
Implicit Bias of Linear RNNs

A. Background on Convergence of Vector Sequences and Random Variables
In this section we review some the background on convergence of random variables, definitions of convergence of matrix
sequences and some of their properties that we use throughout this paper.

Pseudo-Lipschitz continuity For a given p ≥ 1, a function f : Rd → Rm is called pseudo-Lipschitz of order p, denoted
by PL(p), if

‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖
(
1 + ‖x1‖p−1 + ‖x2‖p−1

)
(26)

for some constant C > 0.

This is a generalization of the standard definition of Lipshitiz continuity. A PL(1) function is Lipschitz with constant 3C.

Empirical convergence of a sequence Consider a sequence of vectors x(N) = {xn(N)}Nn=1 with xn(N) ∈ Rd. So, each
x(N) is a block vector with a total of Nd components. For a finite p ≥ 1, we say that the vector sequence x(N) converges
empirically with p-th order moments if there exists a random variable X ∈ Rd such that

(i) E‖X‖pp <∞; and

(ii) for any f : Rd → R that is pseudo-Lipschitz continuous of order p,

lim
N→∞

1

N

N∑
n=1

f(xn(N)) = E [f(X)] . (27)

In this case, with some abuse of notation, we will write

lim
n→∞

xn
PL(p)

= X, (28)

where we have omitted the dependence on N in xn(N). We note that the sequence {x(N)} can be random or deterministic.
If it is random, we will require that for every pseudo-Lipschitz function f(·), the limit (27) holds almost surely. In particular,
if xn ∼ X are i.i.d. and E‖X‖pp <∞, then x empirically converges to X with pth order moments.

Weak convergence (or convergence in distribution) of random variables is equivalent to

lim
n→∞

Ef(Xn) = Ef(X), for all bounded functions f. (29)

It is shown in (Bayati & Montanari, 2011) that PL(p) convergence is equivalent to weak convergence plus convergence in p
moment.

Wasserstein-2 distance Let ν and µ be two distributions on some Euclidean space X . The Wasserstein-2 distance between
ν and µ is defined as

W2(ν, µ) =

(
inf
γ∈Γ

E‖X −X ′‖22
) 1

2

, (30)

where Γ is the set of all distributions with marginals consistent with ν and µ.

A sequence xn converges PL(2) to X if and only if the empirical measure P̂N = 1
N

∑N
n=1 δ(x − xn) (where δ(·) is the

Dirac measure,) converges in Wasserstein-2 distance to distribution of X (Villani, 2008), i.e.

xn
PL(2)

= X ⇐⇒ lim
n→∞

W2(P̂N ,PX) = 0. (31)

For two zero mean Gaussian measure ν = N (0,Σ1), µ = N (0,Σ2) the Wasserstein-2 distance is given by (Givens et al.,
1984)

W 2
2 (ν, µ) = tr(Σ1 − 2(Σ

1/2
1 Σ2Σ

1/2
1 )1/2 + Σ2). (32)

Therefore, for zero mean Gaussian measures, convergence in covariance, implies convergence in Wasserstein-2 distance,
and hence if the empirical covariance of a zero mean Gaussian sequence xn converges to some covaraince matrix Σ, then

using (31) xn
PL(2)

= X where X ∼ N (0,Σ).



Implicit Bias of Linear RNNs

B. Proofs
B.1. Proof of Proposition 2.1

Suppose we are given a convolutional model (5) with impulse response coefficients Lt, t = 0, . . . , T − 1. It is well-known
from linear systems theory (Kailath, 1980) that linear time-invariant systems are input-output equivalent if and only if they
have the same impulse response coefficients. So, we simply need to find matrices (W,F,C) satisfying (9). First consider
the single input single output (SISO) case where nx = ny = 1. Take any set of real non-zero scalars λi, i = 0, . . . , T − 1,
that are distinct and set

