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A. Appendix
Here, we present additional materials and proofs of the main results that are not included in the main paper due to the page
limit. We also restate each result before the corresponding proof for the convenience of the reader. We also provide a table
for notations below.

Table 2: Notations and variables in this paper.

Notation Description

X ∈ Rn×d Data matrix
y ∈ Rn,Y ∈ Rn×K Label vector and matrix
Wl,j ∈ Rml−1×ml lth layer weight matrix
Al ∈ Rn×ml lth layer activation matrix
λ ∈ Rn,Λ ∈ Rn×K Dual vector and matrix
w∗ ∈ Rd,W∗ ∈ Rd×K Optimal weight vector and matrix
r Rank of X
UxΣxV

T
x Full SVD of X

ej jth ordinary basis vector
L(·, ·) Arbitrary convex loss function
fθ,L(X) Output of an L-layer network

A.1. General loss functions

In this section, we show that our extreme point characterization holds for arbitrary convex loss functions including cross
entropy and hinge loss. We first restate the primal training problem after applying the rescaling in Lemma 1.1 as follows

min
{θl}Ll=1,tj

L(fθ,L(X),y) + β‖wL‖1 +
β

2
(L− 2)

m∑
j=1

t2j s.t. wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2],∀j ∈ [m], (21)

where L(·,y) is a convex loss function.

Theorem A.1. The dual of (21) is given by

min
tj

max
λ
−L∗(λ) +

β

2
(L− 2)

m∑
j=1

t2j s.t. max
wL−1,j∈B2

‖Wl,j‖F≤tj

‖AT
L−1λ‖∞ ≤ β ,
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where L∗ is the Fenchel conjugate function defined as

L∗(λ) = max
z

zTλ− L(z,y) .

Proof of Theorem A.1. The proof directly follows from the dual derivation in Appendix A.2.

Theorem A.1 proves that our extreme point characterization applies to arbitrary loss function. Therefore, optimal param-
eters for (21) are a subset of the same extreme point set, i.e., determined by the input data matrix X, independent of loss
function.
Remark A.1. Since our characterization is generic in the sense that it holds for vector output, deep linear and deep ReLU
networks (see the main paper for details), Theorem A.1 is also valid for all of these cases.

A.2. Derivations for the dual problem in (3)

We first restate the scaled primal problem in Lemma 1.1

P ∗ = min
{θl}Ll=1,tj ,ŷ

L(ŷ,y) + β‖wL‖1 +
β

2
(L− 2)

m∑
j=1

t2j s.t.
wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2],∀j ∈ [m]

ŷ = fθ,L(X).

(22)

Then, the corresponding Lagrangian is

L(λ, ŷ,wL) = L(ŷ,y)− λT ŷ + λT fθ,L(X) + β‖wL‖1 +
β

2
(L− 2)

m∑
j=1

t2j .

Based on the Lagrangian above, we now obtain the dual function as follows

g(λ) = min
ŷ,wL

L(λ, ŷ,wL)

= min
ŷ,wL

L(ŷ,y)− λT ŷ + λT fθ,L(X) + β‖wL‖1 +
β

2
(L− 2)

m∑
j=1

t2j

= min
ŷ,wL

L(ŷ,y)− λT ŷ + λTAL−1wL + β‖wL‖1 +
β

2
(L− 2)

m∑
j=1

t2j

= −L∗(λ) +
β

2
(L− 2)

m∑
j=1

t2j s.t. ‖AT
L−1λ‖∞ ≤ β,

where L∗ is the Fenchel conjugate function defined as (Boyd & Vandenberghe, 2004)

L∗(λ) = max
z

zTλ− L(z,y) .

Thus, taking the dual of (22) in terms of wL and ŷ yield

P ∗ = min
{θl}L−1

l=1 ,tj

max
λ

g(λ)

s.t. wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l, j
=

min
{θl}L−1

l=1 ,tj

max
λ
−L∗(λ) +

β

2
(L− 2)

m∑
j=1

t2j

s.t. wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l, j, ‖AT
L−1λ‖∞ ≤ β.

To achieve the lower bound in the main paper, we now change the order of min (for the layer weights)-max as follows

P ∗ ≥ D∗ = min
tj

max
λ

min
wL−1,j∈B2

‖Wl,j‖F≤tj

−L∗(λ) +
β

2
(L− 2)

m∑
j=1

t2j s.t. ‖AT
L−1λ‖∞ ≤ β

= min
tj

max
λ
−L∗(λ) +

β

2
(L− 2)

m∑
j=1

t2j s.t. max
wL−1,j∈B2

‖Wl,j‖F≤tj

‖AT
L−1λ‖∞ ≤ β,

which completes the derivation.
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A.3. Equivalence (Rescaling) lemmas for the non-convex objectives

In this section, we present all the equivalence (scaling transformation) lemmas we used in the main paper and the the proofs
are presented in Appendix A.6, A.7, and A.8, two-layer, deep linear, and deep ReLU networks, respectively. We also note
that similar scaling techniques were also utilized in (Neyshabur et al., 2014; Savarese et al., 2019; Ergen & Pilanci, 2019;
2020a;b;c).

Lemma 1.1. The following problems are equivalent :

min
{θl}Ll=1

L(fθ,L(X),y) +
β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F

= min
{θl}Ll=1,{tj}

m
j=1

L(fθ,L(X),y) + β‖wL‖1

+
β

2
(L− 2)

m∑
j−1

t2j

s.t. wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2]

.

Proof of Lemma 1.1. For any θ ∈ Θ, we can rescale the parameters as w̄L−1,j = αjwL−1,j and w̄L,j = wL,j/αj , for
any αj > 0. Then, the network output becomes

fθ̄,L(X) =

m∑
j=1

(
(XW1,j)+ . . . w̄L−1,j

)
+
w̄L,j =

m∑
j=1

(
(XW1,j)+ . . .wL−1,j

)
+
wL,j = fθ,L(X),

which proves that this scaling does not change the output of the network. In addition to this, we have the following basic
inequality

m∑
j=1

L∑
l=1

‖Wl,j‖2F ≥
m∑
j=1

L−2∑
l=1

‖Wl‖2F + 2

m∑
j=1

|wL,j | ‖wL−1,j‖2,

where the equality is achieved with the scaling choice αj =
( |wL,j |
‖wL−1,j‖2

) 1
2 is used. Since the scaling operation does not

change the right-hand side of the inequality, we can set ‖wL−1,j‖2 = 1,∀j. Therefore, the right-hand side becomes
‖wL‖1.

Now, let us consider a modified version of the problem, where the unit norm equality constraint is relaxed as ‖wL−1,j‖2 ≤
1. Let us also assume that for a certain index j, we obtain ‖wL−1,j‖2 < 1 with wL,j 6= 0 as an optimal solution. This
shows that the unit norm inequality constraint is not active for wL−1,j , and hence removing the constraint for wL−1,j will
not change the optimal solution. However, when we remove the constraint, ‖wL−1,j‖2 → ∞ reduces the objective value
since it yields wL,j = 0. Therefore, we have a contradiction, which proves that all the constraints that correspond to a
nonzero wL,j must be active for an optimal solution. This also shows that replacing ‖wL−1,j‖2 = 1 with ‖wL−1,j‖2 ≤ 1
does not change the solution to the problem.

