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Abstract
It is widely believed that engineering a model to
be invariant/equivariant improves generalisation.
Despite the growing popularity of this approach,
a precise characterisation of the generalisation
benefit is lacking. By considering the simplest
case of linear models, this paper provides the first
provably non-zero improvement in generalisation
for invariant/equivariant models when the target
distribution is invariant/equivariant with respect
to a compact group. Moreover, our work reveals
an interesting relationship between generalisation,
the number of training examples and properties
of the group action. Our results rest on an
observation of the structure of function spaces
under averaging operators which, along with its
consequences for feature averaging, may be of
independent interest.

1. Introduction
There is significant and growing interest in models,
especially neural networks, that are invariant or equivariant
to the action of a group on their inputs. It is widely
believed that these models enjoy improved generalisation
when the group is correctly specified. The intuition being
that if the salient aspects of a task are unchanged by
some transformation, then more flexible models would
need to learn (as opposed to being hard-coded) to ignore
these transformations, requiring more samples to generalise.
Work in this area has progressed quickly (Cohen & Welling,
2016; Cohen et al., 2018; 2019) and has found application in
domains where the symmetry is known a priori, for instance
in particle physics (Pfau et al., 2020).

In contrast with practical successes, our theoretical
understanding of invariant/equivariant models is limited.
Many previous works that have attempted to address
the generalisation of invariant/equivariant models, such
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as Sokolic et al. (2017); Sannai & Imaizumi (2019), cover
only the worst case performance of algorithms. These works
use complexity measures to find tighter upper bounds on
the test risk for invariant/equivariant models, but a strict
benefit is not demonstrated. The VC dimension governs
distribution independent generalisation, so these complexity
measures can show no more than a separation between the
VC dimensions of a model and its invariant/equivariant
version. This would imply the existence of a distribution on
which the model with smaller VC dimension will generalise
better, but would not rule out that on many common
distributions training an invariant/equivariant model using
standard procedures provides no benefit. For instance,
there could be many invariant/equivariant distributions on
which SGD automatically favours parameters that result in
(possibly approximately) invariant/equivariant predictors,
regardless of architecture.

The results of this paper move to address this issue,
by quantifying exactly the generalisation benefit of
invariant/equivariant linear models. We do this in the case of
the minimum L2-norm least-squares solution, which reflects
the implicit bias of gradient descent in overparameterised
linear models. While the linear model provides a tractable
first-step towards understanding more complex models such
as neural networks, the underlying ideas of this paper are
equally applicable to non-linear predictors. We emphasise
this by providing new perspectives on feature averaging
and suggestions for how to apply the ideas of this paper to
find new methods for training invariant/equivariant neural
networks.

1.1. Our Contributions
The main result of this paper is Theorem 13, which
quantifies the generalisation benefit of equivariance in a
linear model. We define the generalisation gap ∆(f, f ′)
between predictors f and f ′ to be the difference in their
test errors on a given task. A positive generalisation
gap ∆(f, f ′) > 0 means that f ′ has strictly smaller test
error than f . Theorem 13 concerns ∆(f, f ′) in the case
that f : Rd → Rk is the minimum-norm least-squares
predictor and f ′ is its equivariant version. Let a compact
group G act via orthogonal representations φ and ψ on
inputs X ∼ N (0, Id) and outputs Y = h(X) + ξ ∈ Rk
respectively, where h : Rd → Rk is an equivariant linear
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map. Let (χψ|χφ) =
∫
G Tr(ψ(g)) Tr(φ(g)) dλ(g) denote

the scalar product of the characters of the representations.
The generalisation benefit of enforcing equivariance in a
linear model is given by

E[∆(f, f ′)] = Var [ξ] r(n, d)(dk − (χψ|χφ)) + EG(n, d)

where

r(n, d) =


n

d(d−n−1) n < d− 1

(n− d− 1)−1 n > d+ 1

∞ otherwise

and EG(n, d) ≥ 0 is the generalisation gap of the
corresponding noiseless problem, that vanishes when n ≥ d.
The divergence at the interpolation threshold n ∈ [d−1, d+
1] is consistent with the double descent literature (Hastie
et al., 2019).

The quantity dk − (χψ|χφ) represents the significance of
the group symmetry to the task. The dimension of the
space of linear maps Rd → Rk is dk, while (χψ|χφ) is
the dimension of the space of equivariant linear maps. We
will see later that the quantity dk − (χψ|χφ) represents the
dimension of the space of linear maps that vanish when
averaged over G; it is through the dimension of this space
that the symmetry in the task controls the generalisation
gap. Although invariance is a special case of equivariance,
we find it instructive to discuss it separately. In Theorem 7
we provide a result that is analogous to Theorem 13 for
invariant predictors, along with a separate proof.

In order to arrive at Theorems 7 and 13 we make use of
general results about the structure of function spaces under
averaging operators. In Section 4 we show how averaging
operators can be used to decompose function spaces into
orthogonal subspaces of symmetric (invariant/equivariant)
and anti-symmetric (vanish when averaged) functions.
In Section 5 we use these insights to provide new
perspectives on feature averaging. Our main results are
in Section 6. Finally, in Section 7 we apply our insights to
derive principled methods for training invariant/equivariant
neural networks and provide open questions for future work.