W = diag(λ0, . . . , λT−1), F = 1T , (33)

so there are n = T hidden states. Then, for any t,

(CW tF ) =

T−1∑
k=0

Ckλ
t
k. (34)

Equivalently, the impulse response coefficients in (9) are given by,

[L0, · · · , LT−1] = CV, (35)

where V is the Vandermode matrix Vjt = λtj . Since the values λj are distinct, V is invertible and we can find a vector C
matching arbitrary impulse response coefficients. Thus, when nx = ny = 1, we can find a linear RNN with at most n = T
hidden states that match the first T impulse response coefficients. To extend to the case of arbitrary nx and ny, we simply
create nxny systems, one for each input-output component pair. Since each system will have T hidden states, the total
number of states would be n = Tnxny .

B.2. Proof of Theorem 3.2

Given yt =
∑t
j=0

√
ρjθjxt−j and θ = (θ0, . . . , θT−1), we consider a perturbation in θ, namely ∆θ. Therefore,

ỹt =

t∑
j=0

√
ρj∆θjxt−j (36)

and the NTK for this model is given by

Kt,s(x, x
′) =

∑
∆θ∈Tθ

ỹt(∆θ)ỹ
′
s(∆θ)

T. (37)

where Tθ is the standard basis for the parameter space. The following lemma shows this sum can be calculated as an
expectation over a Gaussian random variable.

Lemma B.1. Let V be a finite dimensional Hilbert space and W = Rm with the standard inner product and let T, T ′ :
V →W be linear transformations. Let {vi}ni=1 be an ordered orthonormal basis for V. Then we have

n∑
i=1

T (vi)(T
′(vi))

T = Eα∼N (0,In)

[
T
( n∑
i=1

αivi
)(
T ′
( n∑
i=1

αivi
))T

]
. (38)

Proof.

Eα∼N (0,In)

T ( n∑
i=1

αivi
)(
T ′
( n∑
j=1

αjvj
))T

 = Eα∼N (0,In)

 n∑
i,j=1

αiαjT
(
vi
)
T ′
(
vj
)T


=

n∑
i=1

T (vi)(T
′(vi))

T. (39)
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Since ỹt(∆θ) is a linear operator, by applying Lemma B.1 we have,

Kt,s(x, x
′) = E∆θ∼N (0,1),i.i.d. [ỹt(∆θ)ỹ

′
s(∆θ)

T]

= E∆θ∼N (0,1),i.i.d.

(

t∑
j=0

√
ρj∆θjxt−j)(

t∑
k=0

√
ρk∆θkx

′
s−k)T


= E∆θ∼N (0,1),i.i.d.

(

t∑
j=0

ρj ∆θjxt−jx
′
s−j

T
∆θ

T
j )


Therefore, (

Kt,s(x, x
′)

)
m,m′

= E∆θ∼N (0,1),i.i.d.

 t∑
j=0

ρj
∑
k,k′

(∆θj)m,kxt−j,kx
′
s−j,k′(∆θj)k′,m′


= (

t∑
j=0

ρj x
T
t−jx

′
s−j)δm,m′

Thus, Kt,s(x, x
′) = (

∑t
j=0 ρj x

T
t−jx

′
s−j)Iny and we can write the full kernel as

K(x, x′) = T (x)TD(ρ)T (x′)⊗ Iny , (40)

where T (x) and D(ρ) are defined in (18) and (19) respectively.

B.3. Proof of Theorem 3.3

Part (a) is a special case of a more general lemma, Lemma C.1 which we present in Appendix C. Let

qt+1 =
1√
n
Wqt, q0 = F, (41)

so that qt represents the impulse response from xt to ht. That is,

ht =

t∑
j=0

qt−jxj , (42)

which is the convolution of qt and ht. The system (41) is a special case of (66) with L = 1, no input ut and

A = W, G(q) = q.

