Implicit Bias of Linear RNNs

Melikasadat Emami' Mojtaba Sahraee-Ardakan '?> Parthe Pandit'? Sundeep Rangan® Alyson K. Fletcher ' >

Abstract

Contemporary wisdom based on empirical studies
suggests that standard recurrent neural networks
(RNNss) do not perform well on tasks requiring
long-term memory. However, RNNs’ poor ability
to capture long-term dependencies has not been
fully understood. This paper provides a rigorous
explanation of this property in the special case of
linear RNNs. Although this work is limited to lin-
ear RNNs, even these systems have traditionally
been difficult to analyze due to their non-linear
parameterization. Using recently-developed ker-
nel regime analysis, our main result shows that as
the number of hidden units goes to infinity, lin-
ear RNNs learned from random initializations are
functionally equivalent to a certain weighted 1D-
convolutional network. Importantly, the weight-
ings in the equivalent model cause an implicit bias
to elements with smaller time lags in the convo-
lution, and hence shorter memory. The degree of
this bias depends on the variance of the transition
matrix at initialization and is related to the classic
exploding and vanishing gradients problem. The
theory is validated with both synthetic and real
data experiments.

1. Introduction

Over the past decade, models based on neural networks
have become commonplace in virtually all machine learning
applications. A key feature about this class of models is that,
in principle, they do not require an explicit design of features
but instead rely on an implicit learning of “meaningful”
representations of the data. This makes neural networks
attractive from the point of view of machine perception
where raw signals are inputs to the model. While neural

"Department of Electrical and Computer Engineering, Univer-
sity of California, Los Angeles, Los Angeles, USA *Department
of Statistics, University of California, Los Angeles, Los Angeles,
USA *Department of Electrical and Computer Engineering, New
York University, Brooklyn, New York, USA. Correspondence to:
Melikasadat Emami <emami@ucla.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

networks have become ubiquitous in practical applications,
several theoretical aspects of them largely remain a mystery.
Of significant importance is the lack of understanding of the
potential implicit biases that these representations bring to
the predictions of the model.

This paper aims to understand the implicit bias behaviour of
Recurrent Neural Networks (RNN). Several machine learn-
ing tasks require dealing with sequential data with possibly
varying lengths of input sequences. Example tasks include
automatic speech recognition, language translation, and im-
age captioning, among others. A well-known shortcoming
of standard RNNs trained using gradient descent is their
poor performance at tasks requiring long-term dependence
(Bengio et al., 1994). Traditional RNNs suffer from the
well-known vanishing / exploding gradient problem where
gradients from input time samples at long delays either de-
cay or explode making the learning of long-term effects
difficult. In practice, there have been a large number of
enhancements to RNNs to overcome these issues — most
notably LSTMs (Hochreiter & Schmidhuber, 1997) and
GRUs (Cho et al., 2014). However, while these methods
have had tremendous practical success, the ability of differ-
ent RNN architectures to capture or not capture long-term
dependencies has been difficult to rigorously analyze.

As a simple starting point, this paper seeks to precisely un-
derstand the training and memory of linear RNNs. Even
such linear models have been difficult to analyze completely
due to their non-linear parameterization. Our main result
shows rigorously that these models have an implicit bias
toward short-term memory, confirming the qualitative empir-
ically observed behavior of these networks. To our knowl-
edge, this paper is the first that provides a such a characteri-
zation of an implicit bias in RNNs.

Our results are based on the key observation that linear
RNNSs are functionally equivalent to a 1D-convolutional
model which is feed-forward in nature. Further, due to the
Neural Tangent Kernel (NTK) regime based analysis (Jacot
et al., 2018), we are able to show that RNNs trained using
gradient descent are implicitly biased towards learning tasks
with short-term contexts. Our result holds in a certain wide
limit regime where the number of hidden units in RNN goes
to infinity. The contributions are as follows:

e We explicitly compute the NTK for a linear RNN. This

Implicit Bias of Linear RNNs

is challenging due to the weight sharing in RNNs which
leads to statistical dependencies across time. We cal-
culate this NTK using a conditioning technique as in
(Bayati & Montanari, 2011) to deal with the dependen-
cies. This NTK is also calculated in (Alemohammad
et al., 2020) using the Tensor program results of (Yang,
2019a).

e We show that the linear RNN NTK is equivalent to
the NTK of a scaled convolutional model with cer-
tain scaling coefficients. This means that in the wide
limit regime (number of hidden units in RNN — c0),
gradient descent training of a linear RNN with non-
linear parameterization is identical to the training of an
appropriately scaled convolutional model.

e The above results rigorously show that there is an im-
plicit bias in using the non-linear parameterization asso-
ciated with a linear RNN. In particular, training linear
RNNs with non-linear parameterization using gradient
descent is implicitly biased towards short memory.

e We demonstrate the bias-variance trade-off of linear
RNN’s in experiments on synthetic and real data.

1.1. Prior Work

The connection between kernel methods and infinite width
neural networks was first introduced in (Neal, 1996). Neu-
ral networks in the infinite width limit are equivalent to
Gaussian processes at initialization and several papers have
investigated the correspondence to kernel methods for a va-
riety of architectures (Lee et al., 2018; Novak et al., 2019;
Garriga-Alonso et al., 2019; Yang, 2019a; Daniely et al.,
2016; Matthews et al., 2018). In particular, (Daniely et al.,
2016) introduced a framework to link a reproducing kernel
to the neural network and stochastic gradient descent was
shown to learn any function in the corresponding RKHS if
the network is sufficiently wide (Daniely, 2017).

