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Abstract

A core element in decision-making under uncer-
tainty is the feedback on the quality of the per-
formed actions. However, in many applications,
such feedback is restricted. For example, in rec-
ommendation systems, repeatedly asking the user
to provide feedback on the quality of recommen-
dations will annoy them. In this work, we formal-
ize decision-making problems with querying bud-
get, where there is a (possibly time-dependent)
hard limit on the number of reward queries al-
lowed. Specifically, we consider multi-armed ban-
dits, linear bandits, and reinforcement learning
problems. We start by analyzing the performance
of ‘greedy’ algorithms that query a reward when-
ever they can. We show that in fully stochastic
settings, doing so performs surprisingly well, but
in the presence of any adversity, this might lead to
linear regret. To overcome this issue, we propose
the Confidence-Budget Matching (CBM) princi-
ple that queries rewards when the confidence in-
tervals are wider than the inverse square root of
the available budget. We analyze the performance
of CBM based algorithms in different settings and
show that they perform well in the presence of ad-
versity in the contexts, initial states, and budgets.

1. Introduction

In the past few decades, there have been great advances in
the field of sequential decision making under uncertainty.
From a practical perspective, recent algorithms achieve su-
perhuman performance in problems that had been consid-
ered unsolvable (Mnih et al., 2015; Silver et al., 2017). From
a theoretical perspective, algorithms with order-optimal
performance were presented to various important settings
(Garivier & Cappé, 2011; Azar et al., 2017, and others).
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To solve such problems, most works share the same abstract
interaction model. Ateach round, an agent (i) observes some
information on the state of the environment, (ii) decides how
to act, based on previous interactions, and, (iii) observes
new feedback on the effect of its action. Finally, the environ-
ment changes its state based on the agent’s action, and the
cycle begins anew. Much effort had been devoted to study
specific instances of this abstract model, e.g., multi-armed
bandits (MABs) (Auer et al., 2002; Garivier & Cappé, 2011;
Kaufmann et al., 2012; Agrawal & Goyal, 2012), linear ban-
dits (Dani et al., 2008; Abbasi-Yadkori et al., 2011; Agrawal
& Goyal, 2013; Abeille et al., 2017) and reinforcement learn-
ing (RL) settings (Azar et al., 2017; Jin et al., 2018; Dann
et al., 2019; Zanette & Brunskill, 2019; Efroni et al., 2019;
Simchowitz & Jamieson, 2019; Tarbouriech et al., 2020;
Cohen et al., 2020; Zhang et al., 2020). However, there are
(still) several gaps between theory and practice that hinder
the application of these models in real-world problems.

One such evident gap is the need to act under a budget
constraint that limits the amount of feedback from the envi-
ronment. That is, receiving feedback on the quality of the
agent’s actions has an inherent cost. Consider, for exam-
ple, an online recommendation system. There, asking for
feedback from users negatively affects their experience, and
feedback should be requested sparingly. Another example
can be found in most large-scale RL domains, including au-
tonomous driving. In many such cases, the reward should be
labeled manually, and the resources for doing so are limited.
Motivated by these problems, in this work, we aim to tackle
the following question:

How should an agent trade-off exploration and exploitation
when the feedback is limited by a budget?

In our efforts to answer this question, we study the effect of
time-varying observation budget in various decision-making
problems. Formally, we assume that at each round, the
agent observes a non-decreasing, possibly adversarial, bud-
get B(t), which limits the number of queries for the reward
of the problem. We first show that when the problem is
stochastic and the budget is oblivious, greedily using any
available budget leads to good performance. However, as
soon as adversarial elements appear in the problem, or when
the budget is controlled by an adaptive adversary, such an al-
gorithm miserably fails. To tackle this problem, we suggest
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a simple, generic, scheme, that only samples rewards for ac-
tions with high uncertainty, in comparison to the budget. We
call such a mechanism confidence-budget matching (CBM).
We show how to apply CBM to MAB, linear bandit and RL
problems. In all cases, the mechanism can be applied in the
presence of adaptive adversarial budgets. For linear ban-
dits and RL, we show that CBM can be applied even when
the contexts and initial states are adversarial. Finally, we
present lower bounds for MABs and linear bandits, which
show that CBM leads to order-optimal regret bounds.

2. Preliminaries

We start by defining a general model for sequential decision-
making under uncertainty. Then, we will explain its realiza-
tion in each individual model. In the most general model,
at each round t, the environment supplies the agent with
a context u; that may either be stochastic or adversarially
chosen. Then, the agent selects a policy m; € II(u;) that
can depend on u; and past observations. Finally, the envi-
ronment generates two stochastic feedback variables, from
fixed distributions conditioned on u; and 7;: feedback on
the interaction with the environment Z; and reward feed-
back R;. In RL, for example, Z; is the visited state-actions
while R; is their respective rewards. We also assume that
there exists a reward function f such that the agent aims to
maximize f(R;) throughout the interaction. Alternatively,
algorithms aim to minimize its pseudo-regret (or regret),
which is defined as

T
Reg(T) _Z( max E[f(Ry)|u, 7] —E[f (Re)|us, m]).

et meIl(us)

Note that the pseudo-regret is random, as the policy depend
on random feedback from the environment and contexts
might be stochastic. Thus, regret bounds for different algo-
rithms hold either with expectation or with high probability.