2. Related Work
Implementations While there has been a recent surge
in interest, symmetry is not a new concept in machine
learning. Recent literature is dominated by neural networks,
but other methods do exist: e.g. kernels (Haasdonk et al.,
2005), support vector machines (Schölkopf et al., 1996) or
feature spaces such as polynomials (Schulz-Mirbach, 1994;
1992). The engineering of invariant neural networks dates
back at least to Wood & Shawe-Taylor (1996), in which
ideas from representation theory are applied to find weight
tying schemes that result in group invariant architectures;

similar themes are present in Ravanbakhsh et al. (2017).
Recent work follows in this vein, borrowing ideas from
fundamental physics to construct invariant/equivariant
convolutional architectures (Cohen & Welling, 2016; Cohen
et al., 2018). Correspondingly, a sophisticated theory of
invariant/equivariant networks has arisen (Kondor & Trivedi,
2018; Cohen et al., 2019) including universal approximation
results (Maron et al., 2019; Yarotsky, 2018).

Learning and Generalisation The intuition that
invariant or equivariant models are more sample efficient or
generalisable is widespread in the literature, but arguments
are often heuristic and, to the best of our knowledge, a
provably strict (non-zero) generalisation benefit has not
appeared before this paper. It was noted (Abu-Mostafa,
1993) that constraining a model to be invariant cannot
increase its VC dimension. An intuitive argument for
reduced sample complexity is made in Mroueh et al. (2015)
in the case that the input space has finite cardinality. The
sample complexity of linear classifiers with invariant
representations trained on a simplified image task is
discussed briefly in Anselmi et al. (2014), the authors
conjecture that a general result may be obtained using
wavelet transforms. The framework of robustness (Xu &
Mannor, 2012) is used in Sokolic et al. (2017) to obtain
a generalisation bound for interpolating large-margin
classifiers that are invariant to a finite set of transformations;
note that the results contain an implicit margin constraint
on the training data. The generalisation of models invariant
or equivariant to finite permutation groups is considered
in Sannai & Imaizumi (2019). Both of Lyle et al. (2019;
2020) cover the PAC Bayes approach to generalisation
of invariant models, the latter also considers the relative
benefits of feature averaging and data augmentation.

3. Preliminaries
We assume familiarity with the basic notions of group theory,
as well as the definition of a group action and a linear
representation. The reader may consult Wadsley (2012);
Serre (1977, Chapters 1-4) for background. We define
some key concepts and notation here and introduce more as
necessary throughout the paper.

Notation and Technicalities We write X and Y for input
and output spaces respectively. We assume for simplicity
that Y = (Rk,+) is a k-dimensional real vector space
(with k finite) but we expect our results to apply in other
settings too. Throughout the paper, G will represent an
arbitrary compact group that has a measurable action φ
on X and a representation ψ on Y . By this we mean
that φ : G × X → X is a measurable map and the
same for ψ. We sometimes write gx as a shorthand for
φ(g)x and similarly for actions on Y . Some notation for
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specific groups: Cm and Sm are, respectively, the cyclic and
symmetric groups on m elements; while O(m) and SO(m)
are the m-dimensional orthogonal and special orthogonal
groups respectively. For any matrix A we write A+ for the
Moore-Penrose pseudo-inverse and ‖A‖F =

√
Tr(A>A)

for the Frobenius/Hilbert-Schmidt norm. We write Gn(Rd)
for the Grassmannian manifold of subspaces of dimension n
in Rd. The results of this paper require some mild care with
technical considerations such as topology/measurability. We
do not stress these in the main paper but they do appear in
the proofs, all of which are deferred to the supplementary
material.

Invariance, Equivariance and Symmetry A function
f : X → Y is G-invariant if f(φ(g)x) = f(x) ∀x ∈ X
∀g ∈ G and is G-equivariant if f(φ(g)x) = ψ(g)f(x)
∀x ∈ X ∀g ∈ G. A measure µ on X is G-invariant if
∀g ∈ G and any µ-measurable B ⊂ X the pushforward of
µ by the action φ equals µ, i.e. (φ(g)∗µ)(B) = µ(B). This
means that if X ∼ µ then φ(g)X ∼ µ ∀g ∈ G. We will
sometimes use the catch-all term symmetric to describe an
object that is invariant or equivariant.

4. Symmetric and Anti-Symmetric Functions
Averaging the inputs of a function over the orbit of a
group is a well known method to enforce invariance, for
instance see Schulz-Mirbach (1994). Approaching this
from another perspective, averaging can also be used to
identify invariance. That is, a function is G-invariant if and
only if it is preserved by orbit averaging with respect to
G. The same can be said for equivariant functions, using a
modified average. After introducing the relevant concepts,
we will use this observation and other properties of the
averaging operators to decompose function spaces into
mutually orthogonal symmetric (invariant/equivariant) and
anti-symmetric (vanish when averaged) subspaces. This
observation provides the foundation for many results later
in the paper.

4.1. Setup
Haar Measure Let G be a compact group. The Haar
measure is the unique invariant measure on G and we denote
it by λ. By invariance we mean that for any measurable
subset A ⊂ G and for any g ∈ G, λ(gA) = λ(Ag) = λ(A).
We assume normalisation such that λ(G) = 1, which is
always possible when G is compact. The (normalised) Haar
measure can be interpreted as the uniform distribution on G.
See Kallenberg (2006) for more details.