A recent line of work has shown that gradient descent on
over-parameterized networks can achieve zero training error
with parameters very close to their initialization (Allen-Zhu
etal., 2018; Du et al., 2018a;b; Li & Liang, 2018; Zou et al.,
2018). The analysis of the generalization error in this high
dimensional regime led to exact characterizations of the
test error for different architectures (Montanari et al., 2019;
Hastie et al., 2019; Belkin et al., 2019; Emami et al., 2020;
Barbier et al., 2019; Gerbelot et al., 2020). In addition to
convergence to a global minimum for an over-parameterized
two-layer neural network, (E et al., 2020) also showed that
the resulting functions are uniformly close to the ones found
with the kernel regime. It was shown by (Jacot et al., 2018)
that the behavior of an infinitely wide fully-connected neural
network trained by gradient descent is characterized by the
so-called Neural Tangent Kernel (NTK) which is essentially

the linearization of the network around its initialization. The
NTK was later extended for different architectures (Arora
et al., 2019; Yang, 2019a;b; Alemohammad et al., 2020).

A different line of papers investigated the over-
parameterized neural networks from the mean field view-
point (Mei et al., 2018; Wei et al., 2019; Ma et al., 2019; Dou
& Liang, 2020; Sirignano & Spiliopoulos, 2020; Rotskoff
& Vanden-Eijnden, 2018). For recurrent neural networks in
particular, (Chen et al., 2018) has provided a theory for sig-
nal propagation in these networks which could predict their
trainability. The authors also give a closed-form initializa-
tion to improve the conditioning of input-output Jacobian.

Trainablility of RNNs has also been improved by using
orthogonal/unitary weight matrices (Arjovsky et al., 2016;
Wisdom et al., 2016; Jing et al., 2017; Emami et al., 2019).
It has been shown in (Emami et al., 2019) that for RNNs
with ReLU activations, there is no loss in the expressiveness
of the model when imposing the unitary constraint.

Note that in an RNN the states are correlated due to weight
sharing. Previous work such as (Chen et al., 2018), has
simplified the setting by assuming an independence over
RNN weights (ignoring the correlation) to show that the pre-
activations are Gaussian distributed. In this work, taking
into account these dependencies, we use techniques used
in (Bayati & Montanari, 2011; Rangan et al., 2019) to char-
acterize the behaviour of RNNs at initialization. Similar
techniques have also been explored in (Yang, 2019a).

We should mention that learning the weight matrices of a
linear RNN using data is essentially a system identification
task. There is a large body of literature in control theory
that consider the system identification problem and pro-
pose many different methods to find a system that matches
the input-output behavior of a given system. These meth-
ods include the prediction error method (PEM), subspace
methods, empirical transfer function estimate (ETFE), cor-
relation method, spectral analysis method, and sequential
Monte Carlo method to name a few. For a more compre-
hensive list of system identification methods and details
see (Ljung, 1999; Ljung & Glad, 1994; Lennart, 1999;
Katayama, 2006; Viberg, 1995; Soderstrom & Stoica, 1989;
Pintelon & Schoukens, 2012; Sjoberg et al., 1995). Even
though it would be interesting to see how different system
identification methods can be incorporated into neural net-
work training pipeline, the vast majority of works currently
learn the weights directly by optimizing a loss function
via gradient descent or its variants. As such, in this work
we solely focus on training of linear RNNs using gradient
descent.

Implicit Bias of Linear RNNs

2. Linear RNN and Convolutional Models

Linear RNNs We fix a time period 7" and consider a linear
RNN mapping an input sequence x = (zg,...,27_1) to
an ouptut sequence y = (yo, . . ., yr—1) via the updates

1
hy = %Whtq + Fxy,

1
yt—%

with the initial condition hA_; = 0. We let n,, n,, and n be
the dimension at each time of the input, x4, output, y;, and
hidden state h; respectively. Note that a bias term can be
added for h; by extending z; and F'. We will let

Chy, t=0,...,T—1, (1)

Yy = frRnn(X, OrNN) (2)
denote the mapping (1) where fgnn are the parameters
Ornn = (W, F,C). 3)

The goal is to learn parameters gy for the system from N
training data samples (x*,y*), i = 1,..., N. In this case,
each sample (x¢, y?) is a T-length input-output pair.

Wide System Limit We wish to understand learning of
this system in the wide-system limit where the number of
hidden units n — oo while the dimensions n,n, and
number of time steps 7" are fixed. Since the parameterization
of the RNN is non-linear, the initialization is critical. For
each n, we will assume that the parameters W, F, C are
initialized with i.i.d. components,

Wi.i NN(O’ VW)7 Fij NN(O7VF)7 CkiNN(07VC>7
“4)

for constants vy, vp, ve.

Stability In the initialization (4), vy is the variance of
the components of the kernel matrix W. One critical aspect
in selecting vy is the stability of the system. A standard
result in linear systems theory (see, e.g. (Kailath, 1980)) is
that the system (1) is stable if and only if ﬁ)\mm(W) <1
where A\pax (W) is the maximum absolute eigenvalue of W/
(i.e. the spectral radius). Stable W are generally necessary
for linear RNNs: Otherwise bounded inputs x; can result
in outputs y; that grow unbounded with time ¢. Hence,
training will be numerically unstable. Now, a classic result
in random matrix theory (Bai & Yin, 1986) is that, since the
entries of W are i.i.d. Gaussian N (0, vy),

lim

1
o %Amax(W) =rw

almost surely. Hence, for stability we need to select vy < 1.
As we will see below, it is this constraint that will limit the
ability of the linear RNN to learn long-term memory.