To illustrate the generality of this model, we explain how it
encompasses both MAB, linear bandit and RL problems:

Contextual Multi-Armed Bandits (CMABs). At the be-
ginning of each round, a context u; € {1,...,S} is cho-
sen, either stochastically or adversarially. Then, the agent
chooses an action (arm) from a finite set of cardinality A,
m 2 a; € A and the environment generates a reward R; €
[0, 1] with an expectation E[R;|us = u, a; = a] = r(u,a).
An optimal arm is denoted by a*(u) € argmax, 7(u,a)
and its value by 7*(u) = max, (u,a). The reward func-
tion is f(R;) = R: and there is no additional feedback
(Z: = ¢). A specific case of interest is where a single con-
text exists, which is the well known MAB problem. Then,
we denote 7(a) £ (1, a).

Linear Contextual Bandits. In the stochastic setting, u;
contains a set of A vectors in R?, generated independently

from a fixed distrubution. In the adversarial case, u; is an
arbitrary set of vectors in R%. At each round ¢, the agent
selects a single vector 7y £ 2, € u;. Then, the environment
generates a reward Ry = (xy,0) + n;, where 7 is zero-
mean subgaussian noise and § € R? is unknown. As in the
CMARB problem, the reward function is f(R;) = R; and
there are no additional observations (Z; = ¢).

Episodic Reinforcement Learning. Let S, A be finite
state and action sets with cardinalities of .S, A, respectively.
Before each episode ¢, an initial state s; ; is generated ei-
ther stochastically or adversarially (and serves as a con-
text u;). Then, an agent selects a nonstationary policy
7 : Sx[H] — A, for some H € N. The policy is evaluated
for H steps, and states are generated according to a transi-
tion kernel P; namely, forany s’ € Sand h € {1,..., H},
Pr(st,h+1 = 3/|5t,h77rt,h) = Ph(5/|5t,ha77t,h(5t,h))- For
brevity, we denote a; j, = m 5 (s¢). The agent observes
the trajectory Z; = {(s¢.n, at’h)}thl and for each visited
state, a reward R; = {Rt,h}le € [0,1]" is generated
such that E[R; p,|s1.5 = s, a1, = a] = r(s,a). The reward
function is then f(R;) = hH:_11 Ry p.

Sequential Budgeted Learning. In most cases, it is natu-
ral to observe the effect of the policy on the environment;
for example, it is reasonable to assume that the agent ob-
serves the visited states in RL, as it acts according to them.
Thus, we assume that the agent always observes Z;. On the
other hand, many applications require specifically querying
or labeling the reward. Then, oftentimes, such feedback is
limited. Formally, let { B(¢) };>1 be a non-negative budget
sequence that might be adversarially chosen. We also as-
sume that the budget is non-decreasing, that is, a budget
that is given cannot be taken. At each round ¢, the agent
observes B(t) and selects whether to query R; or not, which
we denote by ¢ = 1 and ¢; = 0, respectively. However,
the agent can choose ¢, = 1 only if its budget was not
exhausted. Throughout most of the paper, we assume that
querying a reward incurs unit cost. Then, an agent can se-
lect g, = lonly if nd_, £ ' 1{g, =1} < B(t) — 1.
In some cases, we extend the cost to be action-dependent.
Then, a reward can only be queried if
t—1
Bi(t—1) 2> c(m)l{qr = 1} < B(t) — c(m).
k=1

Notice that when queries have unit costs, then n] = BY(t).
For the RL setting, we give access to more refined feedback
from specific time steps, to avoid confusion we only discuss
it in Section 5.3. In all cases, we allow g; to also depend on
Z,. Finally, and for ease of notations, we assume that the
agent always observes Y; = Ry - ¢q;.

General Notations We let { £} };>0 be a filtration, where
F; is the o-algebra that contains the random variables
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{(uk, Ty Lk Qs Y B(k))Z:O’ B(t + 1), Ut+1}~ In words,
it contains the information on all observed rewards, actions,
budget until the #*" episode, the budget at the (¢ + 1)
episode, and the context at the (t + 1)*" episode. We denote
[n] = {1,...,n} forn € Nand also z V 1 = max{x,1}
for any z € R. We use O(X) and O(X) to refer to a quan-
tity that depends on X up to constants and poly-log and
constant expressions in problem parameters, respectively.
Lastly, <, 2 denote inequalities that hold up to poly-log and

~ o~y

constant expressions in problem parameters.