Then, we use the epigraph form for the sum of the norm of the first L − 2 layers to achieve the equivalence, i.e., we
introduce ‖Wl,j‖F ≤ tj constraint and replace

∑L−2
l=1 ‖Wl,j‖2F with (L − 2)t2j in the objective. We also note that since

the optimal layer weights have the same Frobenius norm as proven in Proposition 3.1, we can replace the Frobenius norm
of each layer weight matrix with the same variable t without loss of generality.

Lemma A.1. The following two problems are equivalent:

min
θ∈Θ
‖W1‖2F + ‖w2‖22

s.t. fθ,2(X) = y
=

min
θ∈Θ
‖w2‖1

s.t. fθ,2(X) = y,w1,j ∈ B2

.
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Proof of Lemma A.1. For any θ ∈ Θ, we can rescale the parameters as w̄1,j = αjw1,j and w̄2,j = w2,j/αj , for any
αj > 0. Then, the network output becomes

fθ̄,2(X) =

m∑
j=1

w̄2,jXw̄1,j =

m∑
j=1

w2,j

αj
αjXw1,j =

m∑
j=1

w2,jXw1,j ,

which proves fθ,2(X) = fθ̄,2(X). In addition to this, we have the following basic inequality

1

2

m∑
j=1

(w2
2,j + ‖w1,j‖22) ≥

m∑
j=1

(|w2,j | ‖w1,j‖2),

where the equality is achieved with the scaling choice αj =
( |w2,j |
‖w1,j‖2

) 1
2 is used. Since the scaling operation does not

change the right-hand side of the inequality, we can set ‖w1,j‖2 = 1,∀j. Therefore, the right-hand side becomes ‖w2‖1.

Now, let us consider a modified version of the problem, where the unit norm equality constraint is relaxed as ‖w1,j‖2 ≤ 1.
Let us also assume that for a certain index j, we obtain ‖w1,j‖2 < 1 with w2,j 6= 0 as an optimal solution. This shows
that the unit norm inequality constraint is not active for w1,j , and hence removing the constraint for w1,j will not change
the optimal solution. However, when we remove the constraint, ‖w1,j‖2 → ∞ reduces the objective value since it yields
w2,j = 0. Therefore, we have a contradiction, which proves that all the constraints that correspond to a nonzero w2,j must
be active for an optimal solution. This also shows that replacing ‖w1,j‖2 = 1 with ‖w1,j‖2 ≤ 1 does not change the
solution to the problem.

Lemma A.2. The following problems are equivalent:

min
θ∈Θ
‖W1‖2F + ‖W2‖2F

s.t. fθ,2(X) = Y
=

min
θ∈Θ

m∑
j=1

‖w2,j‖2

s.t. fθ,2(X) = Y,w1,j ∈ B2,∀j

.

Proof of Lemma A.2. The proof directly follows from Proof of Lemma A.1 using the following inequality

1

2

m∑
j=1

(‖w2,j‖22 + ‖w1,j‖22) ≥
m∑
j=1

(‖w2,j‖2 ‖w1,j‖2).

Then, if we set ‖w1,j‖2 = 1,∀j, the right-hand side becomes
∑m
j=1 ‖w2,j‖2.

Lemma A.3. The following problems are equivalent:

min
{θl}Ll=1

1

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F

s.t. fθ,L(X) = y

=
min

{θl}Ll=1,{tj}
m
j=1

‖wL‖1 +
1

2
(L− 2)

m∑
j=1

t2j

s.t. fθ,L(X) = y, wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2],∀j ∈ [m]

.

Proof of Lemma A.3. Applying the rescaling in Lemma A.1 to the last two layers of the L-layer network in (15) gives

min
{θl}Ll=1

‖wL‖1 +
1

2

m∑
j=1

L−2∑
l=1

‖Wl,j‖2F

s.t. ‖wL−1,j‖2 ≤ 1,∀j ∈ [m],

m∑
j=1

XW1,j . . .wL−1,jwL,j = y

.

Then, we use the epigraph form for the norm of the first L− 2 to achieve the equivalence.
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Lemma A.4. The following problems are equivalent:

min
{θl}Ll=1

1

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F

s.t. fθ,L(X) = Y

=
min

{θl}Ll=1,{tl}
L−2
l=1

m∑
j=1

‖wL,j‖2 +
1

2
(L− 2)

m∑
j=1

t2j

s.t. fθ,L(X) = Y, wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2], ∀j ∈ [m]

.

Proof of Lemma A.4. Applying the rescaling in Lemma A.1 to the last two layer of the L-layer network in (17) gives

min
{θl}Ll=1

m∑
j=1

‖wL,j‖2 +
1

2

m∑
j=1

L−2∑
l=1

‖Wl‖2F

s.t. ‖wL−1,j‖2 ≤ 1,∀j ∈ [m],

m∑
j=1

XW1,j . . .wL−1,jw
T
L,j = Y

.

Then, we use the epigraph form for the norm of the first L− 2 to achieve the equivalence.

A.4. Regularization in Theorem 4.4

In this section, we prove that regularizing the all the parameters do not alter the claims in Theorem 4.4. We first state the
primal problem, where all the parameters are regularized, as follows

P ∗r = min
θ∈Θ

1

2

∥∥∥∥∥∥
m∑
j=1

(BNγ,α (AL−2,jwL−1,j))+ wT
L,j −Y

∥∥∥∥∥∥
2

F

+
β

2

m∑
j=1

L∑
l=1

(∥∥∥γ(l)
j

∥∥∥2

2
+
∥∥∥α(l)

j

∥∥∥2

2
+ ‖Wl,j‖2F

)
, (23)

where we use γ(L) = α(L) = 0 as dummy variables for notational simplicity. Now, we rewrite (23) as

P ∗r = min
t≥0

min
θ∈Θ

1

2

∥∥∥∥∥∥
m∑
j=1

(BNγ,α (AL−2,jwL−1,j))+ wT
L,j −Y

∥∥∥∥∥∥
2

F

+
β

2

m∑
j=1

(
γ

(L−1)
j

2
+ α

(L−1)
j

2
+ ‖wL,j‖22

)
+
β

2
t

s.t.
m∑
j=1

L−2∑
l=1

(∥∥∥γ(l)
j

∥∥∥2

2
+
∥∥∥α(l)

j

∥∥∥2

2
+ ‖Wl,j‖2F

)
+ ‖WL−1‖2F ≤ t.

After applying the scaling between WL and (γ(L−1),α(L−1)) as in Lemma A.4, we take the dual with respect to WL to
obtain the following problem

P ∗r ≥ D∗r = max
t≥0

max
Λ
−1

2
‖Λ−Y‖2F +

1

2
‖Y‖2F +

β

2
t (24)

s.t. max
θ∈Θr

∥∥∥ΛT (BNγ,α (AL−2,jwL−1,j))+

∥∥∥
2
≤ β,

where Θr = {θ ∈ Θ : γ
(L−1)
j

2
+ α

(L−1)
j

2
= 1, ∀j ∈ [m],

∑L−2
l=1

(∥∥γ(l)
∥∥2

2
+
∥∥α(l)

∥∥2

2
+ ‖Wl,j‖2F

)
+ ‖WL−1‖2F ≤ t}.

