
Self-Paced Context Evaluation for Contextual Reinforcement Learning

Theresa Eimer 1 André Biedenkapp 2 Frank Hutter 2 3 Marius Lindauer 1

A. Instance Sampling
AntGoal We uniformly sampled 100 different goals at a
distance of at most 750 in both x- and y-direction for both
training and test set respectively.

BallCatching The distance and goal coordinates were
sampled uniformly for both training and test set. The dis-
tance ranged between 0.125 ·π and 0.5 ·π, the x-coordinate
between 0.6 and 1.1 and the y-coordinate between 0.75 and
4.0. Each instance set contains 100 instances.

PointMass For PointMass, we sampled two different in-
stance sets. First, we used the context bounds of [-4, 4]
for the goal position, [0.5, 8] for the goal width and [0, 4]
for friction to uniformly sample instances. The goal was
to cover the instance space as well as possible. Our sec-
ond instance set was sampled using the target distribution
of SPDRL, which are normal distributions for each context
component with means 2.5, 0.5 and 0 respectively as well
as standard deviations of 0.004, 0.00375, and 0.002.

B. Experiment Hardware &
Hyperparameters

Hardware All experiments with SPACE and the base-
line round robin agent were conducted on a slurm CPU
cluster (see Table 1). The upper memory limit for these ex-
periments was 1GB per run. The SPDRL experiments were
replicated on a slurm GPU cluster consisting of 6 nodes
with eight RTX 2080 Ti each. Here maximum memory was
10GB. Slurm scripts for the experiments on PointMass and
Ant are provided in the supplementary material. Gridworld
experiments are every small and can therefore be found in
a jupyter notebook.

Machine no. CPU model cores RAM
1 Xeon E5-2670 16 188 GB
2 Xeon E5-2680 v3 24 251

3-6 Xeon E5-2690 v2 20 125 GB
7-10 Xeon Gold 5120 28 187

Table 1: CPU cluster used for training

CartPole We used a DQN implementation in the top-10
on the environment leaderboard to ensure fair performance
for round robin and SPACE agents (Chauhan, 2019). We

did not change any hyperparameters from that implemen-
tation and used κ = 1 and η = 2.5% for all experiments.

Other benchmarks For both experiments we used stable
baselines version 2.9.0 (Hill et al., 2018) with TRPO for
PointMass and PPO2 for all other benchmarks. The poli-
cies are encoded by an MLP in both cases, with two layers
of 64 units for PPO. For PointMass, we used the default
from the SDPRL paper with 21 layers of 64 units each. The
discount factor was 0.95. The PPO2 specfic hyperparame-
ters included no gradient clipping, a GAE hyperparameter
λ value of 0.99 and an entropy coefficient of 0. For TRPO
we used again used the same hyperparameters as SPDRL
with a GAE hyperparameter λ of 0.99, a maximum KL-
Divergence of 0.004 and value function step size of around
0.24. Any hyperparameters not mentioned were left at the
stable baselines’ default values. The random seeds were
used to seed the environments with the corresponding seed-
ing method.

C. Additional Comparison to SPDRL

Figure 1: Mean reward per episode on a test set of hard
instances with small goals and low friction.

In contrast to SPACE, SPDRL is designed to solve hard in-
stances. To this end, it samples harder and harder instances
over time. Therefore, we additionally study how SPACE,
round robin (RR) and SPDRL compare on hard instances
sampled from the SPDRL target distribution, see Figure 1.
Instances in this distribution typically have small goal sizes
and low friction, both of which contribute significantly to
an increased difficulty.

As in the original paper, SPDRL was allowed to sample as
many instances as needed from the distribution, whereas
SPACE and RR still only got access to a finite set of 100
instances. In this setting, agents trained either via SPACE



SPaCE

or RR exhibit a similar learning behaviour as on the space
covering instance set. For the first ∼ 200 000 steps both
agents outperform the agent trained via SPDRL; RR any-
way focuses on the whole target distribution from the be-
ginnig and SPACE is more free in the way it can select
instances with fast training progress. During this time, SP-
DRL trains the agents on some easy instances, while gradu-
ally adapting the instance distribution to focus on ever more
difficult tasks. Note that the level of difficulty is not de-
termined solely by the agent being trained via SPDRL, as
done in SPACE, but is determined by an expert beforehand.

Once the agent trained via SPDRL is capable of homing in
on the difficult instances it outperforms the other agents,
as it can exploit its domain knowledge to sample ever
more similarly difficult instances, while SPACE and RR
are stuck with the limited number of example instances and
still try to cover the entire instance space. To achieve this
feat, SPDRL requires substantial expert knowledge about
which instances to focus on. In essence, the agent trained
via SPDRL in the end is only capable of solving a few hard
instances with very little variation and will fail to perform
well on instances that are not narrowly aligned with the as-
sumed instance distribution.

To be able to know which instances SPDRL should focus
on, additional time and effort have to be spent to identify
how to quantify difficulty for SPDRL. This effort is not re-
flected in Figure 1 and would move the curve of SPDRL
even further to the right.

D. Does the Training Set Size Matter?
To answer this question, we used SPACE to train agents
with varying instance set sizes. Figure 2 shows the test per-
formance for differently sized instance sets. Intuitively, one
might think that performance should improve with more
instances as they cover the instance space better. Indeed,
the results for training sets with only 25 and 50 instances
are visibly worse than for larger sets. On the remaining in-
stance sets, the agent show very similar performance, how-
ever. Note that the performance seems to increase from an
instance set size of 100 to 200, but slightly drops again af-
terwards. There are multiple factors potentially contribut-
ing to this effect.