Orbit Averaging For any feature map f : X → Y , we
can construct a G-invariant feature map by averaging with

respect to λ. We represent this by the operator O, where

(Of)(x) =

∫
G
f(gx) dλ(g).

Similarly, if ψ is a representation of G on Y , we can
transform f into an equivariant feature map by applying
Q, where

(Qf)(x) =

∫
G
ψ(g−1)f(gx) dλ(g).

Notice that O is a special case of Q corresponding to ψ
being the trivial representation. The operator O can be
thought of as performing feature averaging with respect
to G. This interpretation is widely adopted, for instance
appearing in Lyle et al. (2020).

Function Spaces We now show how to construct the
relevant spaces of functions. We present this in an abstract
way, but these functions can be interpreted as predictors,
feature maps, feature extractors and so on. Let µ be a
G-invariant measure on X and let 〈a, b〉 for a, b ∈ Y
be an inner product on Y = Rk that is preserved by
ψ.1 By preserved we mean that 〈ψ(g)a, ψ(g)b〉 = 〈a, b〉,
∀g ∈ G, ∀a, b ∈ Y and any inner product can be
transformed to satisfy this property using the Weyl trick
〈a, b〉 7→

∫
G〈ψ(g)a, ψ(g)b〉dλ(g). Given two functions

f, h : X → Y , we define their inner product by

〈f, h〉µ =

∫
X
〈f(x), h(x)〉dµ(x).

This inner product can be thought of as comparing the
similarity between functions and can used to define a
notion of distance with the norm ‖f‖µ =

√
〈f, f〉

µ
. We

then define V as the space of all (measurable) functions
f : X → Y such that ‖f‖µ < ∞.2 Formally, V is a
Bochner space.

4.2. Averaging and the Structure of Function Spaces
We have seen how to define orbit averaging operators to
produce invariant and equivariant functions as well as how
to construct spaces of functions on which these operators can
act. The reason for all of this is the following result, which
shows that the averaging operators allow us to decompose
any function in V into orthogonal G-symmetric and G-anti-
symmetric parts. Recall that since O is just a special case
of Q, Lemma 1 applies to both operators.

1 It is permissible for inner product itself to depend on the point
x at which the feature maps are evaluated. The only requirement
is that evaluating the inner product between two fixed vectors is
a G-invariant function 〈a, b〉(x) = 〈a, b〉(gx), ∀a, b ∈ Rk, g ∈ G
and x ∈ X . We believe that this allows our results to extend to the
case of the features defined as maps from a manifold to its tangent
bundle.

2Equality is defined µ-almost-everywhere.
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Lemma 1. Let U be any subspace of V that is closed under
Q. Define the subspaces S and A of, respectively, the G-
symmetric and G-anti-symmetric functions in U : S = {f ∈
U : f is G-equivariant} and A = {f ∈ U : Qf = 0}.
Then U admits admits an orthogonal decomposition into
symmetric and anti-symmetric parts

U = S ⊕A.

The proof consists of establishing the following properties:
(A) for any f ∈ V , Qf ∈ V ; (B) any f ∈ V is
G-equivariant if and only if Qf = f ; (C) Q has only
two eigenvalues, 1 and 0; and, (D) Q is self-adjoint with
respect to 〈·, ·〉µ. The last of these is critical and depends on
the G-invariance of µ. There are many tasks for which G-
invariance of the input distribution is a natural assumption,
for instance in medical imaging (Winkels & Cohen, 2018).

Lemma 1 says that any function u ∈ U can be written
u = s + a, where s is G-equivariant, Qa = 0 and
〈s, a〉µ = 0. We refer to s and a as the symmetric and
anti-symmetric parts of u. In general this does not imply
that a is odd, that it outputs an anti-symmetric matrix or that
it is negated by swapping two inputs. These are, however,
special cases. If G = C2 acts by x 7→ −x then odd functions
f : R→ R will be anti-symmetric in the sense of this paper.
If G = C2 acts on matrices by M 7→ M> then f : M 7→
1
2 (M −M>) is also anti-symmetric. Finally, if G = Sn
and f : Rn → R with f(x1, . . . , xj , xj+1, . . . , xn) =
−f(x1, . . . , xj+1, xj , . . . , xn), then f is anti-symmetric in
the sense of this paper.

Although it is straightforward to demonstrate and has surely
been observed before, we will see in the rest of the paper
that the perspective provided by Lemma 1 is highly fruitful.
Before that, we conclude this section with an example for
intuition.

Example 2. Let V consist of all functions f : R2 → R
such that E[f(X)2] < ∞ where X ∼ N (0, I2). Let
G = SO(2) act by rotation about the origin, with respect to
which the normal distribution is invariant. Using Lemma 1
we may write V = S ⊕ A. Alternatively, consider polar
coordinates (r, θ), then for any feature map f(r, θ) we
have Of(r, θ) = 1

2π

∫ 2π

0
f(r, θ) dθ. So any G-invariant

feature map (i.e. anything in S) depends only on the radial
coordinate. Similarly, any h for which Oh = 0 must have
Oh(r, θ) = 1

2π

∫ 2π

0
h(r, θ) dθ = 0 for any r, andA consists

entirely of such functions. For example, r3 cos θ ∈ A. We
then recover 〈s, h〉µ = 1

2π

∫
X s(r)h(r, θ)e−r

2/2r dr dθ =
0 for any s ∈ S by integrating h over θ. Intuitively, one can
think of the functions in S as varying perpendicular to the
flow of G on X = R2 and so are preserved by it, while the
functions in A average to 0 along this flow, see Fig. 1.

f ∈ V

g ∈ G

Of ∈ S f −Of ∈ A
Figure 1. Example of a function decomposition. The figure
shows f(r, θ) = r cos (r − 2θ) cos (r + 2θ) decomposed into
its symmetric and anti-symmetric parts in V = S ⊕A under the
natural action of G = SO(2) on R2. See Example 2. Best viewed
in colour.

