Implicit Bias of Linear RNNs

A. Background on Convergence of Vector Sequences and Random Variables

In this section we review some the background on convergence of random variables, definitions of convergence of matrix
sequences and some of their properties that we use throughout this paper.

Pseudo-Lipschitz continuity For a given p > 1, a function f : R? — R™ is called pseudo-Lipschitz of order p, denoted
by PL(p), if
1f(x1) = fx2)l| < Cllxr = x| (1+ [0 [P~ + f[x2 P71 (26)

for some constant C' > 0.
This is a generalization of the standard definition of Lipshitiz continuity. A PL(1) function is Lipschitz with constant 3C.

Empirical convergence of a sequence Consider a sequence of vectors x(N) = {x,,(N)}\_, withx,,(N) € R%. So, each
x(N) is a block vector with a total of Nd components. For a finite p > 1, we say that the vector sequence x(N) converges

empirically with p-th order moments if there exists a random variable X € R? such that

(i) E[[X|[p < oo; and

(i) forany f : RY — R that is pseudo-Lipschitz continuous of order p,
) 1
lim = f(xn(N) =E[f(X)]. 27)

In this case, with some abuse of notation, we will write

lim x, T=P x, 28)
n— oo
where we have omitted the dependence on N in x,, (V). We note that the sequence {x(N)} can be random or deterministic.
If it is random, we will require that for every pseudo-Lipschitz function f(-), the limit (27) holds almost surely. In particular,
if x, ~ X areiid. and E[|X |2 < oo, then x empirically converges to X with p* order moments.

Weak convergence (or convergence in distribution) of random variables is equivalent to

lim Ef(X,) =Ef(X), forall bounded functions f. (29)
n—oo

It is shown in (Bayati & Montanari, 2011) that PL(p) convergence is equivalent to weak convergence plus convergence in p
moment.

Wasserstein-2 distance Let v and u be two distributions on some Euclidean space X'. The Wasserstein-2 distance between

v and p is defined as
1

2
Walw.so) = (inf ELX - XI8) (30)
~yel
where I' is the set of all distributions with marginals consistent with v and p.

A sequence z,, converges PL(2) to X if and only if the empirical measure Py = + Zivzl 0(x — x,,) (where 0(+) is the
Dirac measure,) converges in Wasserstein-2 distance to distribution of X (Villani, 2008), i.e.
e TEY X = lim Wa(By, Px) = 0. 31)

n— oo

For two zero mean Gaussian measure v = N (0, X1), u = N (0, X2) the Wasserstein-2 distance is given by (Givens et al.,
1984)
W2(v, 1) = tr(5) — 221/ 25,51/ )12 4 5,). (32)

Therefore, for zero mean Gaussian measures, convergence in covariance, implies convergence in Wasserstein-2 distance,

and hence if the empirical covariance of a zero mean Gaussian sequence x,, converges to some covaraince matrix X, then

using 31) z,, PL®) X where X ~ N(0,%).
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B. Proofs
B.1. Proof of Proposition 2.1

Suppose we are given a convolutional model (5) with impulse response coefficients L;, ¢t = 0,...,T — 1. It is well-known
from linear systems theory (Kailath, 1980) that linear time-invariant systems are input-output equivalent if and only if they
have the same impulse response coefficients. So, we simply need to find matrices (W, F, C) satisfying (9). First consider
the single input single output (SISO) case where n, = n, = 1. Take any set of real non-zero scalars \;, ¢ = 0,...,T — 1,
that are distinct and set

W:diag()\o,...J\T,l), F= ].T, (33)

so there are n = 1" hidden states. Then, for any ¢,

~

(CW'F) =Y CipA\L. (34)
0

~
Il

Equivalently, the impulse response coefficients in (9) are given by,
[Lo, -+ ,Lr—1] =CV, (35)

where V' is the Vandermode matrix V;; = )\3-. Since the values A; are distinct, V' is invertible and we can find a vector C'
matching arbitrary impulse response coefficients. Thus, when n, = n, = 1, we can find a linear RNN with at most n = T’
hidden states that match the first 7" impulse response coefficients. To extend to the case of arbitrary n, and n,, we simply
create n,n, systems, one for each input-output component pair. Since each system will have T" hidden states, the total
number of states would be n = T'n n,,.