Scaled 1D Convolutional Equivalent Systems: Our
main result will draw an equivalence between the learn-
ing of linear RNNs and certain types of linear convolutional
models. Specifically, consider a linear convolutional model
of the form,

t
v =Y Lizij, 5)
3=0

where L; € R"™v*"= are the filter coefficient matrices. In
neural network terminology, the model (5) is a simply a
linear 1D convolutional network with n, input channels, n,,
output channels and 7-wide kernels.

Both the linear RNN model (1) and the 1D convolutional
model (5) define linear mappings of T-length input se-
quences x to T-length output sequences y. To state our
equivalence result between these models, we need to intro-
duce a certain scaled parametrization: Fix a set of scaling
factors p = (po, . . ., pr—1) Where p; > 0 for all j. Define
the parameters

econv = (007"'70T—1)a (6)
where §; € R™v*"=_Given any 6, let the impulse response
coefficients be

Lj = /pj;.)

As we will see below, the effect of the weighting is to favor
certain coefficients L; over others during training: For co-
efficients j where p; is large, the fitting will tend to select
L; large if needed. This scaling will be fundamental in
understanding implicit bias.

Now, given a set of weights p = (po, ..., pr—1), let
T-1
t
y = fconv (Xa econv) = Z vV Pjajl'tfj ’ ®)
3=0 t=0
denote the mapping of the input x = (zg,...,27_1)

through the convolutional filter 6.y, with filter coefficients
p to produce the output sequence y = (Yo, .- ., Y1r—1)-

It is well-know that the RNN and convolutional models
define the same total set of input-output mappings as given
by the following standard result:

Proposition 2.1. Consider the linear RNN model (2) and
the 1D convolutional model (8).

(a) Given a linear RNN parameters Opnn = (W, F,C), a
1D convolutional filter with coefficient matrices

1

Jt+1

n 2

L;= CW'F, j=0,...,T—1, (9

will have an identical input-output mapping. That is,
there exists parameters 0oy such that

fRNN (:L'7 HRNN) = fconv($7 econv)v (10)

Implicit Bias of Linear RNNs

for all inputs x.

(b) Conversely, given any T filter coefficients {Lj}JTz_Ol,

there exists RNN model with n < Tngn, hidden
states such that the RNN and 1D convolutional model
have identical input-output mappings over T-length
sequences.

Proof. These are standard results from linear systems theory
(Kailath, 1980). In the linear systems theory, the coefficients
L; are together called the matrix impulse response. Part (b)
follows by finding C', W and F' to match the equations (9).
Details are given in the Appendix B.1. O

Linear and Non-Linear Parametrizations: Proposition
2.1 shows that linear RNNs with sufficient width can repre-
sent the same input-output mappings as any linear convo-
Iution system. The difference between the models is in the
parameterizations. The output of the convolutional model
is linear in the parameters 6., whereas it is non-linear in
OrnN- As we will see below, the non-linear parameteriza-
tion of the RNN results in certain implicit biases.

3. NTKSs of Linear RNNs and Scaled
Convolutional Models

3.1. Neural Tangent Kernel Background

To state our first set of results, we briefly review the neural
tangent kernel (NTK) theory from (Jacot et al., 2018; Arora
et al., 2019). The main definitions and results we need are
as follows: Consider the problem of learning a (possibly
non-linear) model of the form

y=f(z0), (an

where € R™= is an input, f(-) is a model function dif-
ferentiable with respect to parameters #, and ¥ is some
prediction of an output y € R"v. The problem is to learn
the parameters 0 from training data {z%,y'}2,. For se-
quence problems, we use the convention that each x; and y;
represent one entire input-output sequence pair. Hence, the
dimensions will be m;, = n,T and m, = n,T.

Now, given the training data {=%, y*}} | and an initial pa-
rameter estimate 0°, the neural tangent kernel (NTK) model
is the linear model

N

J=f"(,0) = f(2,0°)+ > K/, z)a,

j=1

12)

where K (x,2’) is the so-called NTK,

. 0 (' 0O

where f; denotes the i-th output dimension and « is a vector
of dual coefficients,
(14)

a:(ala"'aaN)a

a; € R™=,
Note that K (z, ') depends implicitly on 6°. Also, for a
fixed initial condition, 6°, the model (12) is linear in the pa-
rameters «, and hence potentially easier to analyze than the
original non-linear model (11). The key result in NTKs is
that, for certain wide neural networks with random initializa-
tions, (full-batch) gradient descent training of the non-linear
and linear models are asymptotically identical. For example,
the results in (Lee et al., 2019) and (Alemohammad et al.,
2020) provide the following proposition:

Proposition 3.1. Suppose that f,(x,0) is a sequence of re-
current neural networks with n hidden states and non-linear
activation function o(-). Let {(z*,y*)}., be some fixed
training data contained in a compact set. Let (9\2 denote a
random initial condition generated as (4) and let gfb denote
the parameter estimate after { steps of (full-batch) gradient
descent with some learning rate 1. Let K, (z,z") denote
the NTK of the RNN and f'"(x, o) denote the correspond-
ing linear NTK model (12). Let @', denote the parameter
estimate obtained with GD with the same learning rate. We
further assume that the non-linear activation o satisfies

sup |o(z) — o(2")|/|x — 2’| < 0.

xH#x!

(0], 116" lloo

Then, for all x and ',

lim Ky, (z,2") = K(z,2") a.s. (15)

for some deterministic positive semi-definite matrix
K(x,2"). Moreover, if Amin(K) > 0, then for sufficiently
small learning rate 1 and any new sample x,

lim sup || fo(z,0%) — fi%(z, &%) =0, (16)
>0

n—oo Y
where the convergence is in probability.

