduces to a weighted sum of the prefer-
ences of the various theories, then if the preferences of
the different theories are “rational” according to the von
Neumann-Morgernstern definition of that term, then the ag-
gregate preferences produced by variance voting are also
rational (Cotton-Barratt, 2013).

Arrow’s theorem tells us that a voting system cannot satisfy
both Pareto and ITA. It is generally accepted that Pareto is
the more desirable property (MacAskill, 2014; Sewell et al.,
2009), and it thus could be seen as beneficial that it is the
axiom satisfied by variance voting. However, we show a par-
ticularly problematic case in which variance voting violates
ITA in Sec. 5.3. Alleviating IIA issues in variance voting is
left to future work and may turn out to be impossible due to
the consequences of Arrow’s theorem.

4.4. Updating Credences

It may be desirable for the designer of morally uncertain
agents to quickly update the credences of their agents as
they update their uncertainty about ethical theories, as well
as to understand the effects of credence upon the agent’s
policy. We show that credence updating without retraining
the policy is possible by credence-conditioning the sub-
policies of the theories (learned Q functions in Variance
voting and voting policies in Nash voting), and training
them in simulation under a wide variety of credences before
deploying them in the real world, i.e. an application of
UVFAs (Schaul et al., 2015). The variance voting system
additionally requires an estimate of the mean variance of
the preferences of each theory. The variance of different
theories is affected by the policy actually taken, and thus
by the credences. To address this complication, we obtain
this estimate from a credence-conditioned regression model
trained alongside the Q functions, using mean squared error
loss.

5. Experiments

We now illustrate various properties of the voting systems
for moral uncertainty introduced in this work, and in partic-
ular focus on the trade-offs that exist between them. The
code for all the experiments presented in this section can be
found at https://github.com/uber-research/
normative—-uncertainty.

Our experiments are based on four related gridworld envi-
ronments (Fig. 1) that tease out differences between various
voting systems. These environments are derived from the
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Figure 1. Gridworld versions of the trolley problem. Without
intervention, The trolley (T) moves right at each time step. If
the agent (A) is standing on the switch (S) by the time it reaches
the fork in the tracks (+), the trolley will be redirected down and
crash into the bystander(s), causing them harm. The agent may
also push a large man (L) onto the tracks, harming the large man
but stopping the trolley. Otherwise, the trolley will crash into the
people standing on the tracks represented by variable X. A guard
(G) may protect the large man, in which case the agent needs to lie
to the guard before it is able to push the large man. Finally, in one
variant the agent is be able to trigger a “doomsday” event (D) in
which a large number of people are harmed.

trolley problem (Foot, 1967), commonly used within moral
philosophy to highlight moral intuitions and conflicts be-
tween ethical theories. In this thought experiment, an out of
control trolley will crash into several people standing on the
tracks (in our experiments, this number will vary and is thus
represented by X)), harming them. The agent may let this
unfortunate event happen, but is also presented with one or
more affordances to prevent it. These affordances, however,
risk harming other bystanders in various ways, thus forcing
the agent to make an ethical tradeoff.

In the classic variant (Fig. 1(a)), for example, the agent is
located near a switch that will redirect the trolley to another
set of tracks, thus preventing harm to multiple people. Un-
fortunately, an innocent bystander is standing on the other
set of tracks and will be harmed if the trolley is redirected.
A purely utilitarian calculation would seek to minimize total
harms inflicted, thus flipping the switch would be preferred
as long as X > 1. However, deontological theories often
distinguish between harms directly caused by an agent’s
intervention and those caused by its inaction. Such a theory
might consider that the harm to the X people is relatively
permissible because it is caused by the agent’s inaction,
while the harm to the innocent bystander by flipping the
switch would be actively caused by the agent, and thus
impermissible. A simple choice-worthiness setup for this
particular scenario is given in Fig. 2(a).

5.1. Nash Voting and Stakes Insensitivity

The classic trolley problem setup enables demonstrating
Nash voting’s stakes insensitivity. Fig. 2(a) shows the pref-
erences of two theories in the simple trolley problem. If
X = 1, utilitarianism is indifferent between the two actions,
so deontology should prevail as long as it has non-zero

credence, and the agent should not flip the switch. As X in-
creases, the preference of utilitarianism for switching should
be taken in greater and greater consideration. In particular,
if X is very large, even a relatively small credence in utili-
tarianism should suffice to justify flipping the switch, while
if X is close to 1, a relatively larger credence seems like it
would be necessary. This is Stakes Sensitivity.