5. Feature Averaging
We remarked earlier that O can be thought of as performing
feature averaging. Before our study of the generalisation
of symmetric models, we use this interpretation to derive
our first consequence of Lemma 1. We show that feature
averaging can be viewed as solving a least squares problem
in the space of features extractors V . That is, feature
averaging sends f to f̄ , where f̄ is the closest G-invariant
feature extractor to f .

Proposition 3 (Feature Averaging as a Least-Squares
Problem). Let V be the space of all normalisable feature
extractors as defined above. Define S and A as in Lemma 1.
For any f ∈ V , feature averaging with O maps f 7→ f̄
where f̄ is the (µ-a.e.) unique solution to the least-squares
problem

f̄ = argmin
s∈S

‖f − s‖2µ.

Example 4. Consider again the setting of Example 2.
For simplicity, let f(r, θ) = frad(r)fang(θ) be separable
in polar coordinates. Notice that Of = cffrad where
cf = 1

2π

∫ 2π

0
fang(θ) dθ. Then for any s ∈ S can calculate:

‖f − s‖2µ =
1

2π

∫
X

(f(r, θ)− s(r))2e−r
2/2r dr dθ

=
1

2π

∫
X

(f(r, θ)− cffrad(r))2e−r
2/2r dr dθ

+
1

2π

∫
X

(cffrad(r)− s)2e−r
2/2r dr dθ

which is minimised by s = cffrad, as predicted.

5.1. Feature Averaging and Generalisation
We end our discussion of feature averaging with an analysis
of its impact on generalisation. To do this we consider
the reduction in the Rademacher complexity of a feature
averaged class.

Rademacher Complexity Let T = {t1, . . . , tn} be a
collection of points of some space T . The empirical
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Rademacher complexity of a set F of functions f : T → R
evaluated on T is defined by

R̂T (F) = Eσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(ti)

∣∣∣∣∣
]

where σi ∼ Unif{−1, 1} for i = 1, . . . , n are Rademacher
random variables over which the expectation Eσ is taken.
Let ν be a distribution on T and take T ∼ νn, in which
case the empirical Rademacher complexity R̂T (F) is a
random quantity. The Rademacher complexity Rn(F)
is defined by taking an expectation over T : Rn(F) =

E[R̂T (F)]. The Rademacher complexity appears in the
study of generalisation in statistical learning, for instance
see Wainwright (2019, Theorem 4.10 and Proposition 4.12).

Proposition 5. Let G be a compact group acting measurably
on a set T . Let F be a class of functions f : T →
R and define the symmetric and anti-symmetric classes
F = {Of : f ∈ F} and F⊥ = {f − Of : f ∈ F}.
Let ν be a distribution over T that is G-invariant. Then
the Rademacher complexity of the feature averaged class
satisfies

0 ≤ Rn(F)−Rn(F) ≤ Rn(F⊥)

where the expectations in the definition of Rn are taken over
ti ∼ ν i.i.d..

Proposition 5 says that the Rademacher complexity is
reduced by feature averaging, but not by more than the
complexity of the anti-symmetric component of the class.
This can be thought of as quantifying the benefit of enforcing
invariance by averaging in terms of the extent to which
the inductive bias is already present in the function class.
Although the form of this result is suggestive, it does not
imply a strict benefit. We provide stronger results in the
following section.

6. Generalisation Benefit from Symmetric
Models

In this section we apply Lemma 1 to derive a strict (i.e. non-
zero) generalisation gap between models that have and have
not been specified to have the invariance/equivariance that
is present in the task. We start with the following general
result, which equates the generalisation gap between any
predictor and its closest equivariant function to the norm of
the anti-symmetric component of the predictor.

Lemma 6. Let X ∼ µ where µ is a G-invariant distribution
on X . Let Y = f∗(X) + ξ ∈ Rk, where ξ is a random
element of Rk that is independent of X with zero mean and
finite variance and f∗ : X → Rk is G-equivariant. Then,

for any f ∈ V , the generalisation gap satisfies

∆(f,Qf) := E[‖Y − f(X)‖22]− E[‖Y −Qf(X)‖22]

= ‖f⊥‖2µ.

Lemma 6 demonstrates the existence of barrier in the
generalisation of any predictor on a problem that has a
symmetry. Notice that the barrier turns out to be the measure
of how well the predictor encodes the symmetry. Clearly, the
only way of overcoming this is to set f⊥ = 0 (µ-a.e.), which
from Lemma 1 equivalent to enforcing G-equivariance in f
(µ-a.e.). Lemma 6 therefore provides a strict generalisation
benefit for equivariant predictors.