Since

BNγ,α (AL−2,jwL−1,j) =
(In − 1

n1n×n)AL−2,jwL−1,j

‖(In − 1
n1n×n)AL−2,jwL−1,j‖2︸ ︷︷ ︸

h(θ′)

γ
(L−1)
j +

1n√
n
α

(L−1)
j ,

where θ′ denotes all the parameters except γ(L−1),α(L−1),WL. Then, independent of the value t, h(θ′) is always a unit
norm vector. Therefore, the maximization constraint in (24) is independent of the norms of the parameters in θ′, which
also proves that regularizing the weights in θ′ does not affect the dual characterization in (24).
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A.5. Additional numerical results

Here, we present additional numerical results that are not included in the main paper. In Figure 5a, we perform an exper-
iment to check whether the hidden neurons of a two-layer linear network align with the proposed right singular vectors.
For this experiment, we select a certain β such that W1 becomes rank-two. After training, we first normalize each neuron
to have unit norm, i.e., ‖w1,j‖2 = 1,∀j, and then compute the sum of the projections of each neuron onto each right
singular vector, i.e., denoted as vi. Since we choose β such that W1 is a rank-two matrix, most of the neurons align with
the first two right singular vectors as expected. Therefore, this experiment verifies our analysis and claims in Remark 2.1.
Furthermore, as an alternative to Figure 2a, we plot the singular values of W1 with respect to the regularization parameter
β in Figure 5b.
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Figure 5: (a) Projection of the hidden neurons to the right singular vectors claimed in Remark 2.1 and (b) singular values of W1 with
respect to β.

(a) CIFAR-100-Training objective (b) CIFAR-100-Test accuracy

Figure 6: Training and test performance of full batch SGD (4 initializations) on the CIFAR-100 datasets for a four class classification
tasks, where (n, d) = (2000, 3072), K = 4, L = 2 with 100 neurons and we use squared loss with one hot encoding. For Theory, we
use the layer weights in Theorem 4.4, which achieves the optimal performance as guaranteed by Theorem 4.4. We also use a marker to
denote the time required to compute the closed-form solution.

We also conduct an experiment on CIFAR-100 (Krizhevsky et al., 2014) datasets, for which we consider a four class
classification task. In order to verify our results in Theorem 4.4, we train a two-layer regularized ReLU networks with batch
normalization using four different initializations and then plot the results with respect to wall-clock time. As demonstrated
in Figure 6, our closed form solution, i.e., denoted as Theory, achieves lower objective value as proven in Theorem 4.4 and
higher test accuracy.
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A.6. Proofs for two-layer networks

Theorem 2.1. The dual of the problem in (5) is given by

P ∗ ≥ D∗ = max
λ∈Rn

λTy s.t. max
w1∈B2

∣∣λTXw1

∣∣ ≤ 1 . (6)

For (5), ∃m∗ ≤ n + 1 such that strong duality holds, i.e., P ∗ = D∗, ∀m ≥ m∗ and W∗
1 satisfies ‖(XW∗

1)Tλ∗‖∞ = 1 ,
where λ∗ is the dual optimal parameter.

Corollary 2.1. By Theorem 2.1, the optimal neurons are extreme points which solve argmaxw1∈B2
|λ∗TXw1 |.

Proof of Theorem 2.1 and Corollary 2.1. We first note that the dual of (5) with respect to w2 is

min
θ∈Θ\{w2}

max
λ

λTy s.t. ‖(XW1)T+λ‖∞ ≤ 1, ‖w1,j‖2 ≤ 1,∀j.

Then, we can reformulate the problem as follows

P ∗ = min
θ∈Θ\{w2}

max
λ

λTy + I(‖(XW1)T+λ‖∞ ≤ 1), s.t. ‖w1,j‖2 ≤ 1,∀j.

where I(‖(XW1)Tλ‖∞ ≤ 1) is the characteristic function of the set ‖(XW1)Tλ‖∞ ≤ 1, which is defined as

I(‖(XW1)Tλ‖∞ ≤ 1) =

{
0 if ‖(XW1)Tλ‖∞ ≤ 1

−∞ otherwise
.

Since the set ‖(XW1)Tλ‖∞ ≤ 1 is closed, the function Φ(λ,W1) = λTy + I(‖(XW1)Tλ‖∞ ≤ 1) is the sum of
a linear function and an upper-semicontinuous indicator function and therefore upper-semicontinuous. The constraint on
W1 is convex and compact. We use P ∗ to denote the value of the above min-max program. Exchanging the order of
min-max we obtain the dual problem given in (6), which establishes a lower bound D∗ for the above problem:

P ∗ ≥ D∗ = max
λ

min
θ∈Θ\{w2}

λTy + I(‖(XW1)Tλ‖∞ ≤ 1), s.t. ‖w1,j‖2 ≤ 1,∀j,

= max
λ

λTy, s.t. ‖(XW1)Tλ‖∞ ≤ 1 ∀w1,j : ‖w1,j‖2 ≤ 1,∀j,

= max
λ

λTy, s.t. ‖(Xw1)Tλ‖∞ ≤ 1 ∀w1 : ‖w1‖2 ≤ 1,

We now show that strong duality holds for infinite size NNs. The dual of the semi-infinite program in (6) is given by (see
Section 2.2 of (Goberna & López-Cerdá, 1998) and also (Bach, 2017))

min ‖µ‖TV

s.t.
∫

w1∈B2

Xw1dµ(w1) = y ,

where TV is the total variation norm of the Radon measure µ. This expression coincides with the infinite-size NN as
given in (Bach, 2017), and therefore strong duality holds. We also note that although the above formulation involves an
infinite dimensional integral form, by Caratheodory’s theorem, the integral can be represented as a finite summation of at
most n+ 1 Dirac delta functions (Rosset et al., 2007). Next we invoke the semi-infinite optimality conditions for the dual
problem in (6), in particular we apply Theorem 7.2 of (Goberna & López-Cerdá, 1998). We first define the set

K = cone

{(
sXw1

1

)
,w1 ∈ B2, s ∈ {−1,+1};

(
0n
−1

)}
.

Note that K is the union of finitely many convex closed sets, since the function Xw1 can be expressed as the union of
finitely many convex closed sets. Therefore the set K is closed. By Theorem 5.3 (Goberna & López-Cerdá, 1998), this
implies that the set of constraints in (6) forms a Farkas-Minkowski system. By Theorem 8.4 of (Goberna & López-Cerdá,
1998), primal and dual values are equal, given that the system is consistent. Moreover, the system is discretizable, i.e.,
there exists a sequence of problems with finitely many constraints whose optimal values approach to the optimal value
of (6). The optimality conditions in Theorem 7.2 (Goberna & López-Cerdá, 1998) implies that y = XW∗

1w∗2 for some
vector w∗2 . Since the primal and dual values are equal, we have λ∗

T
y = λ∗

T
XW∗

1w∗2 = ‖w∗2‖1, which shows that the
primal-dual pair ({w∗2,W∗

1},λ
∗) is optimal. Thus, the optimal neuron weights W∗

1 satisfy ‖(XW∗
1)Tλ∗‖∞ = 1.
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Proposition 2.1. [(Du & Hu, 2019)] Given w∗ = argminw ‖Xw − y‖2, we have

argmin
W1,w2

‖XW1w2 −Xw∗‖22 = argmin
W1,w2

‖XW1w2 − y‖22.

Proof of Proposition 2.1. Let us first define a variable w∗ that minimizes the following problem

w∗ = min
w
‖Xw − y‖22.

Thus, the following relation holds

XT (Xw∗ − y) = 0d.