3. Lower Bounds for Budgeted Problems

Before suggesting algorithms to the budgeted setting, it is
of importance to understand how the new constraint affects
the best-achievable regret. To this end, we study problem-
independent lower bounds for budgeted MAB. By the end
of the section, we also shortly discuss lower bounds for
budgeted linear bandits. To derive the lower bounds, we
require a more detailed description of the MAB model and
additional notations. Moreover, we need to adapt the funda-
mental inequality of Garivier et al. (2019) to the case where
the agent does not query all samples (Lemma 7). We refer
the reader to Appendix A.1 for more details on the model
and to Appendix A.2 for Lemma 7. Other proofs for this
section can be found at Appendix A.3. Using Lemma 7, we
can prove a lower bound for the following scenario in which
() sampling an arm requires a unit cost, (é¢) the budget con-
straint holds in expectation, and, (¢¢) the budget is given to
the learner at the initial interaction, i.e. V¢t € [T], B(t) = B:

Proposition 1. Let T be some time horizon and let m be
some bandit strategy such that for any bandit instance, it
holds that E[nf.] < B. Then, for A > 2, there exists a
bandit instance for which

1 A
E[Reg(T)] > M()mm{T\/;’T} .

As expected, when the budget is linear (B = T'), we get the
standard 2 ( V4 AT) lower bound. However, as we decrease

the budget, the lower bound increases, up to the point of
linear regret when the budget is not time-dependent. We
also remark that the lower bound holds even if the budget
constraint is only met in expectation. We will later present
algorithms whose regret match these bounds, without ever
violating the budget constraint. This implies that relaxing
the budget requirement to hold in expectation cannot im-
prove performance, from a worst-case perspective. Finally,
note that when the budget is polynomial in 7, .e.g., B = T?,

we get a lower bound of 2 (\/ZTl_ﬂ ) . We will later prove
upper bounds that match this rate.

Next, it is of interest to generalize the bound to the case of

arm-dependent costs. In this case, we require a more subtle
analysis that also costs in a y/log A factor:

Proposition 2. Let T be the time horizon, and let
c(1),...,¢(A) > 0 be arm-dependent querying costs. Also,
let ™ be some bandit strategy such that for any bandit in-
stance, it holds that E[BY(T)] < B. Then, for A > 2, there
exists a bandit instance for which

Yamicla)

E[Reg(T)] > —— min B+ log A)’

While both bounds deal with fixed budget, B(¢t) = B for
all rounds, one can easily reduce them to lower bounds for
time-dependent budgets, by reducing the lower bound only
at a logarithmic factor. This is done by lower bounding
the regret by the bound of the ‘worst-case’ time horizon

t
Q (maxtE[T] { 7\/% }) . We demonstrate how to do so for
the case of arm-dependent costs in the following corollary:

Corollary 3. Let ¢(1),...,c(A) > 0 be arm-dependent
querying costs and let B(1),..., B(T) > 0 be an arbitrary
non-decreasing budget sequence. Also, let T be some bandit
strategy such that for any bandit instance and any time
index t € [T}, it holds that E[BY(t)] < B(t). Then, for any
A > 2, there exists a bandit instance for which

E[Reg(T)]

Zj:l c(a)

T
1
> - @ i _fLea=1 AT
= 140(1 + log T) ;mm B(t)(1 +log A)’

Proof. By Proposition 2, for any t € [T, there exists an
instance such that

Yay c(a)
B(t)(1 +log A)’

4
St
E[Reg(t)] > Tag Min

Let t,,, be the time index in which the r.h.s. is maximized
and fix the bandit problem to the corresponding instance
that leads to its lower bound. Then.

E[Reg(T)] > E[Reg(t)]

Yol cla)

“iein | o YV B +log A)

Finally, by Holder’s inequality, if =,y € R’ are such that
x¢,yr > 0 forall t € [T], then

T T
Zt:1 LYt _ Zt:1 LYt
HyHl Zle Yt

maxz, = |z, >
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IBVEEON i 1} and y; = + and

Taking z; = 155 mln{ B(0) (14log A

recalling that thl % < 1+logT concludes the proof. [J

In the following sections, we derive regret upper bounds of
similar budget-dependence, e.g., O (Zle A/B (t)) ,if
c(a) = 1foralla € A. Itis therefore of interest to observe
the behavior of such bounds as a function of different budget
profiles.

Example 1. (Budget Profiles and Consequences).

* Linear Budget: if B(t) = et for some ¢ > 0, then
Reg(T) < 24/ AT /e. Specifically, if ¢ = Q(1), then
we get the standard rates of Reg(T) = ©(V AT).

T)
* Polynomial Budget: if B(t) = t° for some c € (0, 1],
then the regret is also polynomial, i.e., Reg(T) =

@(\/ZTlic/2).

o Fixed Budget: if B(t) = By > 0 is an initial budget,
then Reg(T) = ©(V/ AT /\/By). However, if the bud-
get is given at the end of the game, namely, B(t) = 0
fort <T — Bygand B(t) = By fort > T — By, then
Reg(T) = Q(T) for any By = o(T).

e Periodically-replenished budget if the budget is re-
plenished by By > 0 every N € N steps, namely,

B(t)=Bo- (14 | %)), then
[T/N]
Reg(T) =0 Z % = ( A;(j\[).

3.1. Lower Bounds for Linear Contextual Bandits

We end this section by presenting a lower bound for linear
bandits. Here, we assume that the budget constraint is never
violated (as we assume in the upper bounds). Then, for fixed
budget and context space, we derive the following bound:

Proposition 4. Let T' € N be some time horizon and let
be a linear bandit policy such that nf. < B a.s. for some
fixed B < T. Then, there exists a d-dimensional linear
bandit instance with arm set [—1 ] for which the expected
regret of T is lower bounded by %0 \F

See Appendix A.4 for a proof. Importantly, this bound can
be generalized to time-varying budgets, as in Corollary 3.