The first is that the agent cannot incorporate any more in-
formation from the additional instances, maybe due to lim-
ited network capacity or due to the fact that smaller instance
sets already cover the space adequately. Furthermore, as we
only extend the instance set by one instance at a time, there
are more learning steps between curriculum iterations the
larger the instance set is, thereby slowing the process down.
Especially an agent trained on 1 600 instances will suffer
from this.

Figure 2: Mean reward per episode on test set for different
sized instance sets.

Lastly, SPACE improves upon the RR baseline by order-
ing training instances and thus smoothing the progression
through the instance space. Larger instance sets offer an
inherently smoother representation of the instance distribu-
tion, therefore diminishing the effect of SPACE. In real-
world application settings, we will rarely have access to
such large numbers of instances and therefore, it is unlikely
that such diminishing performance effects can be observed.
This shows that the strength of our method comes to full
effect when learning on a sparse representation of our in-
stance space.

E. Comparison of SPACE Curricula
To give some insight into which curricula SPACE found
on our benchmark environments, we compare how they
behave across random seeds and how they compare to
cSPACE curricula. We use Kendall’s tau to determine how
similar the order in which the instances are added to the
training set is.

On PointMass, SPACE finds a curriculum that stay very
consistent across all random seeds, showing a correlation
of at least 98.9% each to the mean curriculum. The same
is true for the cSPACE variation, where the correlation is
above 93.8% per seed. Interestingly, these curricula are un-
correlated with a correlation of −0.04. In both we cannot
make out a human readable progression in a single con-
text feature (see Figure 3), their curricula do not corre-
spond to any manual instance ordering. As both perform
well nonetheless, we can see that learning can be improved
by multiple different curricula on this environment.

SPACE and cSPACE produce almost equally unrelated
curricula on AntGoal (correlation of 0.07), but while the
curriculum stays as consistent across seeds for cSPACE,
the same cannot be said for SPACE. Here the correlation to
the average curriculum ranges from 14.1% to 52.4%. The
correlations between the seed curricula fall into the same
range, confirming that the SPACE agent trains on a very
different curriculum for each seed. CartPole shows a simi-
lar behaviour, the curriculum varying quite a bit between



SPaCE

Figure 3: Context feature progression during training for
SPACE curriculum (top) and cSPACE curriculum (bot-
tom).

seeds. Therefore we can conclude that SPACE does not
find a singular curriculum, but depends on the initialization
of environment and model. This is in contrast to cSPACE
which stays relatively static due to the context features be-
ing constant.

These comparisons suggest that we neither SPACE nor
cSPACE finds an optimal curriculum for PointMass,
AntGoal or CartPole. It seems, however, that we do not
need an optimal curriculum for training at all, as even the
10 very different curricula SPACE finds on AntGoal per-
form vastly superior to the round robin default. Curriculum
Learning should thus focus on reliably and quickly find-
ing good curricula in addition to finding qualitatively better
ones.

F. The Influence of Catastrophic Forgetting
When training across multiple instances, forgetting al-
ready learnt policies on a subset of instances is a concern
(Beaulieu et al., 2020). We analyze how often SPACE and
RR agents forget policy components in our PointMass ex-
periments by observing performance development during
training. We selected PointMass for this analysis as here
policies that are diverse both in how they react to different
goal settings and different friction levels are required. That
means the policy has to completely change between the ex-

tremes of the context which is not required of our other
benchmarks where underlying mechanics, e.g. walking for
the Ant, stay very similar.

During the training on PointMass, we observed 8 out of
100 instances for which the performance decays after an
initial improvement. We would expect the performance to
stay at least constant if no forgetting takes place, so the
agent likely forgets parts of the policy for these instances in
favor of improving on others. The effect is about the same
size for round robin agents where we can observe the same
for 6 out of 100 instances.

Another reason for attributing this performance decay to
forgetting is that on a purely goal-based PointMass varia-
tion, the number of instances on which we can observe this
effect is slightly smaller (only 4 instances), though not sig-
nificantly so. All performance decay happens after learn-
ing has stagnated on all instances, however. In this easier,
purely goal-based setting we could therefore stop training
early and would avoid performance decay entirely. This
points towards the added complexity of the setting being
harder to capture for our agents.

While the effects on both SPACE and RR agents are not
very large in our experiments, catastrophic forgetting is
therefore certainly important in the field of contextual RL.
Future work could on integrate SPACE with existing ef-
forts to reduce this effect like ANML (Beaulieu et al.,
2020). A specific aspect of this research that would need
to be extended is preventing forgetting in continuous con-
text spaces in addition to the existing successes in discrete
ones.

References
Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley,

K. O., Clune, J., and Cheney, N. Learning to continu-
ally learn. In ECAI 2020 - 24th European Conference on
Artificial Intelligence, 2020.

Chauhan, K. Cartpole dqn.
https://github.com/kapilnchauhan77/CartPoleDQN, 2019.

Hill, A., Raffin, A., Ernestus, M., Gleave, A., Kan-
ervisto, A., Traore, R., Dhariwal, P., Hesse, C.,
Klimov, O., Nichol, A., Plappert, M., Radford, A.,
Schulman, J., Sidor, S., and Wu, Y. Stable baselines.
https://github.com/hill-a/stable-baselines,
2018.