B.2. Proof of Theorem 3.2

Given y; = Zj‘:o /Pibjri—;and @ = (6, ...,07p_1), we consider a perturbation in ¢, namely Ay. Therefore,

t
o=y /PR (36)

Jj=0

and the NTK for this model is given by

Kio(za) = Y 5(80)7,(A0)T. (37)

Ag€To

where Ty is the standard basis for the parameter space. The following lemma shows this sum can be calculated as an
expectation over a Gaussian random variable.

Lemma B.1. Let V be a finite dimensional Hilbert space and W = R™ with the standard inner product and let T, T" :
V' — W be linear transformations. Let {v;}?_, be an ordered orthonormal basis for V. Then we have

T(iam) (T/(éam)ﬂ . (38)

n

> T (T ()" = Banno,1,)
=1

Proof.

n n T n
EaNN(O,IH) T( Z Ozivi) <T’( Z ajvj)> = EaNN(O,In) Z Oéz'Ole(Ui)T’ (vj)T
i=1 j=1

i,j=1

= Zn: T () (T (v:))T. (39)
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Since §:(Ay) is a linear operator, by applying Lemma B.1 we have,

Ky (x,2") = Eapuno,1) iid. [5:(26)7,(A6)T]
[ ¢ t

=EA;~N(0,1),iid, (Z \/pijAijtfj)(Z Vool )T
=0 k=0

t

TAT

=EA;~N(0,1),iid. (Z pj Dojri—jxi_; Dgj)
§=0

Therefore,

Pj Z (Aej)m,kxt*j»kx/s—j,k/(Aﬁj)k/’m/

t
/
(Kt,s(% T )) =EA,~N(0,1),iid.
m,m/ j=0 kK’

t
T
= (§ Pj xtfjngj)ém,m’
=0

Thus, Ky s(z,2") = (Z;:() pj xtT_j:c;_j)Iny and we can write the full kernel as

K(z,2') =T(2)"D(p)T (2') ® I, (40)

where 7 (z) and D(p) are defined in (18) and (19) respectively.

B.3. Proof of Theorem 3.3

Part (a) is a special case of a more general lemma, Lemma C.1 which we present in Appendix C. Let
1

qt+1 = N

so that ¢; represents the impulse response from x; to h;. That is,

WQI‘/’ do = Fa (41)

¢
he = ajj, (42)
=0

which is the convolution of g; and h;. The system (41) is a special case of (66) with L = 1, no input u; and
A=W, G(qg) =q¢.

Since there is only L = 1 transform, we have dropped the dependence on the index ¢. Lemma C.1 shows that (qo, - . -, q¢)
converges PL(2) to a Gaussian vector (Qo, . . . , Q+) with zero mean. We claim that the );’s are independent. We prove this
with induction. Suppose (Qo, . . ., Q) are independent. We need to show (Qo, . .., Q¢+1) are independent by using the SE
equations (70). Specifically, from (70b), Z; = Q); for all i. Also, since each Q); is zero mean, p; =0and Z =7, =Q;.
Since the Z; are independent, the linear predictor coefficients in (70d) are zero: Fy; = 0. Therefore, Ry = Ry ~ N(0, vy P;)
is independent of (Ry, ..., R;—1). From (70h), Q:+1 = R;. So, we have that (Qo, . .., Q¢—1) is an independent Gaussian
vector. Finally, to compute the variance of the Q)+ 1, observe

a b
cov(Q+1) @ cov(Ry) © vw Py
© vweov(Zy) @ vecov(Qy), (43)

where (a) follows from (70h); (b) follows from (70f) and the fact that F}; = 0 for all 4; (c) follows from (70e); and (d) follows
from the fact that Z; = Q;. Also, since gy = F, it follows that Qo ~ N'(0, vrI). We conclude that cov(Q:) = vy I, .
This proves part (a).
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For part (b), we consider perturbations Ay, Ap, and Ao of the parameters W, F', and C. We have that,

~ 1 ~ 1 - 1 ~
hy = ﬁWht—l + %Awht + Apzy, Yi = %Cht + Achy (44)

Combining this equation with (1), we see that the mapping from z; to [hy Et] is a linear time-invariant system. Let
q: € R™*27= be its impulse response. The impulse response coefficients satisfy the recursive equations,

1 1
qi+1 = % %

We can analyze these coefficients in the LSL using Lemma C.1. Specifically, let L = 2 and set

Way1, Waro +Awaqr1)|, qo=[F,AF].