The consequence of this result is that the behavior of cer-
tain infinitely-wide neural networks on new samples z is
identical to the behavior of the linearized network around
its initialization. This essentially means that as n — oo,
the learning dynamics for the original and the linearized
networks match during training.

3.2. NTK for the Convolutional Model

Having defined the NTK, we first compute the NTK of the
scaled convolutional model (8).

Theorem 3.2. Fix a time period T and consider the con-
volutional model (8) for a given set of scale factors p =

Implicit Bias of Linear RNNs

(po, - - - pr—1). Then, for any initial condition, and any two
input sequences x and x', the NTK for this model i,

Kxx)=Tx)'DpT*)®IL,, (17

where ® denotes the tensor product and T (x) is the Toeplitz
matrix,

To T1 TT—1
0 =z TT—2

T(x) = . e RT=xT (18)
0O 0 --- Zo

and D(p) is the diagonal matrix,

D(p) := diag(poln,, - ,pr-1ln,)- (19)
Proof Sketch. Given that y; = Z;:o V/Pifjzi—j, we con-
sider a perturbation in parameters . We show that the NTK
of this model can be written as an expectation over a certain
Gaussian random variable. We further derive the full kernel
as in (17). Details of the proof are provided in Appendix
B.2. O

3.3. NTK for the RNN Parametrization

We now compare the NTK of the scaled convolutional model
to the NTK for the RNN parameterization.

Theorem 3.3. Fix a time period T and consider the RNN
model (1) mapping an input sequence x = (g, ..., T7_1)
to an ouptut sequence’y = (yo, - .., Yyr—1) with the param-
eters (W, F,C). Assume the parameters are initialized as
(4) for some constants vy, vp,vc > 0. In the limit as the
number of hidden states n — oo:

(a) The impulse response coefficients L; in (9) converge
in distribution to independent Gaussians, where the
components of L; are i.i.d. N'(0,vcvpvy,).

(b) Given any input sequences x and x', the NTK con-
verges almost surely to the deterministic limit:

K(xx)=T(x)'D(p)Tx)® 1, (20)
where T (x) and D(p) are given in (18) and (19) and
pj = Vc(jypyi‘/_l + VIJ/V) + VFV%V' 21

Proof Sketch. Part (a) of the theorem is a special case of a
more general lemma, Lemma C.1, that we present in the
Appendix. Given (1) and (9), let g; be the impulse response
coefficients from z; to h;. We show that (qo, . .., g:) con-
verges to a Gaussian vector (Qo, . .., Q) where Q);’s are
independent zero mean. We then calculate the variances
following Lemma C.1 equations.

In part (b), we consider perturbations Ay, Ap, and A¢e of
the parameters of the RNN W, F’, and C. We observe that
the mapping from a; to [h; , %] is a linear time-invariant
system and its impulse response coefficients can be ana-
lyzed in the LSL using Lemma C.1. We can then calculate
the NTK as in (20). Details of the proof are provided in
Appendix B.3. O

Comparing Theorems 3.2 and 3.3, we see that the NTK
for linear RNN is identical to that of an scaled convolution
model when the scalings are chosen as (21). From Proposi-
tion 3.1, we see that, in the wide limit regime where n — oo,
gradient descent training of the linear RNN with the nonlin-
ear parametrization Ogny = (W, F, C) in (3) is identical to
the training of the convolutional model (5) where the linear
parameters L; are initialized as i.i.d. Gaussians and then
trained with certain scaling factors (21).

Moreover, the scaling factors have a geometric decay. Recall
from Section 2 that, for stability of the linear RNN we
require that vy < 1. When vy < 1 and j > 1, the scaling
factors (21) can be bounded as

Pj < pmaxya_ly Pmax ‘= VC(TVF+ 1) +vr. (22)
Consequently, the scale factors decay geometrically with
Vi !, This implies that, in the training of the scaled convo-
lutional model, the coefficients with higher delay j will be
given lower weight.

4. Implicit Bias of Linear RNNs

An importance consequence of the geometric decay of the
scaling factors p; in (22) is the implicit bias of GD training
of linear RNNs towards networks with short-term mem-
ory. To state this precisely, fix input and output train-
ing data (x%,y’), i = 1,...,N. For each n, consider
the RNN model (2) with n hidden states and parameters
OrnN in (3). Assume the parameters are initialized as
0%y = (WO, FO C% in (4) for some vy, vp,ve > 0.
Let
91[5{NN = (W£7F4,04)7

denote the parameter after ¢ steps of (full batch) gradient de-
scent with some learning rate 7). Let LﬁNN be the resulting
impulse response coefficients (9),
Linn,; =n UTD2CHWHIFY, j=0,...,T -1
(23)
We then have the following bound.

Theorem 4.1. Under the above assumptions, the norm of
the impulse response coefficients of the RNN at the initial
iteration £ = 0 are given by

: 0 2 j
nh_}rrgo El|Lgxn 7 = nanyvevevyy,. (24)

Implicit Bias of Linear RNNs

Also, there exists constants By and By such that if the learn-
ing rate satisfies 1 < By, then for all iterations £,

lim sup || Lnn,; —
n—oo

Lin,;llP < Bapsnt, (25)

where the convergence is in probability. Moreover, the
constants By and By can be selected independent of vy .

Proof Sketch. We first bound the initial impulse response
from the result of Theorem 3.3. Next, we use Theorems 3.2
and 3.3 to construct a scaled convolutional model that has
the same NTK and intial conditions as the RNN. Finally, we
analyze the convolutional model to obtain the bound in (25).
For details of the proof see Appendix B.4. O

To understand the significance of the theorem, observe that
in the convolutional model (5), L; relates the input time
samples z;_; to the output y;. The coefficient L; thus
describes the influence of the inputs samples on the output
samples j time steps later. Combining (24), (25), and (22),
we see that these coefficients decay as

Lf-{NNJ = O(Z/‘%2 + KV%V).