Since there is only L = 1 transform, we have dropped the dependence on the index `. Lemma C.1 shows that (q0, . . . , qt)
converges PL(2) to a Gaussian vector (Q0, . . . , Qt) with zero mean. We claim that the Qi’s are independent. We prove this
with induction. Suppose (Q0, . . . , Qt) are independent. We need to show (Q0, . . . , Qt+1) are independent by using the SE
equations (70). Specifically, from (70b), Zi = Qi for all i. Also, since each Qi is zero mean, µi = 0 and Z̃i = Zi = Qi.
Since the Z̃i are independent, the linear predictor coefficients in (70d) are zero: Fti = 0. Therefore, R̃t = Rt ∼ N (0, νWPt)
is independent of (R0, . . . , Rt−1). From (70h), Qt+1 = Rt. So, we have that (Q0, . . . , Qt−1) is an independent Gaussian
vector. Finally, to compute the variance of the Qt+1, observe

cov(Qt+1)
(a)
= cov(Rt)

(b)
= νWPt

(c)
= νW cov(Zt)

(d)
= νW cov(Qt), (43)

where (a) follows from (70h); (b) follows from (70f) and the fact that Fti = 0 for all i; (c) follows from (70e); and (d) follows
from the fact that Zt = Qt. Also, since q0 = F , it follows that Q0 ∼ N (0, νF I). We conclude that cov(Qt) = νF ν

t
W Inx .

This proves part (a).
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For part (b), we consider perturbations ∆W , ∆F , and ∆C of the parameters W , F , and C. We have that,

h̃t =
1√
n
Wh̃t−1 +

1√
n

∆Wht + ∆Fxt, ỹt =
1√
n
Ch̃t + ∆Cht (44)

Combining this equation with (1), we see that the mapping from xt to [ht h̃t] is a linear time-invariant system. Let
qt ∈ Rn×2nx be its impulse response. The impulse response coefficients satisfy the recursive equations,

qt+1 =

[
1√
n
Wqt,1,

1√
n

(Wqt,2 + ∆W qt,1)

]
, q0 = [F,∆F ] .

We can analyze these coefficients in the LSL using Lemma C.1. Specifically, let L = 2 and set

A1 = W, A2 = ∆W .

Also, let

zt1 = G1(qt) := qt, (45a)

zt2 = G2(qt) := [0 qt1]. (45b)

Then, we have the updates,

qt+1 =
1√
n
Wzt1 +

1√
n

∆W zt2, q0 = [F,∆F ] .

It follows from Lemma C.1 that (q0, . . . , qT−1) converges PL(2) to zero mean Gaussian random variables (Q0, . . . , QT−1).
Note that Qt = [Qt1, Qt2] where each Qt1 and Qt2 are random vectors ∈ R1×nx .

Similar to the proof of the previous theorem, we use induction to show that (Q0, . . . , Qt) are independent. Suppose that the
claim is true for t. Then, Zi1 and Zi2 are functions of Qi. So, for ` = 1, 2, Zt` is independent of Zi` for i < t. Thus, the
prediction coefficients Fti` = 0 and, as before, Rt` ∼ N (0, Pt`) independent of Ri`, i < t. Thus, Qt+1 = Rt1 + Rt2 is
independent of (Q0, . . . , Qt).

We conclude by computing the cov(Qt). We claim that, for all t, the variance of Qt is of the form,

cov(Qt) =

[
τt1Inx 0

0 τt2Inx

]
(46)

for scalar τt1, τt2. Since q0 = [F,∆F ], we have

τt1 = νF , τt2 = 1.