However, Fig. 2(b) shows that Nash voting does not ex-
hibit Stakes Sensitivity in this particular example: rather,
whichever theory has the highest credence gets its way no
matter the relative stakes. This is because both theories are
incentivized to spend their entire budget voting for their
preferred action, no matter how small or large the difference
in preference versus the alternative.

Stakes Insensitivity is not fundamental to Nash voting, how-
ever. In particular, it can be stakes sensitive if it expects
to make multiple decisions in sequence, with the stakes of
future decisions being unknown, as often happens in real-
world situations. In Fig. 2(c), each episode consists of two
iterations of the classic trolley problem instead of just one
(i.e. after the first iteration completes, the state is reset and
another iteration begins, without the episode terminating
or the theories’ voting budgets being replenished), with the
number of people on the tracks X being resampled during
the second iteration, so that the agent does not know the
stakes of the second iteration during the first. In this case,
we observe that the decision boundary for the first trolley
problem shows some stakes sensitivity: when the stakes
are relatively low in the first step, the agent preserves its
budget for the likely higher stakes second step. Unlike Nash
voting, variance voting exhibits stakes sensitivity no mat-
ter how many decisions must be made in the environment

(Fig. 2(d)).

5.2. Nash Voting and No Compromise

An additional flaw Nash voting suffers from is No Com-
promise: Fig. 1(b) shows a situation in which the agent is
presented with three options: letting the trolley crash into
a large number of people, redirecting the trolley onto a dif-
ferent track on which 2 people are standing (note that only
1 person is standing on the track in the classic version), or
pushing a large man onto the tracks, stopping the trolley but
causing the large man harm. While utilitarianism simply
counts harms, deontology only counts harms caused by the
agent. Further, it puts a larger negative weight on pushing
the large man than on redirecting the trolley, in keeping
with common deontological theories such as the Doctrine
of Double Effect (McIntyre, 2019).

In the double trolley problem, utilitarianism will always
prefer pushing the large man as long as X > 1, while
deontology will always prefer doing nothing. However, the
option of flipping the switch is appealing as a compromise,
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(a) Preferences in the classic trolley problem.
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Figure 2. Nash voting can be Stakes Insensitive in the classic
trolley problem. In a successful (stakes sensitive) algorithm,
“switch” should be chosen more often as the number of people
on the tracks increases. (b) Nash voting is completely stakes in-
sensitive in the classic trolley problem. (c) Requiring an agent to
navigate two separate trolley problems before an episode ends pro-
duces some stakes sensitivity in Nash voting (the decision bound-
ary is not smooth due to instabilities in training; SI K). (d) Variance
voting has complete stakes sensitivity even in the non-iterated case.

as it will partially satisfy utilitarianism as long as X > 2
and also avoids the worst possible case for deontology.

We would thus expect that a voting system capable of com-
promise would select this option if the credences of utili-
tarianism and deontology are close enough. However, in
Nash voting, whichever theory has the upper hand in terms
of credence, as small as it may be, is capable of imposing
its preference to the fullest extent possible, and as a result
Nash voting will only ever select “Push” or “Nothing”, and
always ignore the compromise option “Switch”. This result
is demonstrated empirically in Fig. 3(b).

As mentioned in Sec. 4.3, the lack of compromise exhibited
by Nash voting is due in part to its excessive knowledge of
its adversaries and thus its ability to counter them perfectly
if its credence is sufficient. Fig. 3(c) shows the outcome of
an experiment in which, during training, each of the two
agent is randomly chosen to optimize either for utilitarian-
ism, deontology, or “altered deontology* (Fig. 3(a)). Note
that altered deontology is not meant to represent a valid
ethical theory but rather to help test the effects of a situa-
tion in which Nash voting (during training only) does not
have a priori knowledge of which opponent it is facing, thus
limiting its tactical voting ability. During testing, utilitar-
ianism is always facing deontology, and we observe that
the compromise action of switching is occasionally chosen,
showing that the No Compromise flaw of Nash voting is
indeed partly caused by its ability to vote tactically, and
motivating the forced votes used in variance voting.