Also, as discussed in Section 2, we need vy < 1 for sta-
bility. Hence, the magnitude of these coefficients decay
geometrically with v{; ! Therefore, for a fixed number
of training steps, the effect of the input on the output at a
lag of j would be exponentially small in 5. In this sense,
training linear RNNs with the non-linear parameterization
Ornn = (W, F, C) is implicitly biased to short memory.

It is useful to compare the performance of an unscaled con-
volutional model with the linear RNN. The convolutional
model can fit any linear time-invariant system with an ar-
bitrary delay. We have seen in Proposition 2.1 that, in
principle, the linear RNN can also fit any such system with
a sufficient number of hidden states. However, the above
theorem shows that unless the number of gradient steps
grows exponentially with the desired delay, the parameteri-
zation of the linear RNN will strongly bias the solutions to
systems with short memory. This restriction will create bias
error on systems that have long-term memory. On the other
hand, due to the implicit constraint of the linear RNN, the
parameterization will reduce the variance error.

5. Numerical Experiments

We validate our theoretical results on a number of synthetic
and real data experiments.

5.1. Synthetic data

In section 3, we showed that the NTK for a linear RNN
given in (1) with parameters Orn in (3) is equivalent to the

Synthetic RNN task , vy = 0.30, seq_length = 10

25
—— RNN
—— Scaled_Conv1lD
20 A —--- Opt
o
o
T 15
e
@
£101
£
o
=
5 4
[1 S —
0 200 400 600 800 1000
Epochs
Synthetic RNN task , vy = 0.30 , seq_length = 10
25
—— RNN
—— Scaled_Conv1lD
20 A === Opt

—
v

—
o

Test error (dB)

0 200 400 600 800 1000

Figure 1. Dynamics of an RNN and its equivalent scaled Conv-1D
in learning a synthetic task. the data is generated from a synthetic
RNN with n, = n, = 1 and nh = 4. Noise is added to the output
with SNR= 20 dB The sequence length T=10. Training and test
samples are Ny, = Nys = 50. Full batch gradient descent is used
with I = 10™*. The dynamics of these models perfectly match.

NTK for its convolutional parameterization with parameters
Oconv- In order to validate this, we compared the training
dynamics of a linear RNN, eq (1), with a large number of
hidden states, n, and a scaled convolutional model (8) with
scale coefficients p; defined in (21).

We generated data from a synthetic (teacher) RNN with
random parameters. For the data generation system we used
a linear RNN with 4 hidden units and n, = n, = 1. Ma-
trices W, F', and C are generated as i.i.d random Gaussian
with vy = 0.3 and vp = v¢ = 1. We added noise to
the output of this system such that the signal-to-noise ratio
(SNR) is 20 dB. We generated 50 training sequences and 50
test sequences in total and each sequence has 7' = 10 time
steps.

Given the training and test data, we train (i) a (student)
linear RNN with n = 1000 hidden units, vy = 0.3, and
vp = Vo = 1; and (ii) a 1D-convolutional model with
scale coefficients p; calculated in (21) using vy = 0.3,
vrp = vo = 1. We used mean-squared error as the loss
function for both models and applied full-batch gradient
descent with learning rate Ir = 10~%. Fig. 1 shows the

Implicit Bias of Linear RNNs

Synthetic RNN task , vy = 0.30 , seq_length = 10

24.0
—— RNN

—— Scaled_Conv1lD
23.5

Test error (dB)

Epochs

Figure 2. The first 10 epochs in Fig. 1. Note that to be theoretically
accurate, we need [— 0 to be in the kernel regime.

1.2
—— RNN

ConvlD
T— Scaled_ConvlD
—— Opt

Test error
g o g
o (=] o
))

o
>
L

o
N
N

o
o
L

Delay

Figure 3. Test performance with respect to delay. For this task we
have np, = 1000, Nyp = Nis = 10, ny, = 15, ny = 1l,and T =
20. The delay is added manually by shifting i.e. y; = T¢—delay
and the output SNR =20 dB.

identical dynamics of training for both models. Fig. 2 shows
a zoomed-in version of the dynamics for training error. We
see, as the theory predicts, the RNN and scaled convolution
1D model have an identical performance.

To evaluate the performance of these models for a task with
long-term dependencies, we created a dataset where we
manually added different delay steps 7 to the output of a
true linear RNN system i.e. y; = z;—,. We have chosen
longer (T' = 20) true sequences for this task. We then
learned this data using the aforementioned linear RNN and
scaled 1D convolutional models. We also trained an un-
scaled 1D convolutional model with this data to compare
performances. With unscaled convolutional model, we ex-
actly learn the impulse response coefficients L; defined in
(5) during training.

Fig. 3 shows the test error with respect to delay steps for all
three models. Observe that the performance of the scaled
convolutional and the linear RNN models match during
training. Due to the bias of these models against the delay,

the test error increases as we increase the delay steps in our
system. On the other hand, the performance of the unscaled
convolutional model stays almost the same with increasing
delay, slightly changing at larger delays as there is less data
to track. We thus see the effect of implicit bias: When the
true system does not have high delay, the implicit bias of the
RNN and scaled convolutional model against delay helps.
As the true delay increases, the implicit bias causes bias
error not present in the unscaled convolutional model.