A1 = VV, A2 = AW
Also, let

zn = Gi(qr) = (45a)
22 = éQ(Qt) = [0 %1]' (45b)

Then, we have the updates,

1 1
qi+1 = %sztl + ﬁﬁwzm q = [F,AF].

It follows from Lemma C.1 that (qo, . . . , gr—1) converges PL(2) to zero mean Gaussian random variables (Qq, . .., Qr—1).

Note that Q; = [Qy1, Q2] where each Q41 and Qy» are random vectors € R,

Similar to the proof of the previous theorem, we use induction to show that (Qo, . .., Q) are independent. Suppose that the
claim is true for ¢. Then, Z;; and Z;5 are functions of @;. So, for ¢ = 1,2, Z;, is independent of Z;, for i < ¢. Thus, the
prediction coefficients Fy;; = 0 and, as before, Ry ~ N (0, Pyy) independent of Ry, i < t. Thus, Q11 = Ry1 + Ryo is
independent of (Qo, ..., Q:).

We conclude by computing the cov(Q;). We claim that, for all ¢, the variance of @ is of the form,

cov(@) = | T Tt;}% (46)
for scalar 741, 742. Since go = [F, Ar|, we have
T =Vp, T =1
Now suppose that (46) is true for some ¢. From (70b),
Zn =Qu  Zun = (0,Qn),
from which we obtain that
cov(Zes) = mgm Tt;}nm } . cov(Zi) = { 8 m‘}nz } . 47)
Therefore, we have
cov(Qi+1) @ cov(Ry,1) + cov(Ry 2)
© v Pa + Pro
G veon(zu) +eonza) [ ] “

where (a) follows from (70h); (b) follows from (70f) and the fact that Fy;, = 0 for all i; (c) follows from (70e); and (d)
follows from (47). It follows that
Te+1,1 = VW Tel, Ti4+1,2 = Vw T2 + Ti1-
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These recursions have the solution,
t t—1 t
Tyl = VwVFR, T2 = VRl + Uy 49)

Since [hy, hy] = 3" =04 BZJ ] and we know each ¢; converges PL(2) to random ) with covariances calculated in (46)
—J

and (49), we have

[ht;ht] Ht,Ht ZQJ {x”] (50)

Tt—j

where H;, fIt are scalar random variables. For each ¢, s, we can now calculate the auto-correlation function for H as follows

=ED Y Q] Quazei]

=0 k=0

II—jE[Q},le,l]xs—j

I
M“

j=0
t .
= V{/VVF J}tT_jJZS_j. (51)
§=0
Similarly for H we have
E[HH) =Y (jvevly ' +vly) o]_jae ;. (52)
j=0

Thus, the impulse response of the system L; = C'g;,1 converge empirically to A/(0, A) where,

o1 j
A=ve lim EQJT-qu,l = voB[Q]1Qj.1] = veveviy I, . (53)

This proves part (a).
Note that E[H, H'] and E[H, H'] can be calculated similarly by substituting z,_ j withz_; in (51) and (52).

Next, we calculate the NTK in this case

Kis(z,2') = > G(Ae)t(Ae)T

Ae€To
Y Esonnoniie [Fi( D)7 (26)T] (54)
where (a) follows from Lemma B.1. Combining with (44) we have
Kio(z,2") = Ec Acan(0,1),iid. {(Cﬁt + Achy)(CR, + Ach;)q
- (VCE[fItﬁg] + E[HtH;]) I, (55)
Therefore,
K(z,2") = T(2)'D(p)T(2') & I, (56)
where 7 (z) and D(p) are given in (18) and (19) and
pi = Vc(iupyé;l + viy) + vy ve. (57)

This proves part (b).
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B.4. Proof of Theorem 4.1

Bounding the Initial Impulse Response from Theorem 3.3, each coefficient of LORNN7 ; has mean zero and variance
VoVFR yiv. There are n;n, such components. This proves (24).