In a sense, Qf is the archetypal equivariant predictor
to which f should be compared. A trivial extension
to Proposition 3 shows that Qf is the closest equivariant
predictor to f and, more importantly, if h is a G-equivariant
predictor with smaller test risk than Qf then ∆(f, h) =
∆(f,Qf) + ∆(Qf, h) ≥ ∆(f,Qf) which cannot weaken
our result.

Later in this section we will use Lemma 6 to explicitly
calculate the generalisation gap for invariant/equivariant
linear models. We will see that it displays a natural
relationship between the number of training examples and
the dimension of the space of anti-symmetric models A,
which is a property of the group action. Intuitively, the
model needs enough examples to learn to be orthogonal to
A.

This result also has a useful theoretical implication for
test-time data augmentation, which is commonly used
to increase test accuracy (Simonyan & Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016). Test-time
augmentation consists of averaging the output of a learned
function f over random transformations of the same
input when making predictions at test-time. When the
transformations belong to a group G and are sampled from
its Haar measure, test-time averaging can be viewed as a
Monte Carlo estimate of Of . Lemma 6 then shows that
test-time averaging is beneficial for generalisation when the
target function is itself G-invariant, regardless of the learned
function f .

6.1. Regression with Invariant Target
Let X = Rd with the Euclidean inner product and Y =
R. Consider linear regression with the squared-error loss
`(y, y′) = (y − y′)2. Let G be a compact group that acts on
X via an orthogonal representation φ : G → O(d) and let
X ∼ µ where µ is now an arbitrary G-invariant probability
distribution on X with Σ := E[XX>] finite and positive
definite.3 We consider linear predictors hw : X → Y with

3If Σ is only positive semi-definite then the developments are
similar. We assume Σ > 0 for simplicity.
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hw(x) = w>x where w ∈ X . Define the space of all linear
predictors Vlin = {hw : w ∈ X} which is a subspace of V .
Notice that Vlin is closed under O: for any x ∈ X

Ohw(x) =

∫
G
hw(gx) dλ(g)

=

∫
G
w>φ(g)xdλ(g)

=

(∫
G
φ(g−1)w dλ(g)

)>
x

= hΦG(w)(x)

where in the last line we substituted g 7→ g−1 and
defined the linear map ΦG : Rd → Rd by ΦG(w) =∫
G φ(g)w dλ(g).4 We also have

〈ha, hb〉µ =

∫
X
a>xx>bdµ(x) = a>Σb

and we denote the induced inner product onX by 〈a, b〉Σ :=
a>Σb and the corresponding norm by ‖·‖Σ. Since Vlin is
closed underO we can apply Lemma 1 to decompose Vlin =
S ⊕A where the orthogonality is with respect to 〈·, ·〉µ. It
follows that we can write any hw ∈ Vlin as

hw = hw + h⊥w

where we have shown that there must exist w̄, w⊥ ∈ X with
〈w̄, w⊥〉Σ = 0 such that hw = hw̄ and h⊥w = hw⊥ . By
choosing a basis for X , there is a natural bijection X → Vlin
where w 7→ hw. Using this identification, we abuse notation
slightly and write X = S ⊕ A to represent the induced
structure on X .

Suppose examples are labelled by a target function hθ ∈ Vlin
that is G-invariant. Let X ∼ µ and Y = θ>X + ξ where
ξ is independent of X , has mean 0 and finite variance.
Recall the definition of the generalisation gap between
predictors as the difference in their test errors. We study
the generalisation gap ∆(hw, hw̄) between predictors hw
and hw̄ defined above. Lemma 6 gives ∆(hw, hw̄) =
‖hw⊥‖2µ = ‖w⊥‖2Σ. In Theorem 7 we calculate this quantity
where w is the minimum-norm least-squares estimator and
w̄ = ΦG(w). To the best of our knowledge, this is the
first result to specify exactly the generalisation benefit for
invariant models.

Theorem 7. Let X = Rd, Y = R and let G be a compact
group with an orthogonal representation φ on X . Let X ∼
N (0, σ2

XI) and Y = hθ(X) + ξ where hθ(x) = θ>x is G-
invariant with θ ∈ Rd and ξ has mean 0, variance σ2

ξ <∞
and is independent ofX . Letw be the least-squares estimate

4Since G is compact it is unimodular and this change of
variables is valid, e.g. see Folland (2016, Corollary 2.28) and
adjacent results.

of θ from i.i.d. examples {(Xi, Yi) : i = 1, . . . , n} and
let A be the orthogonal complement of the subspace of
G-invariant linear predictors (c.f. Lemma 1).

• If n > d+ 1 then the generalisation gap is

E[∆(hw, hw̄)] = σ2
ξ

dimA

n− d− 1
.

• At the interpolation threshold n ∈ [d− 1, d+ 1], if hw
is not G-invariant then the generalisation gap diverges
to∞.

• If n < d− 1 the generalisation gap is

E[∆(hw, hw̄)]

= dimA

(
σ2
X‖θ‖22 n(d− n)

d(d− 1)(d+ 2)
+

σ2
ξ n

d(d− n− 1)

)
.

In each case, the generalisation gap has a term of the form
σ2
ξr(n, d) dimA that arises due to the noise in the target

distribution. In the overparameterised setting d > n + 1
there is an additional term (the first) that represents the
generalisation gap in the noiseless setting ξ

a.s.
= 0. This

term is the error in the least-squares estimate of θ in the
noiseless problem, which of course vanishes in the fully
determined case n > d + 1. In addition, the divergence
at the so called interpolation threshold n ≈ d is consistent
with the literature on double descent (Hastie et al., 2019).