Our theoretical results hold in the asymptotic regime where
the number of hidden units of the RNN goes to infinity. To
test the applicability of our results to real-world RNNs that
have a finite number of hidden units, we run an experiment
where we change the number of hidden units and test how
closely the RNN training follows the kernel training, i.e. the
equivalent scaled convolutional model. In this experiment,
the true RNN that generates the synthetic data has 20 hidden
units and we train different RNNs with 10, 40, and 200
hidden units to learn the synthetic data. The results are
shown in Figure 4. For each nj,, the RNN (solid lines) along
with the equivalent scaled convolutional model (dashed line)
are trained. Our theory claims that when the learning rate of
gradient descent goes to zero and the number of hidden units
goes to infinity, the training error of these two models should
be exactly the same over the course of the optimization, i.e.
the solid curves and dashed curves should match. We see
that it is indeed the case. As we increase ny, the two curves
become closer and for n;, = 200 they almost perfectly
match. This suggests that our results should be applicable
in practice to RNNs of moderates size with more that 200
hidden units.

5.2. Real data

We also validated our theory using spikes rate data from
the macaque primary somatosensory cortex (S1) (Benjamin
et al., 2018). Somatosensory cortex is a part of the brain
responsible for receiving sensations of touch, pain, etc
from the entire body. The data is recorded during a two-
dimensional reaching task. In this task, a macaque was
rewarded for positioning a cursor on a series of randomly
generated targets on the screen using a handle. The data
is from a single recording of 51 minutes and includes 52
neurons. The mean and median firing rates are 9.3 and
6.3 spikes/sec.Similar to the previous experiments, we also
trained an unscaled 1D convolutional model with this data
and compared the performances with the linear RNN and
the scaled convolutional models.

We compared the performances on two sets of experiments.
We first used only the 4.5 minutes of the total recorded data.
The purpose of this experiment is to compare the perfor-
mances in limited data circumstances. With this limited
data, we expect the scaled convolutional model (and thus

Implicit Bias of Linear RNNs

Synthetic RNN task , vy = 0.30, seq_length = 10

25 4

it

154

RNN; nh=10

Scaled Conv 1D; nh=10
RNN; nh=40

Scaled Conv 1D; nh=40
RNN; nh=200

Scaled Conv 1D; nh=200

101

Training error (dB)

0 200 400 600 800 1000
Epochs

Figure 4. Training error over the course of training for RNNs with
different number of hidden units. Solid curves show the error
of RNN whereas the dashed curves show the error of equivalent
scaled convolutional model for each epoch. Our theoretical results
show that in the asymptotic regime of nj,, — oo with inifinitesimal
learning rate, the solid curves and dashed curves should exactly
match. Here, we see that as we increase nj, the two curves get
closer and even for n;, = 200 our theoretical prediction almost
perfectly matches what we observe in practice.

the RNN) to perform better than the unscaled model due
to the implicit bias of the towards short-term memory and
the fact that the effective number of parameters is smaller
in the scaled model which leads to a smaller variance. In
the second experiment, we trained our models using all the
available data (= 51 mins). In this case, the scaled model
(and the RNN) performs worse because of the increased
bias error. In our experiments setup, the linear RNN has
n = 1000 hidden states and the sequence length 7" = 15.
Also, vy =0.3and vp = vo = 1.

Fig. 5 shows the R? scores for x and y directions of all three
models for this task. Observe that, the dynamics of the linear
RNN and scaled convolutional model are identical during
training using either the entire recording or a part of it. For
the case of limited data, as discussed earlier, we observe the
implicit bias of the RNN and scaled convolutional model
in the figures (a). This bias leads to better performance of
these two models compared to the unscaled model. Using
the total available data, the unscaled convolutional model
performs better because of the increased bias error in the
other two models (figures in (b)). Table 1 shows the test
R2-score of the final trained models for all three cases.

6. Conclusion

In this work, we focus on the special class of linear RNNs
and observe a functional equivalence between linear RNNs
and 1D convolutional models. Using the kernel regime
framework, we show that the training of a linear RNN is

(a) Limited data

Somatosensory cortex data:

0.6 — — —
8 0.4
<
o
&
2 0.2
«
=
%
ﬂJ
s
0.0
—— RNN
ConvlD
024! —— Scaled_Conv1D
0 10 20 30 40 50 60 70
Epochs
Somatosensory cortex data:
0.4
S
2 024
o
o
&
3
% 0.0
Q
i
—— RNN
o2 Conv1D
—— Scaled_ConvlD

0 10 20 30 40 50 60 70

Epochs
(b) Entire data

Somatosensory cortex data:

0.6 1

0.4 4

Test R2 score (x)
o
o

0.0 1

-0.24 —— Scaled_Conv1D

0 10 20 30 40 50 60 70
Epochs

Somatosensory cortex data:

0.6 1

0.5 4

0.4 4

0.3+

0.2 4

Test R? score (y)

0.1+

[
004 — RNN

-0.141 —— Scaled_ConvlD

0 10 20 30 40 50 60 70
Epochs

Figure 5. R? score for the two dimensional reaching task described
in section 5.2 . The data is recorded from the primary somatosen-
sory cortex of macaques. (a) Limited data: The models are trained
on 4.5 minutes of recorded data. (b) Entire data: the whole record-
ing (=~ 51 mins) is used to compare the performances. For both
cases we used mini-batch (batch size = 128) gradient descent with
Ir=10""

Implicit Bias of Linear RNNs

RNN | Scaled Conv-1D | Conv-1D
R?C 0.6462 0.6442 0.6565
Ri 0.5911 0.5860 0.6027
Ri (limited data) | 0.6043 0.6046 0.5856
R?J (limited data) | 0.4257 0.4234 0.3918

Table 1. R%-score on test data for x and y directions in the two
dimensional reaching task described in section 5.2

identical to the training of a certain scaled convolutional
model. We further provide an analysis for an inductive
bias in linear RNNs towards short-term memory. We show
that this bias is driven by the variances of RNN parameters
at random initialization. Our theory is validated by both
synthetic and real data experiments.