Convolutional Equivalent Linear Model The key for the remainder of the proof is to use Theorems 3.2 and 3.3 to

construct a scaled convolutional model that has the same NTK and intial conditions as the RNN. Then, we analyze

the convolutional model to obtain the desired bound. To this end, let p = [py, ..., pr—1] be the scaling factors given

in Theorem 3.3. For each initial condition 8%y = (W F° C?) of the RNN, suppose that we initialize the scaled

convolutional model with )
0

beomvs = G

The initial impulse response of the scaled convolutional model will then be

1 )
Leonv,j = V/Pibeonv.i =~y COWO) FO = Ly ;- (58)

Hence, the scaled convolutional model and the RNN have the same initial impulse response coefficients. We then train the
scaled convolutional model on the training data using gradient descent with the same learning rate 1 used in the training of

the RNN. Let L%, . _j denote the impulse response of the scaled convolutional model after £ steps of gradient descent.

CO(W°)IFO.

Gradient Descent Analysis of the Convolutional Model Next, we look at how the impulse response of the scaled
convolutional model evolves over the gradient descent steps. It is convenient to do this analysis using some matrix notation.
For each parameter, 6 = [, . .., 07_1], the convolutional filter parameters are L; = ,/p;0;. Thus, we can write

L =D'?,

where D is a block diagonal operator with values p;. Also, lety = [y!,...,¥"] be the set of predictions on the N training
samples. Since the convolutional model is linear, we can write ¥ = AL for some linear operator A. The operator A would
be a block Toeplitz with the input data x = [x,...,x"]. Also, if we lety = [y*,...,y"] be the NV training samples, the
least squares cost is
ly — AD'20]|%.
Minimizing this loss function will result in GD steps,
0 = 0" + nD'/?AT(y — AD'/?6").

Now let u’ = D~/2(¢* —¢°) and b := y — AD'/26°. Then,

u' =u’ +7AT(b — AD)u’ = I—yATAD)u’ + nA'b (59)

For 0 < vy < 1, we have that p; satisfies the bound (22). Since D is a block diagonal matrix with entries p;, [|D|| < pmax-

Now select 1

B = —,
! pmaXHAH2

2 := |ATb||. (60)
If we take n < B; then
nDY2ATADY? < nppa] A2 <TI= I-nATAD| < 1.

Hence, (59) shows that
a1 g < u’llp + 1Bz = |u’||F < n¢Bo, (61)
where we have used the fact that u® = 0. Now, since u’ = D~'/2(#¢ — §°), the j-th component of #* is
¢ _ a0 ¢
Hence,

convg Y, 7 Conv \J + piua

Applying (61) we obtain the bound on the convolutional model

| LE Y

conv,j conv,j”F
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Bounding the RNN Impulse Response From Theorems 3.2 and 3.3, the scaled convolutional model and linear RNN
have the same NTK. Due to (58), they have the same input-output mapping at the initial conditions. Since the scaled
convolutional model is linear in its parameters it follows that it is linear NTK model for the RNN. Therefore, using the NTK
results such as Proposition 3.1, we have that for all input sequences x and GD time steps /,

Tim | fran (3, Ofn) = feony (3% Oeony ) || = 0, (63)
where the convergence is in probability. Thus, if we fix an input x and iteration £ and define

YRNN = fRNN (Xv efé{NN)a Yconv = fconv (X7 aﬁonv)a

the limit (63) can be re-written as

lim ||yRNN,j - yconv,j“ = 07 (64)

n— oo
for all j. Again, the convergence is in probability. Now consider the case where the input sequence x = (zo, ..., Z7—1)
is a sequence with z; = 0 for all j > 0 That is, it is only non-zero at the initial time step. Then for all time steps
YRNN,j = LﬁNN_’jxo and Yeonv,j = Lﬁonwxo. Since this is true for all g, (64) shows that for all time steps j = 0,...,T—1,
m || Lrxw,; (2, 03xn) — Leonv.j (2, Oony ) || - = 0 (65)

n—oo

where the convergence is in probability. Combining (65) with (62) proves (25).
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C. Recursions with Random Gaussians

‘We consider a recursion of the form,

L
qt+1 = ; %Azéz(% ut), (66)
where ¢; € R™"*% vy, € R"* % and Gy(qy,u;) acts row-wise, meaning
Gol(gesue)i: = Golqri i), (67)
for some Lipschitz functions G : R% x R%x — R4, That is, the outptut of row i of G¢(-) depends only the i-th rows of
its inputs. We will analyze this system for a fixed horizon, t = 0,...,T — 1. Assume that
(orti0s - ur—1) T Qo Us,..., Ur_y), (68)

to random variables (Qo, Uy, - .., Ur—_1) where Qg is independent of (Uy,...,Ur_1), and Qo ~ N(0, Py) for some
covariance matrix Py € R% > Assume the matrices A, € R™*™ are independent with i.i.d. components, (Ar)ij ~

N(QV@).