Then, for any w ∈ Rd, we have

f(w) = ‖Xw −Xw∗ + Xw∗ − y‖22
= ‖Xw −Xw∗‖22 + 2(w −w∗)T XT (Xw∗ − y)︸ ︷︷ ︸

=0d

+‖Xw∗ − y‖22

= ‖Xw −Xw∗‖22 + ‖Xw∗ − y‖22.

Notice that ‖Xw∗ − y‖22 does not depend on w, thus, the relation above proves that minimizing f(w) is equivalent to
minimizing ‖Xw−Xw∗‖22, where w∗ is the planted model parameter. Therefore, the planted model assumption does not
change solution to the linear network training problem in (5).

Theorem 2.2. Let {X,y} be feasible for (5), then strong duality holds for finite width networks.

Proof of Theorem 2.2. Since there exists a single extreme point, we can construct a weight vector we ∈ Rd that is the
extreme point. Then, the dual of (5) with W1 = we is

D∗e = max
λ

λTy s.t. ‖(Xwe)
Tλ‖∞ ≤ 1. (25)

Then, we have

P ∗ = min
θ∈Θ\{w2}

max
λ

λTy ≥ max
λ

min
θ∈Θ\{w2}

λTy

s.t ‖(XW1)Tλ‖∞ ≤ 1, ‖w1,j‖2 ≤ 1,∀j s.t. ‖(XW1)Tλ‖∞ ≤ 1, ‖w1,j‖2 ≤ 1,∀j
= max

λ
λTy

s.t. ‖(Xwe)
Tλ‖∞ ≤ 1

= D∗e = D∗ (26)

where the first inequality follows from changing order of min-max to obtain a lower bound and the equality in the second
line follows from Corollary 2.1.

From the fact that an infinite width NN can always find a solution with the objective value lower than or equal to the
objective value of a finite width NN, we have

P ∗e = min
θ∈Θ\{W1,m}

|w2| ≥ P ∗ = min
θ∈Θ
‖w2‖1 (27)

s.t. Xwew2 = y s.t. XW1w2 = y, ‖w1,j‖2 ≤ 1,∀j,

where P ∗ is the optimal value of the original problem with infinitely many neurons. Now, notice that the optimization
problem on the left hand side of (27) is convex since it is an `1-norm minimization problem with linear equality constraints.
Therefore, strong duality holds for this problem, i.e., P ∗e = D∗e . Using this result along with (26), we prove that strong
duality holds for a finite width NN, i.e., P ∗e = P ∗ = D∗ = D∗e .
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Theorem 2.3. Strong duality holds for (10) with finite width.

Proof of Theorem 2.3. Since there exists a single extreme point, we can construct a weight vector we ∈ Rd that is the
extreme point. Then, the dual of (10) with W1 = we

D∗e = max
λ
−1

2
‖λ− y‖22 +

1

2
‖y‖22 s.t. |λTXwe| ≤ β.

Then the rest of the proof directly follows Proof of Theorem 2.2.

Theorem 2.4. Let {X,Y} be feasible for (12), then strong duality holds for finite width networks.

Proof of Theorem 2.4. Since there exist rw possible extreme points, we can construct a weight matrix We ∈ Rd×rw that
consists of all the possible extreme points. Then, the dual of (12) with W1 = We

D∗e = max
Λ

tr(ΛTY) s.t. ‖ΛTXwe,j‖2 ≤ 1,∀j ∈ [rw].

Then the rest of the proof directly follows Proof of Theorem 2.2.

A.7. Proofs for deep linear networks

Proposition 3.1. First L − 2 layer weight matrices in (15) have the same operator and Frobenius norms, i.e., tj =
‖Wl,j‖F = ‖Wl,j‖2,∀l ∈ [L− 2], ∀j ∈ [m].

Proof of Proposition 3.1. Let us first rescale the first L − 2 layer weights as W̄l,j =
tl,j

‖Wl,j‖F Wl,j , where tl,j > 0.

Defining tL−2
j =

∏L−2
l=1 ‖Wl,j‖F , if tl,j’s are chosen such that

∏L−2
l=1 tl,j = tL−2

j , then the rescaling does not alter the
output of the network, i.e., fθ,L(X) = fθ̄,L(X). Therefore, we can optimize {tl,j}L−2

l=1 as follows

min
{tl,j}L−2

l=1

1

2

L−2∑
l=1

t2l,j s.t.
L−2∏
l=1

tl,j = tL−2
j ,

for each j ∈ [m]. Apparently, the optimal scaling parameters obey t1,j = t2,j = . . . = tL−2,j = tj . We also note that
the optimal layer weights satisfy tj = ‖Wl,j‖2 = ‖Wl,j‖F , ∀l ∈ [L − 2], since the upper-bound is achieved when the
matrices are rank-one (see (34)).

Theorem 3.1. Optimal layer weights for (15) are

W∗
l,j =


t∗j

Vxw̃∗r
‖w̃∗r‖2

ρT1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where ρl,j ∈ Rml such that ‖ρl,j‖2 = 1, ∀l ∈ [L− 2], ∀j ∈ [m] and w̃∗r is defined in (9).

Proof of Theorem 3.1. Using Lemma A.3 and Proposition 3.1, we have the following dual problem for (15)

P ∗ = min
{θl}L−1

l=1 ,{tj}
m
j=1

max
λ

λTy +
1

2
(L− 2)

m∑
j=1

t2j s.t.
|(XW1,j . . .wL−1,j)

Tλ| ≤ 1, wL−1,j ∈ B2

‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2], ∀j ∈ [m].
(28)

Now, let us assume that the optimal Frobenius norm for each layer l is t∗j
9. Then, if we define ΘL−1 =

{θ1, . . . , θL−1|‖wL−1,j‖2 ≤ 1, ‖Wl,j‖F ≤ t∗j , ∀l ∈ [L− 2],∀j ∈ [m]}, (28) reduces to the following problem

P ∗ ≥ D∗ = max
λ

λTy s.t. |(XW1,j . . .wL−1,j)
Tλ| ≤ 1, ∀θl ∈ ΘL−1, ∀l, (29)

9With this assumption, (L− 2)
∑m
j=1 t

2
j becomes constant so we ignore this term for the rest of our derivations.
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where we change the order of min-max to obtain a lower bound for (28). The dual of the semi-infinite problem in (29) is
given by

min ‖µ‖TV s.t.
∫
{θl}L−1

l=1 ∈ΘL−1

XW1 . . .wL−1dµ(θ1, . . . , θL−1) = y , (30)

where µ is a signed Radon measure and ‖ · ‖TV is the total variation norm. We emphasize that (30) has infinite width in
each layer, however, an application of Caratheodory’s theorem shows that the measure µ in the integral can be represented
by finitely many (at most n + 1) Dirac delta functions (Rosset et al., 2007). Such selection of µ yields the following
problem

P ∗m = min
{θl}Ll=1

‖wL‖1 s.t.
m∗∑
j=1

XW1,j . . .wL−1,jwL,j = y, θl ∈ ΘL−1, ∀l (31)

We first note that since the model in (31) has the same expressive power with the network in (15) as long as m ≥ m∗, we
have P ∗ = P ∗m. Since the dual of (15) and (31) are the same, we also have D∗m = D∗, where D∗m is the optimal dual value
for (31).