Fig. 3(d) shows that variance voting easily produces the
compromise solution, with the switch option being chosen
as long as credences between the two theories are relatively
similar, and being increasingly favored as stakes are raised.

PushL  Crashinto2 Crashinto X
Util. -1 2 -X
Deont. -4 -1 0
Altered Deont. -1 -4 0

(a) Preferences for the double trolley problem. Altered Deont.
only used for Nash voting with unknown adversary.

Nothing Switch Push
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X
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Credence (deontology)  Credence (deontology)  Credence (deontology)

(b) Nash voting  (c) Nash voting (un- (d) Variance voting

known adversary)

Figure 3. Nash voting can suffer from No Compromise in the
double trolley problem. In a successful (compromising) algo-
rithm, the compromise “switch” action should be chosen in at
least some cases. (b) Nash voting never produces the compro-
mise “switch” option (except for minor artifacts). (c) Nash voting
reaches compromises when trained with an unknown adversary
(some instabilities in training; SI K). (d) Variance voting exhibits
compromise no matter the training procedure.

5.3. Variance Voting and IT1A

As a voting method that satisfies the Pareto condition, vari-
ance voting cannot satisfy ITA in all cases. A representative
and problematic example is given by comparing the out-
comes from variance voting in the classic trolley problem
shown in Fig. 1(a) to those in the “doomsday” trolley prob-
lem in Fig. 1(d). In the latter problem, the agent is able to
perform an action capable of harming a large number of
people (invoking the “doomsday”).

As shown in Fig. 4(a), neither theory is ever willing to select
the “doomsday” option, a clear example of an irrelevant
alternative. However, comparing Fig. 4(b) and 4(c) shows
that the addition of this irrelevant alternative has a signifi-
cant effect on the final outcome, i.e. favoring doing nothing,
which is the outcome preferred by deontology. The reason
is that the presence of the doomsday action increases the
variance of utilitarianism more than that of deontology (due
to the particular preferences given in Fig. 4(a)), which ef-
fectively reduces the strength of the utilitarian vote against
“Crash into X.” Another way to view this phenomenon is
that both utilitarianism and deontology are now spending
some of their voting power voting against doomsday, but
utilitarianism is spending more of its voting power doing so,
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thereby reducing the strength of its vote on other actions.
While simply detecting that “doomsday” is a dominated
option and removing it from the action set is possible in
this example, it is not obvious how to generalize such an
approach to more complex IIA cases (SI G). By contrast,
Nash voting is immune to this particular issue (Fig. 4(d)).

Crashinto 1  Crashinto X Doomsday

Util. -1 -X -300
Deont. -1 0 -10
(a) Preferences in the doomsday trolley problem.
Nothing Switch
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©
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0 50 100 0 50 100 0 50 100

Credence (deontology) ~ Credence (deontology)  Credence (deontology)

(b) Variance voting (c) Variance voting (d) Nash
(non-doomsday) (doomsday) (both)

voting

Figure 4. Variance voting does not have the IIA property. In a
successful (IIA) algorithm, the decision boundary should be un-
affected by the “doomsday” option. (b) When the “doomsday”
option is absent, switching (the option preferred by utilitarian-
ism) is chosen in many cases. (c) Adding the “doomsday” action
changes the outcome of variance voting from “switch” to “nothing”
in many situations, even though “doomsday” itself is never chosen,
and is thus an irrelevant alternative. (d) Nash voting is unaffected
by the irrelevant alternative in this example.

6. Related Work

Moral uncertainty is related to several topics studied within
Al safety (Amodei et al., 2016; Everitt et al., 2018). For ex-
ample, uncertainty in reward functions (Reddy et al., 2019;
Hadfield-Menell et al., 2017) is similar to uncertainty over
ethical theories, although here the focus is on how to per-
form RL under such uncertainty when the reward functions
implied by the different theories are not comparable in scale.
Another connection is to the problem of avoiding negative
side effects (Amodei et al., 2016; Krakovna et al., 2018;
Turner et al., 2020), i.e. accomplishing a task while bal-
ancing uncertainty over ethical theories can be seen as a
different way of constraining impact, grounded in what
matters to humans. Related to our work, Gabriel (2020)
provides a philosophical exploration of value alignment in
Al, arguing that technical and normative aspects of such
alignment are intertwined, and similarly identifying pro-
ductive opportunities for experts in ML and in philosophy
to collaborate. Finally, Bogosian (2017) provides the first
discussion of moral uncertainty in Al, but does not provide
concrete algorithms or experiments.