Lemma C.1. Under the above assumptions,

PL(2

(%a‘hw-~7QT—1aU07U17--~7UT—1) (QOanv"'7QT—17U0a'~'UT—1) (69)
where each Q; € R% and (Qo, Q1, . .., Qr_1) are zero mean Gaussian processes independent of (Uy, ... Ur_1), generated
recursively through SE equations given by

Dy = N(0, 1) (70a)
Zy = Go(Qr, Uy) (70b)
pee = B(Zwe),  Zue = Zuo — puae (70¢)
Fp=, min E(Z - Zl Z_juF; (70d)
i=
t t
Py =E(Zy - Z Z1— 0 Fi50) (Zu — Z Zi—jeFije) (70¢)
Ry = Z RijeFije + N(0,vw Pu), (700)
j=1
Ry = Ry + Dypire (70g)
L
Qi1 =) Ru (70h)

Proof: We prove this by induction. Let M, be the hypothesis that this result is true up to iteration ¢t. We show that M, is
true and that M, implies M; ;.

Base case (Mg): Define 2oy = G(qo, uo). We have that rows of zy, converge PL(2) to Zo, = G¢(Qo, Up).

Now, let poe = E(Zy,) and define the following:

1 -
de = —Apl, Zoe = 200 — Lpoe (71)

vn

~ IS ~
T = ﬁAeZoe, rie =T+ depoe, @ =Y e (72)
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We know that

PL(2) =~

PL(2 _
L Dy ~ N(0,vy), Zoe = Zot = Zoe — Hoe- (73)

dy
Note that 204 are zero mean. Now since Ay are i.i.d Gaussian matrices, rows of 71, converge PL(2) to random variable
o . 1 ~T ~ a.s. T —~
Rw ~ N(O,PM) where, Plg = lim —RoeRoL = E(ZOZZOZ) (74)
n—oo N

Furthermore, one can show that E(élglél ) = IE(Z)F&ZMZ) =0 }~21g1 and éwz are independent Therefore,

L

o "2 QU= [Rue+ Depor 75)

£=1

This proves M holds true.

Induction recursion: We next assume that the SE system is true up to iteration ¢. We write the recursions as

1
dl = ﬁAll e R" (763)
2t = éz(%, Ut), Zte = Zte — Lpee (76b)
L
- 1 - -
Ti41,0 = %Azzm Teg1,0 = Teg1,0 + deflee, Qi1 = ZHH,@- (76¢)
=1

The main issue in dealing with a recursion of the form Equation (76) is that for ¢t > 1, matrices {A,}%_, and {74, }}_, are
no longer independent. The key idea is to use a conditioning technique (Bolthausen conditioning) as in (Bayati & Montanari,
2011) to deal with this dependence. Instead of conditioning 71, on Ay, we condition A, on the event

~ 1 -
o ={Tr41,0 = ﬁAZZt/bt, =0,...,t =1} )

Note that this event is a set of linear constraints, and i.i.d. Gaussian random variables conditioned on linear constraints have
Gaussian densities that we can track.

Let 7-ttg be the linear operator _
Hie : Ag = (Tre, -5 Tee). (78)

With these definitions, we have
Agle,, = Hiy(Fre, .., Tre) + Hiz(Ay), (79)
where ﬁ: ¢ 1s the Moore-Penrose pseudo-inverse operator of ’ﬁt,g, ﬁi_f is the orthogonal projection operator onto the
subspace orthogonal to the kernel of H,,and Ay is an independent copy of A,. Therefore, we can write 741 ¢ as sum of two
terms
Terie = Togt e + T30 (80)

where ?fjtl ¢ 1s what we call the deterministic part:

1 o~ o
Flet | = %’H;(rl, T Fue (81)

and 7% , is the random part:

;{ran _ 1
t+1,8_\/>
n

It is helpful to write the linear operators defined in this section in matrix form for derivations that follow.