We now apply the variable change in (8) to (29) as follows

max
λ

λ̃
T
Σxw̃

∗
r s.t. ‖WT

L−2,j . . .W
T
1,jVxΣ

T
x λ̃‖2 ≤ 1, ∀θl ∈ ΘL−1, ∀l. (32)

We note that an upper-bound for the constraint in (32) can be achieved as follows

‖WT
L−2,j . . .W

T
1,jVxΣ

T
x λ̃‖2 ≤ ‖WL−2,j‖2 . . . ‖W1,j‖2‖VxΣ

T
x λ̃‖2 ≤ t∗

L−2

j ‖ΣT
x λ̃‖2,

where the last inequality follows from the constraint on each layer weight’s norm, i.e., ‖Wl,j‖F ≤ t∗j . The equality can be
reached when the layer weights are

Wl = t∗jρl−1,jρ
T
l,j ∀l ∈ [L− 2],

where {ρl,j}L−2
l=1 is a set of arbitrary unit norm vectors and ρ0 = VxΣ

T
x λ̃/‖VxΣ

T
x λ̃‖2. Hence, we can rewrite (32) as

max
λ

λ̃
T
Σxw̃

∗
r s.t. t∗

L−2

j ‖ΣT
x λ̃‖2 ≤ 1,∀j ∈ [m]. (33)

Therefore, the maximum objective value is achieved when ΣT
x λ̃ = c1w̃

∗
r for some c1 > 0, which yields the following set

of optimal layer weight matrices

W∗
l,j =


t∗j

Vxw̃∗r
‖w̃∗r‖2

ρT1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

, (34)

where ρl,j ∈ Rml such that ‖ρl,j‖2 = 1, ∀l ∈ [L − 2],∀j ∈ [m]. This shows that the weight matrices are rank-one
and align with each other. Therefore, an arbitrary set of unit norm vectors, i.e., {ρl,j}L−2

l=1 can be chosen to achieve the
maximum dual objective.

Theorem 3.2. Let {X,y} be feasible for (15), then strong duality holds for finite width networks.

Proof of Theorem 3.2. We first select a set of unit norm vectors, i.e., {ρl,j}L−2
l=1 , to construct weight matrices {We

l,j}
L−1
l=1

that satisfies (34). Then, the dual of (15) can be written as

D∗e = max
λ

λTy

s.t. |(XWe
1,j . . .w

e
L−1,j)

Tλ| ≤ 1, ∀j ∈ [m]
.
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Then, we have

P ∗ = min
{θl}L−1

l=1 ∈ΘL−1

max
λ

λTy ≥ max
λ

λTy (35)

s.t. |(XW1 . . .wL−1)Tλ| ≤ 1 s.t. |(XW1 . . .wL−1)Tλ| ≤ 1, ∀θl ∈ ΘL−1

= max
λ

λTy

s.t. |(XWe
1,j . . .w

e
L−1,j)

Tλ| ≤ 1, ∀j
= D∗e = D∗ = D∗m,

where the first inequality follows from changing the order of min-max to obtain a lower bound and the first equality
follows from the fact that {We

l,j}
L−1
l=1 maximizes the dual problem. Furthermore, we have the following relation between

the primal problems

P ∗e = min
wL

‖wL‖1 ≥ P ∗ = min
{θl}Ll=1∈ΘL−1

‖wL‖1 (36)

s.t.
m∑
j=1

XWe
1,j . . .w

e
L−1.jwL,j = y s.t.

m∑
j=1

XW1,j . . .wL−1,jwL,j = y,

where the inequality follows from the fact that the original problem has infinite width in each layer. Now, notice that
the optimization problem on the left hand side of (36) is convex since it is an `1-norm minimization problem with linear
equality constraints. Therefore, strong duality holds for this problem, i.e., P ∗e = D∗e and we have P ∗e ≥ P ∗ = P ∗m ≥ D∗e =
D∗ = D∗m. Using this result along with (35), we prove that strong duality holds, i.e., P ∗e = P ∗ = P ∗m = D∗e = D∗ = D∗m.

Corollary 3.1. Theorem 3.1 implies that deep linear networks can obtain a scaled version of y using only the first layer,
i.e., XW1ρ1 = cy, where c > 0. Therefore, the remaining layers do not contribute to the expressive power of the network.

Proof of Corollary 3.1. The proof directly follows from (34).

Theorem 3.3. Optimal layer weights for (16) are

W∗
l,j =


t∗j

XTPX,β(y)
‖XTPX,β(y)‖2ρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where PX,β(·) projects to
{

u ∈ Rn | ‖XTu‖2 ≤ βt∗
2−L

j

}
.

Proof of Theorem 3.3. Using Lemma A.3 and Proposition 3.1, we have the following dual for (16)

max
λ
−1

2
‖λ− y‖22 +

1

2
‖y‖2 s.t. ‖(XW1,j . . .WL−2,j)

Tλ‖2 ≤ β, ∀θl ∈ ΘL−1, ∀l, j,

where ΘL−1 = {θ1, . . . , θL−1|‖wL−1,j‖2 ≤ 1, ‖Wl,j‖F ≤ t∗j , ∀l ∈ [L− 2],∀j ∈ [m]}. Then, the weight matrices that
maximize the value of the constraint can be described as

W∗
l,j =


t∗j

XTPX,β(y)
‖XTPX,β(y)‖2ρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

.

where PX,β(·) projects its input to
{

u ∈ Rn | ‖XTu‖2 ≤ βt∗
2−L

j

}
.

Corollary 3.2. Theorem 3.2 also shows that strong duality holds for the training problem in (16).
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Proof of Corollary 3.2. The proof directly follows from the analysis in this section and Theorem 3.2.

Theorem 3.4. Optimal layer weight for (17) are

W∗
l,j =


t∗j ṽw,jρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where j ∈ [K], ṽw,j is the jth maximal right singular vector of Λ∗
T

X and {ρl,j}L−2
l=1 are arbitrary unit norm vectors such

that ρTl,jρl,k = 0, ∀j 6= k.

Proof of Theorem 3.4. Using Proposition 3.1 and Lemma A.4, we obtain the following dual problem

D = max
Λ

tr(ΛTY) s.t. ‖ΛTXW1,j . . .WL−2,jwL−1,j‖2 ≤ 1, ∀θl ∈ ΘL−1, ∀j ∈ [m]

= max
Λ

tr(ΛTY) s.t. σmax(ΛTXW1,j . . .WL−2,j) ≤ 1, ∀θl ∈ ΘL−1, ∀j ∈ [m], (37)

where ΘL−1 = {θ1, . . . , θL−1|‖wL−1,j‖2 ≤ 1, ‖Wl,j‖F ≤ t∗j , ∀l ∈ [L− 2],∀j ∈ [m]}.

It is straightforward to show that the optimal layer weights are the extreme points of the constraint in (37), which achieves
the following upper-bound

max
{θl}L−2

l=1 ∈ΘL−1

σmax(ΛTXW1,j . . .WL−2,j) ≤ σmax(ΛTX)t∗
L−2

j .

This upper-bound is achieved when the first L−2 layer weights are rank-one with the singular value t∗j by Proposition 3.1.
Additionally, the left singular vector of W1,j needs to align with one of the maximum right singular vectors of ΛTX. Since
the upper-bound for the objective is achievable for any Λ, we can maximize the objective value, as in (14), by choosing a
matrix Λ such that

ΛTUxΣx = Vw

[
t∗

2−L

j Irw 0rx×d−rw
0k−rw×rx 0k−rw×d−rw

]
UT
w,

where W̃∗
r = VT

xW∗
r = UwΣwVT

w. Thus, a set of optimal layer weights can be formulated as follows

Wl,j =


t∗j ṽw,jρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

, (38)

where ṽw,j is the jth maximal right singular vector of ΛT∗X and we select a set of unit norm vectors {ρl,j}L−2
l=1 such that

ρTl,jρl,k = 0, ∀j 6= k. We now note that since there exist at most K singular vectors of ΛTX with non-zeros singular
values, we can replace m with K without loss of generality.