Now suppose that (46) is true for some t. From (70b),

Zt1 = Qt, Zt1 = (0, Qt1),

from which we obtain that

cov(Zt1) =

[
τt1Inx 0

0 τt2Inx

]
, cov(Zt2) =

[
0 0
0 τt1Inx

]
. (47)

Therefore, we have

cov(Qt+1)
(a)
= cov(Rt,1) + cov(Rt,2)

(b)
= νWPt1 + Pt2

(c)
= νW cov(Zt1) + cov(Zt2)

(d)
=

[
νW τt1Inx 0

0 (τt1 + νW τt2)Inx

]
, (48)

where (a) follows from (70h); (b) follows from (70f) and the fact that Fti` = 0 for all i; (c) follows from (70e); and (d)
follows from (47). It follows that

τt+1,1 = νW τt1, τt+1,2 = νW τt2 + τt1.
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These recursions have the solution,
τt1 = νtW νF , τt2 = tνF ν

t−1
W + νtW . (49)

Since [ht, h̃t] =
∑t
j=0 qj

[
xt−j
xt−j

]
and we know each qt converges PL(2) to random Qt with covariances calculated in (46)

and (49), we have

[ht, h̃t]
PL(2)

= [Ht, H̃t] =

t∑
j=0

Qj

[
xt−j
xt−j

]
(50)

where Ht, H̃t are scalar random variables. For each t, s, we can now calculate the auto-correlation function for H as follows

E[HtHs] = E[

t∑
j=0

t∑
k=0

xT
t−jQ

T
j,1Qk,1xs−k]

=

t∑
j=0

xT
t−jE[QT

j,1Qj,1]xs−j

=

t∑
j=0

νjW νF x
T
t−jxs−j . (51)

Similarly for H̃ we have

E[H̃tH̃s] =

t∑
j=0

(jνF ν
j−1
W + νjW ) xT

t−jxs−j . (52)

Thus, the impulse response of the system Lj = Cqj,1 converge empirically to N (0,Λ) where,

Λ = νC lim
n→∞

1

n
qT
j,1qj,1 = νCE[QT

j,1Qj,1] = νCνF ν
j
W Inx . (53)

This proves part (a).

Note that E[H̃tH̃
′
s] and E[HtH

′
s] can be calculated similarly by substituting xs−j with x′s−j in (51) and (52).

Next, we calculate the NTK in this case

Kt,s(x, x
′) =

∑
∆Θ∈TΘ

ỹt(∆Θ)ỹ′s(∆Θ)T

(a)
= E∆Θ∼N (0,1),i.i.d. [ỹt(∆Θ)ỹ′s(∆Θ)T] (54)

where (a) follows from Lemma B.1. Combining with (44) we have

Kt,s(x, x
′) = EC,∆C∼N (0,1),i.i.d.

[
(Ch̃t + ∆Cht)(Ch̃

′
s + ∆Ch

′
s)

T
]

=
(
νCE[H̃tH̃

′
s] + E[HtH

′
s]
)
Iny (55)

Therefore,

K(x, x′) = T (x)TD(ρ)T (x′)⊗ Iny , (56)

where T (x) and D(ρ) are given in (18) and (19) and

ρi = νC(iνF ν
i−1
W + νiW ) + νiW νF . (57)

This proves part (b).
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B.4. Proof of Theorem 4.1

Bounding the Initial Impulse Response from Theorem 3.3, each coefficient of L0
RNN,j has mean zero and variance

νCνF ν
j
W . There are nxny such components. This proves (24).

Convolutional Equivalent Linear Model The key for the remainder of the proof is to use Theorems 3.2 and 3.3 to
construct a scaled convolutional model that has the same NTK and intial conditions as the RNN. Then, we analyze
the convolutional model to obtain the desired bound. To this end, let ρ = [ρ0, . . . , ρT−1] be the scaling factors given
in Theorem 3.3. For each initial condition θ0

RNN = (W 0, F 0, C0) of the RNN, suppose that we initialize the scaled
convolutional model with

θ0
conv,j =

1
√
ρjn(j+1)/2

C0(W 0)jF 0.

The initial impulse response of the scaled convolutional model will then be

L0
conv,j =

√
ρjθconv,j =

1

n(j+1)/2
C0(W 0)jF 0 = L0

RNN,j . (58)

Hence, the scaled convolutional model and the RNN have the same initial impulse response coefficients. We then train the
scaled convolutional model on the training data using gradient descent with the same learning rate η used in the training of
the RNN. Let L`conv,j denote the impulse response of the scaled convolutional model after ` steps of gradient descent.