4. The Greedy Reduction: Gap Between
Adversarial and Stochastic Contexts

We start by tackling the simpler case where the contexts
are stochastic and the budget is oblivious. Formally, before
the game starts, a sequence of budgets {B(t)},., is cho-
sen, possibly adversarially. Later, at the beginning of each

Algorithm 1 Greedy Reduction
1: Require: Algorithm A, initial budget B(1) > 1
2: Initialize: [ =0
3: fort=1,...,T do

4:  Observe context u; ~ P, and current budget B(t)
5. if B(t) > B%(t) + 1 then
6: /I Query reward feedback, act with A
7: Advance | < [ + 1 and calculate 7y < A;(uy)
8: Act with 7, g; = 1; observe Z; and R;
9: else
10: /I Don’t query feedback, act with ‘average’ policy
11: Sample j ~ Uniform({1,...,1})
12: Act with m; < A;(u;)and g, = 0; ignore Z;
13:  endif
14: end for

round ¢, a context u; is generated from a distribution P,,
independently at random of other rounds. Then, the model
continues as in Section 2. For this section, we also assume
that queries have unit costs.

For this model, we suggest a simple greedy reduction
(see Algorithm 1). Take an algorithm A. If there is enough
budget, query reward feedback and ask A for a policy 7; to
act with. Otherwise, when there is no available budget, pick
uniformly at random a policy from past policies returned by
A, {m:}, and act with it. We remark that Aj(u) denotes an
output-policy of the algorithm at its k*" iteration, with u as
the input context. Albeit simple, this algorithm performs
surprisingly well, as we show in the following theorem:

Theorem 1 (Black Box Reduction for Stochastic Con-
texts). Let A be an anytime algorithm with bounded re-
gret E[Reg(T)] < oT? + C for some a,C € Ry, €
[0,1] and any T € N. Moreover, assume the budget
is chosen by an oblivious adversary such that it is non-
decreasing, B(1) > 1 and B(t) € N forall t > 1. Then,
the expected regret of Algorithm 1 with base algorithm
A and budget sequence {B(t)}>1 is upper bounded by

T a
oI’ +C+ 3, B %'

The proof of the theorem (and all other results in the section)
can be found at Appendix B. One possible application of
the theorem is in the MAB setting, combined with MOSS-
anytime (Degenne & Perchet, 2016). This would result in a

regret bound of O (Zthl A/B(t)

lower bound of Corollary 3 up to log-factors. For linear
bandits, using OFUL (Abbasi-Yadkori et al., 2011) as the

base algorithm implies a regret of @(Zthl d/\/B(t)),
which matches the lower bound of Proposition 4 up to log-
factors. In general, we believe that this reduction is tight in
many interesting settings. One possible intuitive explanation
for this can be found at the following proposition. In it,

), which matches the
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we prove that in non-contextual problems, for any fixed
horizon, any general algorithm can be converted to one that
uses the budget at the beginning of the game. A reasonable
adaptation for time-varying budget and anytime algorithm
would be to use the budget whenever possible.

Proposition 5. Assume that the decision-making problem is
non-contextual (uy = ¢, Vt) with no environment feedback
(Zy = ¢,Vt) and unit-querying costs. Then, for any T, B €
N such that B < T and any policy 7 under which n’. < B,
there exists a policy ' such that q; = 1 for all t € |B] (and
zero otherwise) and E[Reg(T)|n'] = E[Reg(T')|r].

We end this section by returning to its basic assumptions
- stochastic contexts and oblivious budget. We show that
when at least one of these assumptions do not hold, the
greedy reduction suffers a linear regret in a very simple
CMAB problem, even if the budget is linear in expectation:

Proposition 6 (Greedy Reduction Degrades in the Presence
of Adversary). If an adaptive adversary controls either
(i) the contexts, or (ii) the budget, then for any base al-
gorithm A used in Algorithm 1, there exists a contextual
MAB problem with two contexts and two arms such that
E[Reg(T)] > L, even if E[B(t)] = L forall t € [T).

- 4 2

Proof Sketch. Consider a contextual multi-armed bandit in-
stance with two contexts, u € {1,2}. Assume that querying
a reward feedback costs 1 for all contexts and all arms. Fur-
thermore, assume the budget increases in each episode by 1
with probability 1/2.

If the adversary is adaptive to the history, it can choose
u = 1 every round the budget increases and otherwise
choose u = 2. The greedy reduction then only queries for
feedback for v = 1. Thus, the regret for u = 2 is linear in
T, since no information is gathered for this context, and the
number of rounds u = 2 is (7). Lastly, it can be shown
that E[B(¢)] = t/2 in this construction. Equivalently, the
same result holds if the contexts are uniformly distributed
and an adaptive adversarial budget increases by a single unit
only when u = 1. O

This emphasizes the need for developing non-greedy algo-
rithms that store budget to face adversities in the problem.