Theorem 3.5. Let {X,Y} be feasible for (17), then strong duality holds for finite width networks.

Proof of Theorem 3.5. We first select a set of unit norm vectors, i.e., {ρl,j}L−2
l=1 , to construct weight matrices {We

l,j}
L−1
l=1

that satisfies (38). Then, we have

P ∗ = min
{θl}L−1

l=1 ∈ΘL−1

max
Λ

tr(ΛTY) ≥ max
Λ

tr(ΛTY) (39)

s.t. σmax(ΛTXW1,j . . .WL−2,j) ≤ 1,∀j s.t. σmax(ΛTXW1,j . . .WL−2,j) ≤ 1, ∀j,∀θl ∈ ΘL−1

= max
Λ

tr(ΛTY)

s.t. σmax(ΛTXWe
1,j . . .W

e
L−2,j) ≤ 1, ∀j

= D∗e = D∗ = D∗m,
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where the first inequality follows from changing the order of min-max to obtain a lower bound and the first equality
follows from the fact that {We

l,j}
L−1
l=1 maximizes the dual problem. Furthermore, we have the following relation between

the primal problems

P ∗e = min
WL

m∑
j=1

‖wL,j‖2 ≥ P ∗ = min
{θl}Ll=1∈ΘL−1

m∑
j=1

‖wL,j‖2 (40)

s.t.
m∑
j=1

XWe
1,j . . .W

e
L−1,jw

T
L,j = Y s.t.

m∑
j=1

XW1,j . . .wL−1,jw
T
L,j = Y,

where the inequality follows from the fact that the original problem has infinite width in each layer. Now, notice that
the optimization problem on the left hand side of (40) is convex since it is an `2-norm minimization problem with linear
equality constraints. Therefore, strong duality holds for this problem, i.e., P ∗e = D∗e and we have P ∗e ≥ P ∗ = P ∗m ≥ D∗e =
D∗ = D∗m. Using this result along with (39), we prove that strong duality holds, i.e., P ∗e = P ∗ = P ∗m = D∗e = D∗ = D∗m.

Theorem 3.6. Optimal layer weights for (18) are

W∗
l,j =


t∗j ṽx,jρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where j ∈ [K], ṽx,j is a maximal right singular vector of PX,β(Y)TX and PX,β(·) projects to {U ∈
Rn×k | σmax(UTX) ≤ βt∗

2−L

j }. Additionally, ρl,j’s is an orthonormal set. Therefore, the rank of each hidden layer
is determined by β as in Remark 2.1.

Proof of Theorem 3.6. Using Lemma A.4 and Proposition 3.1, we have the following dual for (18)

max
Λ
−1

2
‖Λ−Y‖2F +

1

2
‖Y‖2F s.t. σmax(ΛTXW1,j . . .WL−2,j) ≤ β, ∀θl ∈ ΘL−1, ∀j ∈ [m],

where we define ΘL−1 = {θ1, . . . , θL−1|‖wL−1,j‖2 ≤ 1, ‖Wl,j‖F ≤ t∗j , ∀l ∈ [L − 2],∀j ∈ [m]}. Then, as in (38), a
set of optimal layer weights is

W∗
l,j =


t∗j ṽx,jρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where ṽx,j is a maximal right singular vector of PX,β(Y)TX and PX,β(·) projects its input to the set {U ∈
Rn×k | σmax(UTX) ≤ βt∗2−Lj }. Additionally, ρl,j’s is an orthonormal set.

A.8. Proofs for deep ReLU networks

Theorem 4.1. Let X be a rank-one matrix such that X = caT0 , where c ∈ Rn+ and a0 ∈ Rd, then strong duality holds and
the optimal weights are

Wl,j =
φl−1,j

‖φl−1,j‖2
φTl,j , ∀l ∈ [L− 2], wL−1,j =

φL−2,j

‖φL−2,j‖2
,

where φ0,j = a0 and {φl,j}L−2
l=1 is a set of vectors such that φl,j ∈ Rml+ and ‖φl,j‖2 = t∗j , ∀l ∈ [L− 2],∀j ∈ [m].

Proposition 1. First L− 2 hidden layer weight matrices in (19) have the same operator and Frobenius norms.

Proof of Proposition 1. Let us first denote the sum of the norms for the first L− 2 layer as tj , i.e., tj =
∑L−2
l=1 tl,j , where

tl,j = ‖Wl,j‖2 = ‖Wl,j‖F since the upper-bound is achieved when the matrices are rank-one. Then, to find the extreme
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points (see the details in Proof of Theorem 4.1), we need to solve the following problem

argmax
{θl}L−2

l=1

|λ∗
T

c| ‖aL−2‖2 = argmax
{θl}L−2

l=1 ∈ΘL−1

|λ∗
T

c| ‖(aTL−3,jWL−2,j)+‖2

where we use aTL−2,j = (aTL−3,jWL−2,j)+. Since ‖WL−2,j‖F = tL−2,j = tj −
∑L−3
l=1 tl,j , the objective value above

becomes |λ∗
T

c| ‖(aL−3,j‖2
(
tj −

∑L−3
l=1 tl,j

)
. Applying this step to all the remaining layer weights gives the following

problem

argmax
{tl,j}L−3

l=1

|λ∗
T

c| ‖a0‖2

(
tj −

L−3∑
l=1

tl,j

)
L−3∏
j=1

tl,j s.t.
L−3∑
l=1

tl,j ≤ tj , tl,j ≥ 0.

Then, the proof directly follows from Proof of Proposition 3.1.

Proof of Theorem 4.1. Using Lemma A.3 and Proposition 1, this problem can be equivalently stated as

min
{θl}Ll=1∈ΘL−1

‖wL‖1 s.t. Al,j = (Al−1,jWl,j)+, ∀l ∈ [L− 1],∀j ∈ [m]

AL−1wL = y
, (41)

which also has the following dual form

P ∗ = min
{θl}L−1

l=1 ∈ΘL−1

max
λ

λTy

s.t. ‖AT
L−1λ‖∞ ≤ 1

. (42)

Notice that we remove the recursive constraint in (42) for notational simplicity, however, AL−1 is still a function of all the
layer weights except wL. Changing the order of min-max in (42) gives

P ∗ ≥ D∗ = max
λ

λTy s.t. ‖AT
L−1λ‖∞ ≤ 1, ∀θl ∈ ΘL−1, ∀l ∈ [L− 1]. (43)

The dual of the semi-infinite problem in (43) is given by

min ‖µ‖TV

s.t.
∫
{θl}L−1

l=1 ∈ΘL−1

(AL−2wL−1)+ dµ(θ1, . . . , θL−1) = y ,
(44)

where µ is a signed Radon measure and ‖ · ‖TV is the total variation norm. We emphasize that (44) has infinite width in
each layer, however, an application of Caratheodory’s theorem shows that the measure µ in the integral can be represented
by finitely many (at most n+ 1) Dirac delta functions (Rosset et al., 2007). Thus, we choose

µ =

m∑
j=1

δ(W1 −W1,j , . . . ,wL−1 −wL−1,j)wL,j ,

where δ(·) is the Dirac delta function and the superscript indicates a particular choice for the corresponding layer weight.
This selection of µ yields the following problem