Acknowledgements

The work of M. Emami, M. Sahraee-Ardakan, P. Pandit, and
A. K. Fletcher was supported in part by the National Science
Foundation under Grants 1254204 and 1738286, and the
Office of Naval Research under Grant N0O0014-15-1-2677.
S. Rangan was supported in part by the National Science
Foundation under Grants 1116589, 1302336, and 1547332,
NIST, the industrial affiliates of NYU WIRELESS, and the
SRC.

References

Alemohammad, S., Wang, Z., Balestriero, R., and Baraniuk,
R. The recurrent neural tangent kernel. arXiv preprint
arXiv:2006.10246, 2020.

Allen-Zhu, Z., Li, Y., and Song, Z. A convergence theory for
deep learning via over-parameterization. arXiv preprint
arXiv:1811.03962, 2018.

Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution
recurrent neural networks. In International Conference
on Machine Learning, pp. 1120-1128, 2016.

Arora, S., Du, S. S., Hu, W, Li, Z., Salakhutdinov, R. R.,
and Wang, R. On exact computation with an infinitely
wide neural net. In Advances in Neural Information Pro-
cessing Systems, pp. 8139-8148, 2019.

Bai, Z. D. and Yin, Y. Q. Limiting behavior of the norm
of products of random matrices and two problems of
geman-hwang. Probability theory and related fields, 73
(4):555-569, 1986.

Barbier, J., Krzakala, F., Macris, N., Miolane, L., and
Zdeborova, L. Optimal errors and phase transitions
in high-dimensional generalized linear models. Proc.
National Academy of Sciences, 116(12):5451-5460,

March 2019. ISSN 1091-6490. doi: 10.1073/
pnas.1802705116. URL http://dx.doi.org/10.
1073/pnas.1802705116.

Bayati, M. and Montanari, A. The dynamics of message
passing on dense graphs, with applications to compressed
sensing. IEEE Transactions on Information Theory, 57
(2):764-1785, 2011.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias—
variance trade-off. Proc. National Academy of Sciences,
116(32):15849-15854, 2019.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. /EEE
transactions on neural networks, 5(2):157-166, 1994.

Benjamin, A. S., Fernandes, H. L., Tomlinson, T., Ramku-
mar, P., VerSteeg, C., Chowdhury, R. H., Miller, L. E., and
Kording, K. P. Modern machine learning as a benchmark
for fitting neural responses. Frontiers in computational
neuroscience, 12:56, 2018.

Chen, M., Pennington, J., and Schoenholz, S. S. Dynamical
isometry and a mean field theory of rnns: Gating enables
signal propagation in recurrent neural networks. arXiv
preprint arXiv:1806.05394, 2018.

Cho, K., van Merrienboer, B., Bahdanau, D., and Ben-
gio, Y. On the properties of neural machine transla-
tion: Encoder—decoder approaches. Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, 2014. doi: 10.3115/v1/
w14-4012. URL http://dx.doi.org/10.3115/
v1/W14-4012.

Daniely, A. Sgd learns the conjugate kernel class of the
network. In Advances in Neural Information Processing
Systems, pp. 2422-2430, 2017.

Daniely, A., Frostig, R., and Singer, Y. Toward deeper under-
standing of neural networks: The power of initialization
and a dual view on expressivity. In Advances In Neural
Information Processing Systems, pp. 2253-2261, 2016.

Dou, X. and Liang, T. Training neural networks as learning
data-adaptive kernels: Provable representation and ap-
proximation benefits. Journal of the American Statistical
Association, pp. 1-14, 2020.

Du, S.S., Lee, J. D, Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks.
arXiv preprint arXiv:1811.03804, 2018a.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. arXiv preprint arXiv:1810.02054, 2018b.

http://dx.doi.org/10.1073/pnas.1802705116
http://dx.doi.org/10.1073/pnas.1802705116
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.3115/v1/W14-4012

Implicit Bias of Linear RNNs

E, W, Ma, C., and Wu, L. A comparative analysis
of optimization and generalization properties of two-
layer neural network and random feature models un-
der gradient descent dynamics. Science China Math-
ematics, Jan 2020. ISSN 1869-1862. doi: 10.1007/
s11425-019-1628-5. URL http://dx.doi.org/
10.1007/s11425-019-1628-5.

Emami, M., Ardakan, M. S., Rangan, S., and Fletcher, A. K.
Input-output equivalence of unitary and contractive rnns.
In Advances in Neural Information Processing Systems,
pp.- 1534215352, 2019.

Emami, M., Sahraee-Ardakan, M., Pandit, P, Rangan, S.,
and Fletcher, A. K. Generalization error of general-
ized linear models in high dimensions. arXiv preprint
arXiv:2005.00180, 2020.

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
Deep convolutional networks as shallow gaussian pro-
cesses. In International Conference on Learning Rep-

resentations, 2019. URL https://openreview.

net/forum?id=Bk1lfsi0cKm.

Gerbelot, C., Abbara, A., and Krzakala, F. Asymptotic er-
rors for convex penalized linear regression beyond gaus-
sian matrices. arXiv preprint arXiv:2002.04372, 2020.