Gradient Descent Analysis of the Convolutional Model Next, we look at how the impulse response of the scaled
convolutional model evolves over the gradient descent steps. It is convenient to do this analysis using some matrix notation.
For each parameter, θ = [θ0, . . . , θT−1], the convolutional filter parameters are Lj =

√
ρjθj . Thus, we can write

L = D1/2θ,

where D is a block diagonal operator with values ρj . Also, let ŷ = [ŷ1, . . . , ŷN ] be the set of predictions on the N training
samples. Since the convolutional model is linear, we can write ŷ = AL for some linear operator A. The operator A would
be a block Toeplitz with the input data x = [x1, . . . ,xN ]. Also, if we let y = [y1, . . . ,yN ] be the N training samples, the
least squares cost is

‖y −AD1/2θ‖2F .
Minimizing this loss function will result in GD steps,

θ`+1 = θ` + ηD1/2AT(y −AD1/2θ`).

Now let u` = D−1/2(θ` − θ0) and b := y −AD1/2θ0. Then,

u`+1 = u` + ηAT(b−AD)u` = (I−ηATAD)u` + ηATb (59)

For 0 < νW < 1, we have that ρj satisfies the bound (22). Since D is a block diagonal matrix with entries ρj , ‖D‖ ≤ ρmax.
Now select

B1 :=
1

ρmax‖A‖2
, B2 := ‖ATb‖. (60)

If we take η < B1 then
ηD1/2ATAD1/2 ≤ ηρmax‖A‖2 ≤ I⇒ ‖I− ηATAD‖ ≤ 1.

Hence, (59) shows that
‖u`+1‖F ≤ ‖u`‖F + ηB2 ⇒ ‖u`‖F ≤ η`B2, (61)

where we have used the fact that u0 = 0. Now, since u` = D−1/2(θ` − θ0), the j-th component of θ` is

θ`j = θ0
j +
√
ρju

`
j .

Hence,

L`conv,j =
√
ρjθ

`
j = L0

conv,j + ρju
`
j .

Applying (61) we obtain the bound on the convolutional model

‖L`conv,j − L0
conv,j‖F ≤ ρjη`B2. (62)
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Bounding the RNN Impulse Response From Theorems 3.2 and 3.3, the scaled convolutional model and linear RNN
have the same NTK. Due to (58), they have the same input-output mapping at the initial conditions. Since the scaled
convolutional model is linear in its parameters it follows that it is linear NTK model for the RNN. Therefore, using the NTK
results such as Proposition 3.1, we have that for all input sequences x and GD time steps `,

lim
n→∞

∥∥fRNN(x, θ`RNN)− fconv(x, θ`conv)
∥∥ = 0, (63)

where the convergence is in probability. Thus, if we fix an input x and iteration ` and define

yRNN = fRNN(x, θ`RNN), yconv = fconv(x, θ`conv),

the limit (63) can be re-written as
lim
n→∞

‖yRNN,j − yconv,j‖ = 0, (64)

for all j. Again, the convergence is in probability. Now consider the case where the input sequence x = (x0, . . . , xT−1)
is a sequence with xj = 0 for all j > 0 That is, it is only non-zero at the initial time step. Then for all time steps
yRNN,j = L`RNN,jx0 and yconv,j = L`conv,jx0. Since this is true for all x0, (64) shows that for all time steps j = 0, . . . , T−1,

lim
n→∞

∥∥LRNN,j(x, θ
`
RNN)− Lconv,j(x, θ

`
conv)

∥∥
F

= 0 (65)

where the convergence is in probability. Combining (65) with (62) proves (25).