P ∗m = min
{θl}Ll=1

‖wL‖1

s.t.
m∑
j=1

(AL−2,jwL−1,j)+ wL,j = y, θl ∈ ΘL−1, ∀l ∈ [L− 1]
. (45)

Here, we note that the model in (45) has the same expressive power with ReLU networks, thus, we have P ∗ = P ∗m.
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As a consequence of (43), we can characterize the optimal layer weights for (45) as the extreme points that solve

argmax
{θl}L−1

l=1 ∈ΘL−1

|λ∗
T

(AL−2,jwL−1,j)+| (46)

where λ∗ is the optimal dual parameter. Since we assume that X = caT0 with c ∈ Rn+, we have AL−2,j = caTL−2,j ,
where aTl,j = (aTl−1,jWl,j)+, al,j ∈ Rml+ and ∀l ∈ [L − 1], ∀j ∈ [m]. Based on this observation, we have wL−1,j =
aL−2,j/‖aL−2,j‖2, which reduces (46) to the following

argmax
{θl}L−2

l=1 ∈ΘL−1

|λ∗
T

c| ‖aL−2,j‖2 (47)

We then apply the same approach to all the remaining layer weights. However, notice that each neuron for the first L − 2
layers must have bounded Frobenius norms due to the norm constraint. If we denote the optimal `2 norms vector for the
neuron in the lth layer as φl,j ∈ Rml+ , then we have the following formulation for the layer weights that solve (46)

Wl,j =
φl−1,j

‖φl−1,j‖2
φTl,j , ∀l ∈ [L− 2], wL−1,j =

φL−2,j

‖φL−2‖2
, (48)

where φ0,j = a0, {φl,j}L−2
l=1 is a set of nonnegative vectors satisfying ‖φl,j‖2 = t∗j , ∀l ∈ [L − 2]. Therefore, the set of

weights in (48) are optimal for (19). Moreover, as a direct consequence of Theorem 3.2, strong duality holds for this case
as well.

Theorem 4.2. Let X be a matrix such that X = caT0 , where c ∈ Rn and a0 ∈ Rd. Then, when L = 2, a set of optimal
solutions to (19) is {(wi, bi)}mi=1, where wi = si

a0

‖a0‖2 , bi = −sici‖a0‖2 with si = ±1,∀i ∈ [m].

Proof of Theorem 4.2. Given X = caT0 , all possible extreme points can be characterized as follows

argmax
b,w:‖w‖2=1

|λT (Xw + b1)+ | = argmax
b,w:‖w‖2=1

|λT
(
caT0 w + b1

)
+
|

= argmax
b,w:‖w‖2=1

∣∣∣ n∑
i=1

λi
(
cia

T
0 w + b

)
+

∣∣∣
which can be equivalently stated as

argmax
b,w:‖w‖2=1

∑
i∈S

λicia
T
0 w +

∑
i∈S

λib s.t.

{
cia

T
0 w + b ≥ 0,∀i ∈ S

cja
T
0 w + b ≤ 0,∀j ∈ Sc

,

which shows that w must be either positively or negatively aligned with a0, i.e., w = s a0

‖a0‖2 , where s = ±1. Thus, b
must be in the range of [maxi∈S(−sci‖a0‖2), mink∈Sc(−sck‖a0‖2)] Using these observations, extreme points can be
formulated as follows

wλ =

{
a0

‖a0‖2 if
∑
i∈S λici ≥ 0

−a0

‖a0‖2 otherwise
and bλ =

{
mink∈Sc(−sλck‖a0‖2) if

∑
i∈S λi ≥ 0

maxi∈S(−sλci‖a0‖2) otherwise
,

where sλ = sign(
∑
i∈S λici).

Proposition 4.1. Theorem 4.1 still holds when we add a bias term to the last hidden layer, i.e.,∑
j (AL−2,jwL−1,j + 1nbj)+ wL,j = y.

Proof of Proposition 4.1. Here, we add biases to the neurons in the last hidden layer of (19). For this case, all the equations
in (41)-(43) hold except notational changes due to the bias term. Thus, (46) changes as

argmax
{θl}L−1

l=1 ∈ΘL−1,bj

|λ∗
T

(AL−2,jwL−1,j + bj1n)+| = argmax
{θl}L−1

l=1 ∈ΘL−1,bj

|λ∗
T (

caTL−2,jwL−1,j + bj1n
)

+
|

= argmax
{θl}L−2

l=1 ∈ΘL−1,bj

∣∣∣ n∑
i=1

λ∗i
(
cia

T
L−2,jwL−1,j + bj

)
+

∣∣∣ (49)
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which can also be written as

argmax
{θl}L−1

l=1 ∈ΘL−1,bj

∑
i∈S

λ∗i cia
T
L−2,jwL−1,j +

∑
i∈S

λ∗i bj s.t.

{
cia

T
L−2,jwL−1 + bj ≥ 0,∀i ∈ S

cja
T
L−2,jwL−1,j + bj ≤ 0,∀j ∈ Sc

,

where S and Sc are the indices for which ReLU is active and inactive, respectively. This shows that wL−1,j must be
wL−1,j = ±1

aL−2,j

‖aL−2,j‖2 and bj ∈ [maxi∈S(−ci‖aL−2,j‖2), mink∈Sc(−ck‖aL−2,j‖2)]. Then, we obtain the following

w∗L−1,j =

{
aL−2,j

‖aL−2,j‖2 if
∑
i∈S λ

∗
i ci ≥ 0

−aL−2,j

‖aL−2,j‖2 otherwise
and b∗j =

{
mink∈Sc(−sλ∗ck‖aL−2,j‖2) if

∑
i∈S λ

∗
i ≥ 0

maxi∈S(−sλ∗ci‖aL−2,j‖2) otherwise
, (50)

where sλ∗ = sign(
∑
i∈S λ

∗
i ci). This result reduces (49) to the following problem

argmax
{θl}L−2

1 ∈ΘL−1

|C(λ∗, c)| ‖aL−2,j‖2,

where C(λ∗, c) is constant scalar independent of {Wl,j}L−2
l=1 . Hence, this problem and its solutions are the same with (47)

and (48), respectively.

Corollary 4.1. As a result of Theorem 4.2, when we have one dimensional data, i.e., x ∈ Rn, an optimal solution to (19)
can be formulated as {(wi, bi)}mi=1, where wi = si, bi = −sixi with si = ±1,∀i ∈ [m]. Therefore, the optimal network
output has kinks only at the input data points, i.e., the output function is in the following form: fθ,2(x̂) =

∑
i (x̂− xi)+.

Hence, the network output becomes a linear spline interpolation.

Corollary 4.2. As a result of Theorem 4.2 and Proposition 4.1, for one dimensional data, i.e., x ∈ Rn, the optimal network
output has kinks only at the input data points, i.e., the output function is in the following form: fθ,L(x̂) =

∑
i (x̂− xi)+.

Therefore, the optimal network output is a linear spline interpolation.