Givens, C. R., Shortt, R. M., et al. A class of wasserstein
metrics for probability distributions. The Michigan Math-
ematical Journal, 31(2):231-240, 1984.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J.
Surprises in high-dimensional ridgeless least squares in-
terpolation. arXiv preprint arXiv:1903.08560, 2019.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571-8580, 2018.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun,
Y., Tegmark, M., and Soljaci¢, M. Tunable efficient
unitary neural networks (eunn) and their application to
rnns. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1733-1741. JMLR.
org, 2017.

Kailath, T. Linear systems, volume 156. Prentice-Hall
Englewood Cliffs, NJ, 1980.

Katayama, T. Subspace methods for system identification.
Springer Science & Business Media, 2006.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., and Bahri, Y. Deep neural networks
as gaussian processes. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=Bl1EA-M-0Z.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-
Dickstein, J., and Pennington, J. Wide neural networks of
any depth evolve as linear models under gradient descent.
In Advances in neural information processing systems,

pp. 8570-8581, 2019.

Lennart, L. System identification: theory for the user. PTR
Prentice Hall, Upper Saddle River, NJ, pp. 1-14, 1999.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing
Systems, pp. 8157-8166, 2018.

Ljung, L. System identification. Wiley encyclopedia of
electrical and electronics engineering, pp. 1-19, 1999.

Ljung, L. and Glad, T. Modeling of Dynamic Sys-
tems. Prentice-Hall information and system sci-
ences series. PTR Prentice Hall, 1994. ISBN
9780135970973. URL https://books.google.
com/books?i1d=z09gqQgAACAAJ.

Ma, C., Wu, L., et al. A comparative analysis of the opti-
mization and generalization property of two-layer neural
network and random feature models under gradient de-
scent dynamics. arXiv preprint arXiv:1904.04326, 2019.

Matthews, A. G. d. G., Rowland, M., Hron, J., Turner, R. E.,
and Ghahramani, Z. Gaussian process behaviour in wide
deep neural networks. arXiv preprint arXiv:1804.11271,
2018.

Mei, S., Montanari, A., and Nguyen, P.-M. A mean field
view of the landscape of two-layer neural networks. Pro-
ceedings of the National Academy of Sciences, 115(33):
E7665-E7671, 2018.

Montanari, A., Ruan, F., Sohn, Y., and Yan, J. The gen-
eralization error of max-margin linear classifiers: High-
dimensional asymptotics in the overparametrized regime.
arXiv preprint arXiv:1911.01544, 2019.

Neal, R. M. Bayesian Learning for Neural Net-
works. Springer New York, 1996. doi: 10.1007/
978-1-4612-0745-0. URL https://doi.org/10.
1007%2F978-1-4612-0745-0.

Novak, R., Xiao, L., Bahri, Y., Lee, J., Yang, G., Abo-
lafia, D. A., Pennington, J., and Sohl-dickstein, J.

http://dx.doi.org/10.1007/s11425-019-1628-5
http://dx.doi.org/10.1007/s11425-019-1628-5
https://openreview.net/forum?id=Bklfsi0cKm
https://openreview.net/forum?id=Bklfsi0cKm
https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z
https://books.google.com/books?id=zO9qQgAACAAJ
https://books.google.com/books?id=zO9qQgAACAAJ
https://doi.org/10.1007%2F978-1-4612-0745-0
https://doi.org/10.1007%2F978-1-4612-0745-0

Implicit Bias of Linear RNNs

Bayesian deep convolutional networks with many chan-
nels are gaussian processes. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=B1g30j0gF7.

Pintelon, R. and Schoukens, J. System identification: a
frequency domain approach. John Wiley & Sons, 2012.

Rangan, S., Schniter, P., and Fletcher, A. K. Vector approxi-
mate message passing. IEEE Transactions on Information
Theory, 65(10):6664—6684, 2019.

Rotskoff, G. M. and Vanden-Eijnden, E. Neural networks as
interacting particle systems: Asymptotic convexity of the
loss landscape and universal scaling of the approximation
error. arXiv preprint arXiv:1805.00915, 2018.

Sirignano, J. and Spiliopoulos, K. Mean field analysis of
neural networks: A central limit theorem. Stochastic Pro-
cesses and their Applications, 130(3):1820-1852, 2020.

Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Deylon,
B., Glorennec, P.-Y., Hjalmarsson, H., and Juditsky, A.
Nonlinear black-box modeling in system identification: a
unified overview. Linkoping University, 1995.

Soderstrom, T. and Stoica, P. System identification. Prentice-
Hall International, 1989.

Viberg, M. Subspace-based methods for the identification
of linear time-invariant systems. Automatica, 31(12):
1835-1851, 1995.

Villani, C. Optimal transport: old and new, volume 338.
Springer Science & Business Media, 2008.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets vs
their induced kernel. In Advances in Neural Information
Processing Systems, pp. 9709-9721, 2019.

Wisdom, S., Powers, T., Hershey, J., Le Roux, J., and Atlas,
L. Full-capacity unitary recurrent neural networks. In
Advances in Neural Information Processing Systems, pp.
4880-4888, 2016.

Yang, G. Scaling limits of wide neural networks with
weight sharing: Gaussian process behavior, gradient in-
dependence, and neural tangent kernel derivation. arXiv
preprint arXiv:1902.04760, 2019a.

Yang, G. Wide feedforward or recurrent neural networks of
any architecture are gaussian processes. In Advances in
Neural Information Processing Systems, pp. 9951-9960,
2019b.

Zou, D., Cao, Y., Zhou, D., and Gu, Q. Stochastic gradient
descent optimizes over-parameterized deep relu networks.
arXiv preprint arXiv:1811.08888, 2018.

https://openreview.net/forum?id=B1g30j0qF7
https://openreview.net/forum?id=B1g30j0qF7