5. The Confidence-Budget Matching Principle

In the previous section, we showed that a simple greedy
query rule performs well for sequential budgeted learning
with stochastic contexts and oblivious budget. That is, query-
ing for feedback as long as a spare budget exists results in a
well-performing approach. However, this ‘greedy’ approach
can miserably fail in the presence of adversarial contexts or
budget. In this section, we introduce an alternative approach

Algorithm 2 Confidence-Budget Matching (CBM) Scheme
1: Require: Optimistic algorithm A, {o},+,
2: fort=1,...,T do
3:  Observe context u;
Act with ¢, acquired from A(F;_1) and observe Z;
Observe current budget B(¢)

4
5:
6: if C’It(ut, ﬂ't) > O/ 1/B(t) then
7
8
9

Ask for feedback (¢; = 1) and observe Ry
end if
. end for

we refer to as the Confidence-Budget Matching (CBM) prin-
ciple. Unlike the greedy approach, CBM works well in the
presence of adversities as it adequately preserves budget.

CBM is a generic algorithmic scheme that converts an un-
budgeted optimistic algorithm to an algorithm that can be
utilized in sequential budgeted learning. As evident in Al-
gorithm 2, the agent follows a policy calculated by the
baseline algorithm A. Then, feedback on the reward of
m, is queried if the confidence interval (CI) of the policy,
given current context, C'I; (u, 7 ) is larger than a/1/B(t)
for some o > 0. As querying rewards decreases the CI,
CT;(ug,m) will gradually decrease. Then, if a policy is
chosen frequently enough, reward querying will stop once

its confidence matches «y/1/B(t).

Unlike the greedy reduction, the performance of CBM does
not degrade in the presence of adversarial contexts or bud-
get, as we demonstrate later in this section. A crucial reason
for this is that CBM stops querying rewards of policies with
small CI. This somewhat conservative behavior leads to a
more robust algorithm. To better understand the robustness
of this querying rule, we consider the MAB problem. For
this problem, we set oy ~ V/A, thus, for the MAB problem,
CBM queries reward feedback if C'I;(a;) > O(\/A/B(t)).
Denoting the number of queries from action a before the "

ni_(ar)
(Hoeffding-based CI) leads to the following equivalent con-
dition to CBM query rule for MAB: ask for reward feedback
if ni—1(ar) < B(t)/A. Namely, query for feedback if a;
was queried less than B(t)/A times so far. Thus, this rule
implicitly allocates 1/A of the current budget to each of the
arms for possible use. This immediately implies the budget
constraint is never violated, since there are A arms in total.

episode by n{_;(a) and setting CT;(a;) ~ 1/

Remark 1. Notice that the CBM scheme plays actions se-
lected by the optimistic baseline algorithm A, which do not
depend on the current budget B(t). In particular, all our
results also hold even if the budget is revealed after the
agent selects an action, as depicted in Algorithm 2.

Next, we study the performance of the CBM principle ap-
plied to MAB, linear bandits and RL problems. Importantly,
we show that for all these settings, it matches the perfor-
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mance of the greedy reduction for stochastic environments,
while being able to face adversarial contexts and budgets.

Remark 2 (Sufficient Initial Budget). For simplicity, we
assume the initial budget B(1) is large enough such that
Algorithm 2 queries at the first round, that is CI; (uy,m1) >
a1+/1/B(1). If this condition does not hold, an extra term
of Tt should be added to the regret bounds where T is the

Sfirst time in which CIr, (ur,,7r,;) > ar,+/1/B(Ty).

5.1. Multi-Armed Bandits

We start by studying the performance of CBM for the MAB
problem, where the base algorithm is UCB1 (Auer et al.,
2002). We call the resulting algorithm CBM-UCB, which
follows Algorithm 2 with oy = 4,/6 )", c(a) log(At). Al-
though this setting is extremely simple, it highlights the
central analysis technique, which is extended in the rest of
this section to more challenging decision-making problems.

Theorem 2 (Confidence Budget Matching for Multi
Armed Bandits). For any querying costs ¢(1),...,c(A) >
0, any adaptive non-decreasing adversarially chosen
sequence {B(t)}t>1 and for any T > 1, the ex-
pected regret of CBM-UCB is upper bounded by

O(VAT +/% @) X1 E| /55 )

Full description of the algorithm, alongside the proof of
Theorem 2, is supplied at Appendix C. We now present a
proof sketch that highlights how the CBM principle affects
the regret bounds.

Proof Sketch. We use UCB bonus of b} (a) = %,
t—1

where n}(a) is the number of times arm a was queried up

to round ¢; namely, if 7;(a) is the empirical mean of a then,
UCB;i(a) = 7t—1(a)+b}(a), LOB:(a) = Tt—1(a)—b}(a)
and CI;(a) = UCB(a) — LCB(a) = 2b(a).