Notice the central role of dimA in Theorem 7. This
quantity is a property of the group action as it describes
the codimension of the set of invariant models. The
generalisation gap is then dictated by how ‘significant’ the
symmetry is to the problem. We give two examples that
represent extremal cases of this ‘significance’.

Example 8 (Permutations, dimA = d− 1). Let Sd act on
X = Rd by permutation of the coordinates, so (φ(ρ)w)i =
wρ(i) for ρ ∈ Sd. Observe that, since the Haar measure λ is
uniform on Sd, for any i = 1, . . . , d

ΦSd
(w)i =

1

d!

∑
ρ∈Sd

wρ(i) =
1

d

∑
j

wj

so S is the one dimensional subspace {t(1, . . . , 1)> : t ∈
R}. Since X = S ⊕A we get dimA = d− 1.

Example 9 (Reflection, dimA = 1). Let C2 be the cyclic
group of order 2 and let it act on X = Rd by reflection in
the first coordinate. A is then the subspace consisting of w
such that for any j = 2, . . . , d

ΦC2(w)j =
1

|C2|
∑
g∈C2

(φ(g)w)j = wj = 0

since the action fixes all coordinates apart from the first.
Hence A = {t(1, 0, . . . , 0)> : t ∈ R}.
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6.2. Regression with Equivariant Target
One can apply the same construction to equivariant models.
Assume the same setup, but now let Y = Rk with the
Euclidean inner product and let the space of predictors be
Wlin = {fW : Rd → Rk, fW (x) = W>x : W ∈ Rd×k}.
We consider linear regression with the squared-error loss
`(y, y′) = ‖y−y′‖22. Let ψ be an orthogonal representation
of G on Y . We define the linear map, which we call the
intertwining average, ΨG : Rd×k → Rd×k by5

ΨG(W ) =

∫
G
φ(g)Wψ(g−1) dλ(g).

Similarly, define the intertwining complement as ΨG
⊥ :

Rd×k → Rd×k by ΨG
⊥(W ) = W −ΨG(W ). We establish

the following results, which are in fact generalisations
of the invariant case. In the proofs we will leverage the
expression of ΨG as a 4-tensor with components ΨGabce =∫
G φ(g)acψ(g)be dλ(g) where a, c = 1, . . . d and b, e =

1, . . . , k.6

Proposition 10. For any fW ∈Wlin, QfW = fΨG(W ) and
hence Wlin is closed under Q.

Proposition 11. The inner product onWlin satisfies, for any
fW1

, fW2
∈Wlin,

〈fW1 , fW2〉µ = Tr(W>1 ΣW2)

where Σ = E[XX>] and X ∼ µ.

Proposition 10 allows us to apply Lemma 1 to write Wlin =
S⊕A, so for any fW ∈Wlin there exists fW ∈ S and f⊥W ∈
A with 〈fW , f⊥W 〉µ = 0. The corresponding parameters
W = ΨG(W ) and W⊥ = ΨG

⊥(W ) must therefore satisfy
Tr(W

>
ΣW⊥) = 0, with Σ defined as in Proposition 11.

Repeating our abuse of notation, we identify Rd×k = S⊕A
with S = ΨG(Rd×k) andA its orthogonal complement with
respect to the induced inner product.

Proposition 12. Let X ∼ µ and let ξ a random element
of Rk that is independent of X with E[ξ] = 0 and finite
variance. Set Y = fΘ(X) + ξ where fΘ is G-equivariant.
For any fW ∈Wlin, the generalisation gap satisfies

∆(fW , fW ) := E[‖Y − fW (X)‖22]− E[‖Y − fW (X)‖22]

= ‖Σ1/2W⊥‖2F
where W = ΨG(W ), W⊥ = ΨG

⊥(W ) and Σ = E[XX>].
5The reader may have noticed that we define ΨG backwards,

in the sense that its image contains maps that are equivariant in
the direction ψ → φ. This is because of the transpose in the linear
model, which is there for consistency with the k = 1 invariance
case. This choice is arbitrary and gives no loss in generality.

6If necessary, the reader can see the supplementary material
for a derivation.

Having followed the same path as the previous section,
we provide a characterisation of the generalisation benefit
of equivariance. In the same fashion, we compare the
least-squares estimate W with its equivariant version W =
ΨG(W ). As we explained at the beginning of the section,
the choice of W = ΨG(W ) is natural and costs us nothing.

Theorem 13. Let X = Rd, Y = Rk and let G be a compact
group with orthogonal representations φ on X and ψ on Y .
LetX ∼ N (0, σ2

XId) and Y = hΘ(X)+ξ where hΘ(x) =
Θ>x is G-equivariant and Θ ∈ Rd×k. Assume ξ is a
random element of Rk, independent of X , with mean 0 and
E[ξξ>] = σ2

ξIk <∞. Let W be the least-squares estimate
of Θ from n i.i.d. examples {(Xi, Yi) : i = 1, . . . , n}
and let (χψ|χφ) =

∫
G χψ(g)χφ(g) dλ(g) denote the scalar

product of the characters of the representations of G.