Implicit Bias of Linear RNNs

C. Recursions with Random Gaussians
We consider a recursion of the form,

qt+1 =

L∑
`=1

1√
n
A`G`(qt, ut), (66)

where qt ∈ Rn×dq , ut ∈ Rn×du , and G`(qt, ut) acts row-wise, meaning

G`(qt, ut)i,: = G`(qt,i,:, ut,i,:), (67)

for some Lipschitz functions G` : Rdq × Rdu× → Rdq . That is, the outptut of row i of G`(·) depends only the i-th rows of
its inputs. We will analyze this system for a fixed horizon, t = 0, . . . , T − 1. Assume that

(q0, u0, . . . , uT−1)
PL(2)→ (Q0, U0, . . . , UT−1), (68)

to random variables (Q0, U0, . . . , UT−1) where Q0 is independent of (U0, . . . , UT−1), and Q0 ∼ N (0, P0) for some
covariance matrix P0 ∈ Rdq×dq . Assume the matrices A` ∈ Rn×n are independent with i.i.d. components, (A`)i,j ∼
N (0, ν`).

Lemma C.1. Under the above assumptions,

(q0, q1, . . . , qT−1, u0, u1, . . . , uT−1)
PL(2)→ (Q0, Q1, . . . , QT−1, U0, . . . UT−1) (69)

where eachQi ∈ Rdq and (Q0, Q1, . . . , QT−1) are zero mean Gaussian processes independent of (U0, . . . UT−1), generated
recursively through SE equations given by

D` = N (0, ν`) (70a)
Zt` = G`(Qt, Ut) (70b)

µt` = E(Zt`), Z̃t` = Zt` − µt` (70c)

Ft,:,` = min
F1,...,Ft−1

E

∥∥∥∥∥∥Z̃t` −
t∑

j=1

Z̃t−j,`Fj

∥∥∥∥∥∥
2

(70d)

Pt` = E(Z̃t` −
t∑

j=1

Z̃t−j,`Ftj`)
T(Z̃t` −

t∑
j=1

Z̃t−j,`Ftj`) (70e)

R̃t` =

t∑
j=1

R̃t−j,`Ftj` +N (0, νWPt`), (70f)

Rt` = R̃t` +D`µt` (70g)

Qt+1 =

L∑
`=1

Rt` (70h)

Proof: We prove this by induction. LetMt be the hypothesis that this result is true up to iteration t. We show thatM0 is
true and thatMt impliesMt+1.

Base case (M0): Define z0` = G`(q0, u0). We have that rows of z0` converge PL(2) to Z0` = G`(Q0, U0).

Now, let µ0` = E(Z0`) and define the following:

d` =
1√
n
A`1, z̃0` = z0` − 1µ0` (71)

r̃1` =
1√
n
A`z̃0`, r1` = r̃1` + d`µ0`, q1 =

L∑
`=1

r1`. (72)



Implicit Bias of Linear RNNs

We know that

d`
PL(2)

= D` ∼ N (0, ν`), z̃0`
PL(2)

= Z̃0` = Z0` − µ0`. (73)

Note that Z̃0` are zero mean. Now since A` are i.i.d Gaussian matrices, rows of r̃1` converge PL(2) to random variable

R̃1` ∼ N (0, P1`) where, P1` = lim
n→∞

1

n
z̃T

0`z̃0`
a.s.
= E(Z̃T

0`Z̃0`) (74)

Furthermore, one can show that E(R̃1`1R̃1`2) = E(Z̃T
0`1
Z̃0`2) = 0 R̃1`1 and R̃1`2 are independent Therefore,

q1
PL(2)

= Q1 =

L∑
`=1

[
R̃1` +D`µ0`

]
(75)

This provesM0 holds true.