Budget analysis. We start the proof by establishing that
the budget constraint is never violated, BY(T") < B(T') for
all T' > 1. For simplicity, we do so for unit querying costs
(where B%(t) = ni(t)). By the CBM condition, if ¢; = 1,
then CI:(at) > ot /+/B(t). Then, forany T > 1

L CL(a)

T

2 Ma=1 =2 T
T

VB Y, ———1{q = 1},

t=1 y/ni_1(a) V1

ni(T)

Hq =1}

A

where in the last relation we substituted all parameters and
used the fact that the budget is non-decreasing. Importantly,
notice that when the reward of an arm is queried, its count

increases, up to n{(a). Therefore, for any 7" > 1

A @
nd(T)<+/B(T) —__ < \/B(T)\/n(T).
; ; 1 (T) )

Reorganizing and choosing the right constants leads to the
relation n4(T") < B(T'), which deterministically holds. Im-
portantly, this implies that CBM-UCB never tries to query
reward without sufficient budget, so ¢; = 1 if and only if
the CBM condition holds, or, equivalently, ¢; = 0 if and
only if the CBM condition does not hold.

Regret analysis. Using standard concentration arguments,
the expected regret E[Reg(T)] is bounded by

> E[(UCBi(as) — LCBy(ar))1{g: = 1}] (1)
T
+ 3 E[(UCBi(a;) — LCBy(ar){q: = 0}].  (2)

t=1

For term (1), reward is always queried; therefore, the analy-
sis closely follows standard analysis for UCB, which results

with a bound of O (\ /AT 10g(AT)> . For (2), we know that

reward was not queried, i.e, ¢; = 0. Since ¢; = 0 if and
only if the CBM condition is not met, it implies that the CI
is lower than the CBM-threshold, namely

[M]=

E[(UCBt(at) - LCBt(at))l{Qt = 0}]

= @(Z c(a)> ET:IE

a t=1

t=

1
SO E

t=1

1

B(t)

VB(t)

Combining both bounds leads to the desired regret bound.
O

5.2. Linear Bandits

Next, we focus on applying the CBM principle, i.e., Al-
gorithm 2, for linear bandits. The base algorithm that we
rely on is OFUL (Abbasi-Yadkori et al., 2011), and we
set oy = O(d) (see Appendix D for the full description
of the algorithm). We call the resulting algorithm CBM-
OFUL. Importantly, and in contrast to the greedy reduction
of Section 4, we allow both the contexts and the budget to
be chosen by an adaptive adversary. Nonetheless, CBM-
OFUL still achieve the same performance as the greedy
reduction Theorem 1, while not suffering of performance
degradation in the presence of adaptive adversary (for a
complete proof see Appendix D):

Theorem 3 (Confidence Budget Matching for Lin-
ear Bandits). For any adaptive adversarially chosen
sequence of non-decreasing budget and context sets
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{B(t),us}+>1 the regret of CBM-OFUL is upper bounded
wo(a(VT+ 5L )

ability greater than 1 — 6.

for any T' > 1 with prob-

Notice that this matches the lower bound of Proposition 4.
Notably, the examples of Proposition 6 can be represented
as a linear bandit problem with d = 4. Thus, in contrast to
the greedy reduction, which suffers linear regret, the regret

of CBM-OFUL is & (\/T) .

5.3. Reinforcement Learning

In this section we apply the CBM principle to RL. For this
setting, we relax the budget model presented in Section 2
and allow agents to query specific state action pairs along the
trajectory observed at the t'" episode {(s¢ 1, ath)}he[H].

Namely, at the tth episode, the agent acts with 7, observes
a trajectory { (s, atvh)}he[H] and is allowed to query for
reward feedback from any state-action pair along the trajec-
tory. If the agent queries reward feedback in the ¢ episode
at the h'" time step it receives Ry 1(st,n, at,n). We denote
this event as choosing ¢; ;, = 1. For simplicity, we work
with unit-budget costs, i.e., the total budget used by the
agent is BI(t) = Y _, Zh 1 H{qk,» = 1} and must be
smaller than B(t). Observe that in the standard RL setting,
the reward budget is B(t) = Ht forall ¢ > 1.

Notably, querying reward feedback from specific time steps
allows us to derive regret bounds that depend on the sparsity
of the reward function. Formally, let £ be the set of tuples
(s,a, h) with r,(s,a) # 0. Then, for any (s,a,h) ¢ Lg,
rp(s,a) = 0, and since R, € [0, 1], it also implies that
R, = 0. Assume that the algorithm knows the cardinality
of this set |Lg| (or an upper bound on |Lg|). Leveraging
this knowledge, we set the CBM feedback query rule in
Algorithm 2, line 6, as follows,

Ask for reward feedback on (s p,, ar ) if
z \EG T B @a =D,

where CIf’h(styh, ag,p,) is the CI of the reward estimation
of 8¢ 4, ayp, in the h" time step at the #* episode. Setting
the reward bonus of the ‘optimistic’ model as in UCBVI-
CH (Azar et al., 2017) leads to the following bound (see Ap-
pendix E for more details on the algorithm and proofs).

Theorem 4 (CBM-UCBVI). For any adaptive adversari-
ally chosen sequence of non-decreasing budget and initial
state, { B(t), 5,1}, the regret of CBM-UCBVI is upper
bounded by

Cfth St haath

Lr|H? SAH?
VSAHAT + H3S2A |£r
< S +H3S +Z B0 T B

for any T > 1 with probability greater than 1 — §.

Notice that the last term of the regret is dominated by
its first term when B(t) = Q(+/T) and the remaining
budget-dependent term only scales with the sparsity-level
of the reward |Lg|. Notably, this implies that when
B(t)~t[|Lr|/SAH], the third term is of the same order
as the first term. Differently put, if the query budget B(t)
increases by a single unit every SAH/|Lg| episodes, the
worst case performance of CBM-UCBVI remains the same,
while reducing the amount of reward feedback.