• If n > d+ 1 the generalisation gap is

E[∆(fW , fW )] = σ2
ξ

dk − (χψ|χφ)

n− d− 1
.

• At the interpolation threshold n ∈ [d − 1, d + 1], if
fW is not G-equivariant then the generalisation gap
diverges to∞.

• If n < d− 1 then the generalisation gap is

E[∆(fW , fW )] =

σ2
X

n(d− n)

d(d− 1)(d+ 2)

(
(d+ 1)‖Θ‖2F − Tr(JGΘ>Θ)

)
+ σ2

ξ

n(dk − (χψ|χφ))

d(d− n− 1)

where each term is non-negative and JG ∈ Rk×k is
given by

JG =

∫
G

(χφ(g)ψ(g) + ψ(g2)) dλ(g).

Theorem 13 is a direct generalisation of Theorem 7. As we
remarked in the introduction, dk−(χψ|χφ) plays the role of
dimA in Theorem 7 and is a measure of the significance of
the symmetry to the problem. The dimension of Wlin is dk,
while (χψ|χφ) is the dimension of the space of equivariant
maps. In our notation (χψ|χφ) = dimS.

Just as with Theorem 7, there is an additional term (the first)
in the overparameterised case d > n+ 1 that represents the
estimation in a noiseless setting ξ a.s.

= 0. Notice that if k = 1
and ψ is trivial we find

JG =

∫
G
χφ(g) dλ(g) + 1 = (χφ|1) + 1 = dimS + 1

which confirms that Theorem 13 reduces exactly
to Theorem 7.
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Interestingly, the first term in the d > n+1 case can be made
independent of ψ, since the equivariance of hΘ implies

Tr(JGΘ>Θ) = Tr(Θ>JφΘ)

where

Jφ =

∫
G

(χφ(g)φ(g) + φ(g2)) dλ(g).

Finally, we remark that Theorem 13 is possible for more
general probability distributions on X . For instance, it
sufficient that the distribution is absolutely continuous with
respect to the Lebesgue measure, has finite variance and is
O(d) invariant. The final condition implies the existence
of a scalar rn such that E[(X>X)+] = rnId where X ∈
Rn×d are the row-stacked training inputs as defined in the
proof.

7. Neural Networks
In this section we discuss how the insights of this paper
apply to neural networks and raise some open questions for
future work. Let F : Rd → Rk be a feedforward neural
network with L layers, layer widths κi i = 1, . . . , L and
weights W i ∈ Rκi×κi+1 for i = 1, . . . , L where κ1 = d
and κL+1 = k. We will assume F has the form

F (x) = WLσ(WL−1σ(. . . σ(W 1x) . . . )) (1)

where σ is an element-wise non-linearity.

7.1. Invariant and Equivariant Networks
The standard method for engineering neural networks to
be invariant/equivariant to the action of a finite group
on the inputs is weight tying. This method has been
around for a while (Wood & Shawe-Taylor, 1996) but has
come to recent attention via Ravanbakhsh et al. (2017).
We will briefly describe this approach, its connections
to Theorems 7 and 13 and how the ideas of this paper
can be used to find new algorithms for both enforced and
learned invariance/equivariance. We leave analyses of these
suggested approaches to future work.

The methods of Wood & Shawe-Taylor (1996);
Ravanbakhsh et al. (2017) can be described as follows.
Let Gfin be a finite group. For each i = 2, . . . , L + 1, the
user chooses a matrix representation ψi : Gfin → GLki(R)
of Gfin that acts on the inputs for each layer i = 2, . . . , L
and on the outputs of the network when i = L + 1.7 For
i = 2, . . . , L, these representations must be chosen such
that they commute with the activation function

σ(ψi(g)·) = ψi(g)σ(·) (2)

7ψ1 is the representation on the inputs, which we consider as
an aspect of the task and not a design choice.

∀g ∈ Gfin.8 One then chooses weights for the network such
that at each layer and ∀g ∈ Gfin

W iψi(g) = ψi+1(g)W i. (3)

By induction on the layers, satisfying Eqs. (2) and (3)
ensures that the network is Gfin-equivariant. Invariance
occurs when ψL+1 is the trivial representation.

The condition in Eq. (3) can be phrased as saying that
that W i belongs to the space of intertwiners of the
representations ψi and ψi+1. By denoting the space of
all weight matrices in layer i as U = Rκi×κi+1 , the space
of intertwiners is immediately recognisable as S = ΨG(U)
from Lemma 1.

Typically, the practitioner will hand-engineer the structure
of weight matrices to belong to the correct intertwiner
space. In the following sections we will propose alternative
procedures that build naturally on the ideas of this paper.
Moreover, as a benefit of our framework, these new
approaches extend weight-tying to any compact group that
admits a finite-dimensional, real representation. We end this
section with a bound on the sample complexity of invariant
networks, which follows from Bartlett et al. (2019). Similar
results are possible for different activation functions.

Lemma 14. Let G be a compact group with layer-wise
representations as described. Let F : Rd → R be a G-
invariant neural network with ReLU activation and weights
that intertwine the representations. LetH be the class of all
functions realisable by this network. Then

VC(H) ≤ L+
1

2
α(F )L(L+ 1) max

1≤i≤L
(χi|χi+1)

where α(F ) = log2

(
4e log2

(∑L
i=1 2eiκi

)∑L
i=1 iκi

)
.