Induction recursion: We next assume that the SE system is true up to iteration t. We write the recursions as

d` =
1√
n
A`1 ∈ Rn (76a)

zt` = G`(qt, ut), z̃t` = zt` − 1µt` (76b)

r̃t+1,` =
1√
n
A`z̃t`, rt+1,` = r̃t+1,` + d`µt`, qt+1 =

L∑
`=1

rt+1,`. (76c)

The main issue in dealing with a recursion of the form Equation (76) is that for t ≥ 1, matrices {A`}L`=1 and {r̃t`}L`=1 are
no longer independent. The key idea is to use a conditioning technique (Bolthausen conditioning) as in (Bayati & Montanari,
2011) to deal with this dependence. Instead of conditioning r̃t` on A`, we condition A` on the event

Et,` = {r̃t′+1,` =
1√
n
A`z̃t′`, t

′ = 0, . . . , t− 1}. (77)

Note that this event is a set of linear constraints, and i.i.d. Gaussian random variables conditioned on linear constraints have
Gaussian densities that we can track.

Let H̃t` be the linear operator
H̃t` : A` 7→ (r̃1`, . . . , r̃t`). (78)

With these definitions, we have
A`|εt,`

d
= H̃†t`(r̃1`, . . . , r̃t`) + H̃⊥t`(Ã`), (79)

where H̃†t,` is the Moore-Penrose pseudo-inverse operator of H̃t,`, H̃⊥t,` is the orthogonal projection operator onto the

subspace orthogonal to the kernel of H̃t, and Ã` is an independent copy of A`. Therefore, we can write r̃t+1,` as sum of two
terms

r̃t+1,` = r̃det
t+1,` + r̃ran

t+1,`, (80)

where r̃det
t+1,` is what we call the deterministic part:

r̃det
t+1,` =

1√
n
H̃†t`(r̃1, . . . , r̃t) z̃t` (81)

and r̃ran
t+1,` is the random part:

r̃ran
t+1,` =

1√
n
H̃⊥t`(Ã`) z̃t`. (82)

It is helpful to write the linear operators defined in this section in matrix form for derivations that follow.

H̃t`(A`) =
1√
n

[A`]
[
z̃0` . . . z̃t−1,`

]
. (83)
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Deterministic part: We first characterizes the limiting behavior of r̃det
t+1,`.

It is easy to show that if the functions G` are non-constant, then the operator H̃t`H̃T
t` where H̃T

t` is the adjoint of H̃t`, is
full-rank almost surely for any finite t. Thus, we have

H̃†t` = H̃T
t`(H̃t`H̃T

t`)
−1 (84)

Form equation (78) we have

H̃T
t`(r̃1`, . . . , r̃t`) =

1√
n

t∑
t′=1

r̃t′`(z̃t′−1,`)
T. (85)

Combining (85) and (78) we get(
H̃t`(H̃T

t`)(r̃1`, . . . , r̃t`)
)
s

=
1

n

t∑
t′=1

r̃t′` (z̃t′−1,`)
Tz̃s−1,` (86)

Now, under the induction hypothesis, using the definition of PL(2) convergence we have

RZ̃`(t
′, s) := lim

n→∞

1

n
(z̃t′−1,`)

Tz̃s−1,`
a.s.
= E

(
(Z̃t′−1,`)

TZ̃s−1,`

)
(87)

Therefore we have,

H̃t`H̃T
t`(r̃1`, . . . , r̃t`) = [r̃1` . . . r̃t`]


RZ̃`(0, 0) RZ̃`(0, 1) . . . RZ̃`(0, t− 1)
RZ̃`(1, 0) RZ̃`(1, 1) . . . RZ̃`(1, t− 1)

...
...

. . .
...

RZ̃`(t− 1, 0) RZ̃`(t− 1, 1) . . . RZ̃`(t− 1, t− 1)


︸ ︷︷ ︸

RZ̃`

(88)

LetR−1

Z̃`
denote the inverse ofRZ̃` and index its blocks similarly toRZ̃`. Then, the pseudo-inverse is

H̃†t`(r̃1`, . . . , r̃t`) =
1√
n

t∑
t′=1

t∑
t′′=1

r̃t′′`R−1

Z̃`
(t′′ − 1, t′ − 1)(z̃t′−1,`)

T + o(
1

n
). (89)