The Nash voting method models a single agent’s behaviors

as a multi-agent voting process that seeks compromise to
control a single agent. The optimization algorithm used
is a form of competitive multi-agent RL (Bu et al., 2008).
Our work differs in that it seeks to encourage ethical behav-
ior through internal competition between ethical theories.
The formalism described in this paper is also related to
the MOMDP formulation used in multi-objective optimiza-
tion (Roijers et al., 2013), although the underlying assump-
tions are different (e.g. credences in moral uncertainty hint
that only one of the underlying ethical reward functions may
end up to be the true reward).

A further discussion of the connections between this work
and field of machine ethics as well as the philosophical work
on moral uncertainty can be found in SI J.

7. Discussion

This paper proposes and tests algorithms for handling moral
uncertainty in RL. Rather than arguing for which of the
proposed algorithms is best, we hypothesize that impossi-
bility results imply a spectrum of plausible algorithms that
cover the trade-offs among competing desiderata in decision-
making under moral uncertainty. Which algorithm is most
appropriate for a given domain may depend on particular-
ities of the competing theories and the domain itself, e.g.
how much is lost by sacrificing Pareto efficiency as Nash
voting does (do the domain and theories create the possibil-
ity of highly uncooperative Nash equilibria?). However, the
fact that humans seem able to meaningfully navigate such
trade-offs highlights a key assumption in this and other work
in moral uncertainty: That some ethical theories are fun-
damentally incomparable and that their choice-worthiness
functions cannot be put on a common scale. An alternative
approach would assume that finding such a common scale is
not impossible but merely difficult. Such a research program
could seek to elicit a common scale from human experts,
either by requesting choice-worthiness values directly, or by
having humans suggest the appropriate action under moral
uncertainty in different situations and inferring a common
scale from that data (Riedener, 2020).

An important direction for future research is to investigate
moral uncertainty in more complex and realistic domains,
e.g. in a high-dimensional deep RL setting. Interestingly,
as a whole there has been little work in machine ethics that
attempts to scale up in this way. Creating such domains is a
valuable and non-trivial undertaking, as most existing RL
benchmarks adhere to the standard RL paradigm of a single
success metric. However, it may be possible to retrofit exist-
ing benchmarks with choice-worthiness functions reflecting
moral theories (e.g. by instrumenting existing videos games
to include consideration of the utilities and rights of non-
player characters, e.g. in the spirit of Saunders et al. (2018)).
The creation of such ethical reward functions, applicable in
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complex simulations or (ideally) the real world, provides
another substantial challenge. Work in machine ethics may
provide a useful foundation (Winfield et al., 2014; Wallach
& Allen, 2008; Anderson et al., 2005), but ML has a critical
role to play, e.g. to reward ethical behavior requires classi-
fiers that recognize morally-relevant events and situations,
such as bodily harm or its potential, emotional responses of
humans and animals, and violations of laws or social norms.

More broadly, translating moral uncertainty from a philo-
sophical framework to practical algorithms puts some of the
gritty complications of real-world ethical decision making
into clarity. Further work in this direction is likely to lead to
a better understanding of the skills involved in ethical deci-
sion making. One may hope that, just as RL has surpassed
human performance in many domains and even influenced
the human approach to domains such as Go (Silver et al.,
2017), it will one day be possible to create “superhumanly
ethical” agents that even humans will be able to learn from.
In this way, a final ambitious direction for future work is
to explore mechanisms through which an agent can itself
update its credences in moral theories (or derive new ones).
That is, what might provide a principled foundation for
machine meta-ethics (Lokhorst, 2011; Anderson, 2011)?

8. Conclusion

Motivated by the need for machines capable of handling
decisions with moral weight, this work attempts to bridge
recent work in moral philosophy on moral uncertainty with
the field of RL. We introduce algorithms that can balance
optimizing reward functions with incomparable scales, and
show their behavior on sequential decision versions of moral
dilemmas. Overall, the hope is to encourage future research
into the promising and exciting intersection of machine
ethics and modern machine learning.
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