Hi(Ag) Zur. (82)

1 ~ ~
[Ag] [Zog PPN Zt—l,(] . (83)

Hio(Ag) = 7
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Deterministic part: We first characterizes the limiting behavior of r?fl ‘-

It is easy to show that if the functions G are non-constant, then the operator ’};tﬂ?@ where 7—7; is the adjoint of 7-7,tg, is
full-rank almost surely for any finite ¢. Thus, we have

Hiy = Hiy(HoH],) ! (84)
Form equation (78) we have
HY(Fies - To) Z Fe(Zo_1.0)T. (85)
Combining (85) and (78) we get t -
. 1
(HtZ(H;ré)(?lév . 777%))3 = ;ﬁ'é Gr—1.4) Za 10 (86)
Now, under the induction hypothesis, using the definition of PL(2) convergence we have
Ryolt',) = Tim (o1 %ere 2 E ((Zo1.0) Zor) 87)
Therefore we have,
R3,(0,0) Rz,(0,1) Rz,(0,t—1)
H N Frer o F) = e . Tl RZ"EL 0 RZ[(:L ) Rze(lzt - (88)
Ry(t—1,0) Ry(t—1,1) ... Ry(t—1t—1)
R

Let R%; denote the inverse of R 5, and index its blocks similarly to R z,. Then, the pseudo-inverse is

Hiy(Fre, -, T) f Z Z PRy (" = 1,8 = 1)(Zy—1,0)" + o(= ) (89)

t'=1t"=1

Define ﬁtz = Ztg — 22:1 Zt_j,[thg, , where F} . ¢ are defined in (70d). Using equation (81) we get:

t t
1 _ ~ _ 1
A-;ijtl = " Z Ty Z Rél}(t// — 17t/ — 1)(2}/71’[)1-2}}[ + 0(&) (908.)
t''=1 t'=1
a.s. : ~ ' —1 4 ' = T 1
2N T Y ORGHE - 1t~ D E ((Zt/,u) ZM) +o(=) (90b)
=1 t'=1 ' "
t t t
~ ~ ~ ~ ~ 1
= Ty R =18 —V)E | (Zu10) (Pu+ Y ZijiFrje) | +o0(=) (90c)
t'=1 t'=1 j=1 n
t t t
- _ . 1
=Y Py Y R =10 = )Ry, (' = 1,t—j) Frje + o(=) (90d)
=1 j=1t'=1

Is(t"=t—j+1)
t

1
Z FejrneFuge+o(>), (90e)

where (a) follows from the fact that ]E(Zr, gﬁw) =0fort’ =0,...,t — 1. Now by induction hypothesis we know that

~ PL(2) 7
Ti—j41,0 Ry_jy1,0, therefore,

t
~det  PL(2) Hdet =
Tit1e RS, =Y R jp1Fije oD

J=1
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Random part We next consider the random part:

1 ~  ~. -
T = \/ﬁHfz(Ae)Zw (92)
1 = i~
= ﬁ(z‘lem — Hi Heo(Ag)Zse). 93)
‘We know that,
1 o 1
HiH(Af) = ﬁ§:§: G Ry (" =1t = 1) (Ev10)" +o(~). 04)
t'=1t"=1
Then, we have
1 - t ot 1 1
Titie = \/ﬁAlzté \T Z Z Zoro10 R, (8" =1, — 1)( (Zt-1.0) Z”) o) ©2)
1 t t t 1
_ T~ 141 .
_%Agztg 7 ZAM” 10 ZMZlee (#" =Lt =) Rz (t' = Lt = j)Fije+o(-)  (96)
=1 J
1~ : 1
= %Az(gw - ;zt—j,eFt,j,z) + 0(5) o7

Therefore, since A, are i.i.d. Gaussian matrices, ?‘ginl , converges PL(2) to a Gaussian random variable R;%% , ~

11,0
N(O, Pt+1’g) such that,
Py =B(Zu =Y ZijuFij)) (Zee = Y Zu—joFije) (98)
j=1 j=1

We can now write §t+1,é as,
Rivre =R+ R, (99)
= Rijs1.0Frje+ N0, Pir ), (100)

j=1

and by equation (76) we have
Qi1 =Y Repie,  Ripre = Regre+ Dopse.

This proves M, implies M 1.