While CBM-UCBVI clearly demonstrates the analysis tech-
niques and insights from applying the CBM principle to
RL, it is of interest to combine it with an algorithm with
order-optimal regret bounds of V' SAH3T (e.g., (Jin et al.,
2018)) when B(t) = Ht, that is, in the standard RL setting
(notice that T is the number of episodes and not the total
number of time steps). We achieve this goal by performing a
more refined analysis that uses tighter concentration results
based on (Azar et al., 2017; Dann et al., 2019; Zanette &
Brunskill, 2019). Indeed, doing so leads to tighter regret
bounds by a v/H factor in the leading term (Full details on
the algorithm and proofs can be found at Appendix F).

Theorem 5 (CBM-ULCVI). For any adaptive adversari-
ally chosen sequence of non-decreasing budget and initial
state, { B(t), 5¢,1},~1, the regret of CBM-ULCBVI is upper
bounded by

T s \£R|H2 SAH?
<\/SAH +HSA+Z B0

for any T' > 1 with probability greater than 1 — 4.

This bound results in an interesting conclusion for general
RL problems, i.e., when |Lr| = SAH. Plugging this into
Theorem 5, we observe that a budget of B(t) = ¢ — instead
a budget of B(t) = Ht as used in standard RL — results in
order optimal regret bound. That is, it suffices for CBM-
ULCVI to query reward feedback once per episode, without
causing for performance degradation in a minimax sense.

5.4. General View on CBM for Optimistic Algorithms

The CBM principle queries for reward feedback (Algo-
rithm 2, line 6) if the CI of the applied context-action is
larger than a threshold, C'I; (us, 71¢) > ay+/1/B(t), or more
generally, if CI;(u, ) > ap f(B(t)) forsome f : R — R.
A natural question arises: how to choose «; and f?

A useful rule of thumb to guide the choice of a; and
f is the following: if the regret of the optimistic algo-
rithm A is bounded by O(aT*) then set a; = O(c) and
f(z) = O(2P~1). This matches the parameters chosen for
both MAB and linear bandits. In RL, we relied on this rule
but used a more complex function f, due to the application
of an empirical Bernstein concentration argument (Maurer

& Pontil, 2009).
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The logic behind this choice is simple; it guarantees that the
budget constraint is never violated, BY(T") < B(T') for all
T > 1. Differently put, for any episode, reward feedback is
not queried if and only if CIi(u;,m) < oy f(B(t)). This
property can be proved via similar technique as in the proof
sketch of Theorem 2 for CBM-MAB. An informal proof for
the correctness of this statement for the general case goes
as follows (for unit feedback-costs),

T
BYT) <> g = 1}CTy(u, x)/(aB()° )
(@) - d
< (B(D)'"")/a) Y g = 3CL(us, z)

(®) )
< (B(T)'=7)/a)aB (T,

where(a) holds since the budget is non-decreasing, and
(b) since 1, 1{q: = 1}CI;(us, ;) ~ Reg(BY(T)) for
optimistic algorithms. Rearranging yields that BY(T)!—# <
B(T)'~# which implies that BY(T) < B(T) by the mono-
tonicity of z' ~#. Although the analysis for CBM in linear
bandits and RL is more subtle, the intuition supplied by
this informal reasoning is of importance; we believe it can
serve as a starting point for future analysis of CBM-based
algorithms in sequential budgeted learning.

6. Related Work

Multi-Armed Bandits with Paid Observations (Seldin
et al., 2014). Closely related to our work is the frame-
work of MAB with paid observations. There, an agent plays
with an arm a; and is allowed to query reward feedback on
any subset of arms. Unlike in our case, there is no strict
budget for observations, but, rather, each query comes at
a cost that is subtracted from the reward. Notably, this re-
quires translating the query costs to the same units as the
reward, which is oftentimes infeasible. For example, in on-
line recommendations, there is no clear way to quantify user
dissatisfaction from feedback requests. In such cases, it is
much more natural to enforce a (possibly time-varying) hard
constraint on the number of feedback queries. Furthermore,
the work of Seldin et al. (2014) focus on the MAB problem,
whereas in this work, we focus on more involved contextual
problems (i.e., linear bandits and RL). It is important to note
that the analysis in (Seldin et al., 2014) holds for the adver-
sarial reward model, whereas in this work, we focused on
the stochastic reward model (with adversarial contexts and
budget). We believe it is an interesting question what type
of guarantees can be derived for the fully adversarial setting,
i.e., when the rewards, budget and contexts are adversarially
chosen. Finally, when applied to the stochastic case, the
algorithm of Seldin et al. (2014) requires B(T) = Q(T?/3).
In contrast, our results hold for lower budgets, while achiev-

ing similar bounds when B(T') = Q(T?/3).

MABs with Additional Observations (Yun et al., 2018).
In this closely related MAB setting, observing the reward
of arms that were not played is possible, at a certain cost, as
long as a non-decreasing budget constraint is not violated.
Nonetheless, a key difference from our work is that Yun et al.
(2018) assume that the reward of the played arm is always
observed and does not consume any budget. Therefore,
there is no clear way to apply their results to our setting.