Example 15 (Permutation invariant networks). Permutation
invariant networks (and permutation invariant functions
more generally) are studied in Wood & Shawe-Taylor
(1996); Zaheer et al. (2017); Bloem-Reddy & Teh (2020)
and many other works, see references therein. In particular,
multiple authors have given the form of a permutation
equivariant weight matrix as W = λI + γ11> for scalars
α, β ∈ R and with 1 = (1, . . . , 1)>. Consider an L-layer
ReLU network with, for simplicity, widths κi = d ∀i. Let
H be the class of all functions realisable by this network,
then VC(H) = O(L2 log(Ld log(Ld))).

7.2. Projected Gradients
As we have seen, provided that the activation function
satisfies Eq. (2), specifying the weight matrices to intertwine

8This condition is somewhat restrictive, but note that a
permutation representation will commute with any element-wise
non-linearity.
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between layer-wise representations is sufficient to ensure
equivariance in a neural network. We have also seen
from Section 6.2 that it is possible to project any weight
matrix into an intertwiner space using ΨG . For each layer l
of the network we have a linear map ΨG

l, which is a 4-tensor
with components ΨG

l
abce =

∫
G ψl+1(g)acψl(g)be dλ(g).

The tensors {ΨG l : l = 1, . . . , L} depend only on the
representations and so can be computed before training.
One can therefore obtain invariant/equivariant networks by
a form of projected gradient descent. Explicitly, with loss `
and learning rate η, the update rule for the lth layer is

W̃ l(t+ 1) = W l(t)− η∇W l`(W 1(t), . . . ,WL(t))

W l(t+ 1) = ΨG
l
(
W̃ l(t+ 1)

)
.

If Eq. (2) holds the network will be exactly
invariant/equivariant after any iteration.

7.3. Regularisation for Equivariance
We have seen from Lemma 1 and Section 6.2 that any
weight matrix can be written W = W + W⊥ where
W = ΨG(W ) belongs to an intertwiner space (so is
equivariant) and W⊥ = ΨG

⊥(W ) belongs to an orthogonal
space that parametrises the anti-symmetric linear maps. This
suggests a method of learned invariance/equivariance by
using a regularisation term of the form

∑L
l=1‖ΨG l

⊥
(W l)‖2F.

Where the 4-tensor ΨG
l⊥ has components ΨG

l⊥

abce =
δacδbe − ΨG

l
abce and can be computed before training. If

ΨG
l⊥(W l) = 0 for l = 1, . . . , L and the activation function

satisfies Eq. (2), then the resulting network will be exactly
G-invariant/equivariant. This method could also allow for
learned/approximate invariance. Indeed, Proposition 16
suggests ‖ΨG l

⊥
(W )‖2F as a measure of the layer-wise

invariance/equivariance of the network.

Proposition 16. Let G be a compact group. Let fW : Rd →
Rk with fW (x) = σ(Wx) be a single neural network layer
with C-Lipschitz, element-wise activation σ. Let φ : G →
O(d) and ψ : G → O(k) be orthogonal representations of
G on the input and output spaces respectively and assume
that ψ commutes with σ as in Eq. (2). Let X ∈ Rd, X ∼
N (0, Id). We can consider the network as belonging to V
from Section 4 with µ = N (0, Id). Write V = S ⊕ A,
where S contains the equivariant functions in V , then

inf
s∈S

E[‖fW (X)− s(X)‖22] ≤ 2C2‖W⊥‖2F.

Proposition 16 shows that the distance between the outputs
of a single layer neural network and its closest equivariant
function is bounded by the norm of the anti-symmetric
component of the weights W⊥. This quantity can be
interpreted as a measure of the equivariance of the

layer and regularising ‖W⊥‖F will encourage the network
to become (approximately) equivariant. It is easy to
generalise Proposition 16 so that X follows any G-invariant
distribution with finite second moment.

7.4. Open Questions
Equivariant Convolutions There has been much work
on engineering convolutional layers to be group equivariant,
for instance Cohen & Welling (2016); Cohen et al. (2018);
Kondor & Trivedi (2018); Cohen et al. (2019). The
convolution is a linear operator parameterised by the
kernel. This suggests that it may be possible to analyse the
generalisation properties of group equivariant convolutions
in the framework of Lemma 1, similar to Section 6.

Invariant/Equivariant Networks We have discussed
enforcing invariance/equivariance in a neural network
F(W 1,...,WL) (with the dependence on the weights now
explicit) by restricting weight matrices to intertwine
between representations at each layer. We ask: is this the
best way to encode symmetry? Mathematically, let X ∼ µ
with G-invariant µ and embed the functions realised by the
network in V = S ⊕ A. Given an invariant/equivariant
target s ∈ S, must the best approximating neural network
be layer-wise invariant/equivariant? That is, are there s ∈ S
such that the following holds

inf
W

E[‖F(W 1,...,WL)(X)− s(X)‖22]

< inf
U

E[‖F(U1,...,UL)(X)− s(X)‖22],

where W = {W l ∈ Rκl×κl+1 : l = 1, . . . , L} is
the set of all possible weight matrices and U = {U l ∈
ΨG

l(Rκl×κl+1) : l = 1, . . . , L} is the set of all weight
matrices restricted to be intertwiners? A resolution to this
might shed light on new ways of encoding symmetry in
neural networks.
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