Define P̃t` := Z̃t` −
∑t
j=1 Z̃t−j,`Ftj`, , where Ft,:,` are defined in (70d). Using equation (81) we get:

r̃det
t+1,` =

1

n

t∑
t′′=1

r̃t′′`

t∑
t′=1

R−1

Z̃`
(t′′ − 1, t′ − 1)(z̃t′−1,`)

Tz̃t,` + o(
1

n
) (90a)

a.s.
=

t∑
t′′=1

r̃t′′`

t∑
t′=1

R−1

Z̃`
(t′′ − 1, t′ − 1) E

(
(Z̃t′−1,`)

TZ̃t,`

)
+ o(

1

n
) (90b)

=

t∑
t′′=1

r̃t′′`

t∑
t′=1

R−1

Z̃`
(t′′ − 1, t′ − 1) E

(Z̃t′−1,`)
T(P̃t` +

t∑
j=1

Z̃t−j,`Ft,j,`)

+ o(
1

n
) (90c)

=

t∑
t′′=1

r̃t′′`

t∑
j=1

t∑
t′=1

R−1

Z̃`
(t′′ − 1, t′ − 1)RZ̃`(t

′ − 1, t− j)︸ ︷︷ ︸
Iδ(t′′=t−j+1)

Ft,j,` + o(
1

n
) (90d)

=

t∑
j=1

r̃t−j+1,`Ft,j,` + o(
1

n
), (90e)

where (a) follows from the fact that E(Z̃T
t′`P̃t`) = 0 for t′ = 0, . . . , t − 1. Now by induction hypothesis we know that

r̃t−j+1,`
PL(2)

= R̃t−j+1,`, therefore,

r̃det
t+1,`

PL(2)
= R̃det

t+1,` =

t∑
j=1

R̃t−j+1,`Ft,j,` (91)
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Random part We next consider the random part:

r̃ran
t+1,` =

1√
n
H̃⊥t`(Ã`)z̃t` (92)

=
1√
n

(Ã`z̃t` − H̃†t`H̃t`(Ã`)z̃t`). (93)

We know that,

H̃†tH̃t(Ã`) =
1

n

t∑
t′=1

t∑
t′′=1

Ã`z̃t′′−1,`R−1

Z̃`
(t′′ − 1, t′ − 1)(z̃t′−1,`)

T + o(
1

n
). (94)

Then, we have

r̃ran
t+1,` =

1√
n
Ã`z̃t` −

1√
n

t∑
t′=1

t∑
t′′=1

Ã`z̃t′′−1,` R−1

Z̃`
(t′′ − 1, t′ − 1)

(
1

n
(z̃t′−1,`)

Tz̃t`

)
+ o(

1

n
) (95)

=
1√
n
Ã`z̃t` −

1√
n

t∑
t′′=1

Ã`z̃t′′−1,`

t∑
j=1

t∑
t′=1

R−1

Z̃`
(t′′ − 1, t′ − 1)RZ̃`(t

′ − 1, t− j)Ft,j,` + o(
1

n
) (96)

=
1√
n
Ã`(z̃t` −

t∑
j=1

z̃t−j,`Ft,j,`) + o(
1

n
) (97)

Therefore, since Ã` are i.i.d. Gaussian matrices, r̃ran
t+1,` converges PL(2) to a Gaussian random variable R̃ran

t+1,` ∼
N (0, Pt+1,`) such that,

Pt+1,` = E(Z̃t` −
t∑

j=1

Z̃t−j,`Ftj`)
T(Z̃t` −

t∑
j=1

Z̃t−j,`Ftj`) (98)

We can now write R̃t+1,` as,

R̃t+1,` = R̃det
t+1,` + R̃ran

t+1,` (99)

=

t∑
j=1

R̃t−j+1,`Ft,j,` +N (0, Pt+1,`), (100)

and by equation (76) we have

Qt+1 =

L∑
`=1

Rt+1,`, Rt+1,` = R̃t+1,` +D`µt`.

This provesMt impliesMt+1.