Bandits with Knapsacks (BwK) (Badanidiyuru et al.,
2013). In the BwK model, a sampling budget is given prior
to the game. At each round, the agent selects an arm and
observes noisy samples of both the reward and the cost of
the selected arm. That is, the agent always receives feedback
on its actions. This comes in stark contrast to our model,
where the budget restricts the amount of feedback an agent
can obtain. Furthermore, in the BwK model, the game stops
as soon as the cumulative cost exceeds the initial budget.
In our model, where the budget serves as a constraint on
the reward feedback, interaction continues even without
an observation budget. When the budget is exhausted, the
agent can still utilize its past information on the system to
perform reasonably good actions. Notably, this forces the
agent to sufficiently explore actions, even if they are costly,
to identify high-rewarding ones.

We remark that there are additional extensions of the MAB
setting in which arms incur costs (e.g., Sinha et al., 2021).
There, the objective of an agent is to minimize a relaxed
notion of cumulative regret and the cumulative cost. Unlike
this work, we do not attribute cost to applying an action, but
attribute a cost to receiving feedback on the reward.

RL with trajectory feedback (Efroni et al., 2020). Under
this model, instead of observing a reward for each played
state-action, the agent only observes the cumulative rewards
of each episode. This serves two reasons: first, and similarly
to our work, it aims to reduce the feedback that the algorithm
requires (by a factor of H), and when rewards are manu-
ally labeled, reduce the labeling load. Second, for many
applications, it is much more natural to label the reward
for a full trajectory than to each state-action. However, this
approach comes at a noticeable cost, both in performance
and computational complexity. In contrast, by sampling
specific state-action pairs, our approach allows reducing the
amount of feedback while maintaining similar performance
and computational complexity. Nonetheless, we believe
that when trajectory feedback is more natural, our approach
can also be applied to further reduce the feedback for this
setting. We leave such an extension for future work.
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7. Summary and Discussion

In this work, we presented a novel framework for sequential
decision-making under time-varying budget constraints. We
analyzed what can and cannot be achieved by greedily using
querying whenever possible. Then, we presented the CBM
principle, which only queries rewards for actions with high
uncertainty, compared to the current budget. We demon-
strated how to apply the principle to MAB, linear bandits
and RL problems and proved that it performs well also in
the presence of adversities. We believe that this model can
be adapted to many real-world problems and leaves room
for interesting extensions, which we leave for future work.

Is there a value in knowing the future budget? Through-
out this work, we assume the agent only observes the current
budget B(t) at the beginning of each round and does not
have knowledge on future values of the budget B(t') for
t' > t. Intuitively, one expects that knowing the future bud-
get would result in an improved and less conservative behav-
ior in terms of budget allocation. Surprisingly, our matching
lower and upper bounds for MAB (Corollary 3 and Theo-
rem 2) and linear bandits (Proposition 4 and Theorem 3)
show that this intuition does not always hold. Nonetheless,
understanding if or when information on future budget is of
value remains an interesting open question.

Monotonicity of the budget. Throughout this work, we as-
sume that the budget never decreases. Intuitively, it implies
that once a budget is allocated, it does not matter when the
algorithm decides to use it. Nonetheless, for some prob-
lems, different assumptions are sometimes more relevant.
A budget might be given alongside an ‘expiration date’ or
might expire probabilistically. Another possible assumption
is that the spare (unused) budget is bounded. Finally, in
some instances, the total budget might be characterized by
a specific random process, e.g., a biased random walk.

Problem-dependent bounds. Throughout this work, we
focused on problem-independent regret bounds, that is,
bounds that do not depend on the specific problem instance.
Bounds that depend on specific instances usually focus on
sufficiently sampling suboptimal arms, while implicitly as-
suming that optimal arms are sufficiently sampled (Auer
et al., 2002). In contrast, when rewards are not always ob-
served, algorithms must also control the number of queries
from optimal arms. This becomes much harder in the pres-
ence of multiple optimal arms; in this case, an algorithm can
never know if an arm is optimal or has a small suboptimal
gap and might ‘waste’ budget while trying to discern which
is true. In some sense, we believe that the CBM principle
is well-suited for this setting, as it prevents the agent from
exhausting all budget on specific arms.

Adaptivity to structure. In Section 5.3, we proved that
when rewards are sparse, our algorithm can query rewards

according to the sparsity level, while maintaining the same
regret bounds as the unbudgeted case. However, to do so,
we required an upper bound on the sparsity of the problem.
Therefore, a natural extension is to devise an algorithm that
can adapt to an unknown sparsity level. Moreover, it is well
known that structural assumptions can lead to improved re-
gret bounds, and previous works proposed algorithms whose
regret depends on nontrivial structural properties of the prob-
lem (Maillard et al., 2014; Zanette & Brunskill, 2019; Foster
et al., 2019; 2020; Merlis & Mannor, 2019; 2020). Thus, it
is interesting to understand what structural properties (be-
yond sparsity) affect the budgeted performance and how to
design algorithms that adapt to such properties.
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