Proof of Corollary 4.1 and 4.2. Let us particularly consider the input sample a0. Then, the activations of the network
defined by (48) and (50) are

aT1,j = (aT0 W1)+ =
(
aT0

a0

‖a0‖2
φT1

)
+

= ‖a0‖2φT1,j

aT2,j = (aT1,jW2)+ =
(
aT1,j

a1,j

‖a1,j‖2
φT2,j

)
+

= ‖a0‖2‖φT1,j‖2φ
T
2,j

...

aTL−2,j = (aTL−3,jWL−2,j)+ =
(
aTL−3,j

aL−3,j

‖aL−3‖2
φTL−2

)
+

= ‖a0‖2‖φT1,j‖2 . . . ‖φ
T
L−3,j‖2φ

T
L−2,j

aL−1,j = (aTL−2,jwL−1,j + b)+ = (‖aL−2,j‖2 − ‖aL−2,j‖2)+ = 0.

Thus, if we feed cia0 to the network, we get aL−1,j = (ci‖aL−2,j‖2 − ci‖aL−2,j‖2)+ = 0, where we use the fact that
optimal biases are in the form of bj = −ci‖aL−2,j‖2 as proved in (50). This analysis proves that the kink of each ReLU
activation occurs exactly at one of the data points.

Proposition 4.2. Theorem 4.1 extends to deep ReLU networks with vector outputs, therefore, the optimal layer weights
can be formulated as in Theorem 4.1.

Proof of Proposition 4.2. For vector outputs, we have the following training problem

min
{θl}Ll=1

1

2
‖fθ,L(X)−Y‖2F +

β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F .
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After a suitable rescaling as in the previous case, the above problem has the following dual

P ∗ ≥ D∗ = max
Λ
−1

2
‖Λ−Y‖2F +

1

2
‖Y‖2F s.t. ‖ΛT (AL−2,jwL−1,j)+ ‖2 ≤ β, ∀θl ∈ ΘL−1, ∀l ∈ [L− 1],∀j ∈ [m].

(51)

Using (51), we can characterize the optimal layer weights as the extreme points that solve

argmax
{θl}L−1

l=1 ∈ΘL−1

‖Λ∗
T

(AL−2,jwL−1,j)+‖2, (52)

where Λ∗ is the optimal dual parameter. Since we assume that X = caT0 with c ∈ Rn+, we have AL−2,j = caTL−2,j , where
aTl,j = (aTl−1,jWl,j)+, al,j ∈ Rml+ and ∀l ∈ [L − 1]. Based on this observation, we have wL−1,j = aL−2,j/‖aL−2,j‖2,
which reduces (52) to the following

argmax
{θl}L−2

l=1 ∈ΘL−1

‖Λ∗
T

c‖2 ‖aL−2,j‖2.

Then, the rest of steps directly follow Theorem 4.1 yielding the following weight matrices

Wl,j =
φl−1,j

‖φl−1,j‖2
φTl,j , ∀l ∈ [L− 2], wL−1,j =

φL−2,j

‖φL−2,j‖2
,

where φ0,j = a0, {φl,j}L−2
l=1 is a set of nonnegative vectors satisfying ‖φl,j‖2 = t∗j , ∀l ∈ [L− 2],∀j ∈ [m].

Theorem 4.3. Let {X,Y} be a dataset such that XXT = In and Y is one-hot encoded, then a set of optimal solutions
for the following regularized training problem

min
θ∈Θ

1

2
‖fθ,L(X)−Y‖2F +

β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F (20)

can be formulated as follows

Wl,j =

{ φl−1,j

‖φl−1,j‖2
φTl,j , if l ∈ [L− 1](

‖φ0,j‖2 − β
)

+
φl−1,je

T
r if l = L

,

where φ0,j = XTyj , {φl,j}L−2
l=1 are vectors such that φl,j ∈ Rml+ , ‖φl,j‖2 = t∗j , and φTl,iφl,j = 0, ∀i 6= j, Moreover,

φL−1,j = ej is the jth ordinary basis vector.

Proof of Theorem 4.3. For vector outputs, we have the following training problem

P ∗ = min
θ∈Θ

1

2
‖fθ,L(X)−Y‖2F +

β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F (53)

After a suitable rescaling as in the previous case, the above problem has the following dual

P ∗ ≥ D∗ = max
λ
−1

2
‖Λ−Y‖F +

1

2
‖Y‖F s.t. ‖ΛT (AL−2,jwL−1,j)+ ‖2 ≤ β, ∀θl ∈ ΘL−1, ∀l ∈ [L− 1], ∀j ∈ [m].

(54)

Using (54), we can characterize the optimal layer weights as the extreme points that solve

argmax
{θl}L−1

l=1 ∈ΘL−1

‖Λ∗
T

(AL−2,jwL−1,j)+‖2, (55)
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where Λ∗ is the optimal dual parameter. We first note that since X is whitened such that XXT = In and labels are one-hot
encoded, the dual problem has a closed-form solution as follows

λ∗k =

{
βt∗

2−L

j
yk
‖yk‖2 if β ≤ ‖yk‖2

yk otherwise
, ∀k ∈ [K]. (56)

We now note that since Y has orthogonal one-hot encoded columns, the dual constraint can be decomposed into k max-
imization problems each of which can be maximized independently to find a set of extreme points. In particular, the jth

problem can be formulated as follows

argmax
{θl}L−1

l=1 ∈ΘL−1

|yTk (AL−2,jwL−1,j)+| ≤ max
{
‖ (yk)+ ‖2, ‖ (−yk)+ ‖2

}
.

Then, noting the whitened data assumption, the rest of steps directly follow Theorem 4.1 yielding the following weight
matrices

Wl,j =
φl−1,j

‖φl−1,j‖2
φTl,j , ∀l ∈ [L− 2], wL−1,j =

φL−2,j

‖φL−2,j‖2
, (57)

where φ0,j = XTyk and {φl,j}L−2
l=1 is a set of nonnegative vectors satisfying ‖φl,j‖2 = t∗j , ∀l and φTl,iφl,j = 0 ∀i 6= j.

We now note that given the hidden layer weight in (57), the primal problem in (53) is convex and differentiable with
respect to the output layer weight WL. Thus, we can find the optimal output layer weights by simply taking derivative and
equating it to zero. Applying these steps yields the following output layer weights

WL−1 =
[

φL−2,1

‖φL−2,1‖2
. . .

φL−2,K

‖φL−2,K‖2

]
=

K∑
r=1

φL−2,r

‖φL−2,r‖2
φTL−1,r

WL =

K∑
r=1

(
‖φ0,r‖2 − β

)
+
φL−1,re

T
r ,

(58)

where φL−1,r = er is the rth ordinary basis vector.

Let us now assume that t∗j = 1 for notational simplicity and then show that strong duality holds, i.e., P ∗ = D∗. We first
denote the set of indices that yield an extreme point as E = {j : β ≤ ‖yj‖2, j ∈ [o]}. Then we compute the objective
values for the dual problem (54) using (56)

D = −1

2
‖Λ∗ −Y‖2F +

1

2
‖Y‖2F

= −1

2

∑
j∈E

(β − ‖yj‖2)2 +
1

2

o∑
j=1

‖yj‖22

= −1

2
β2|E|+ β

∑
j∈E
‖yj‖2 +

1

2

∑
j /∈E

‖yj‖22. (59)

We next compute the objective value for the primal problem (53) (after applying the rescaling in Lemma A.4) using the
weights in (57) and (58) as follows

P =
1

2
‖fθ,L(X)−Y‖2F +

β

2

m∑
j=1

‖wL,j‖2

=
1

2

∥∥∥∥∥∥
∑
j∈E

(‖yj‖2 − β)
yj
‖yj‖2

eTj −Y

∥∥∥∥∥∥
2

F

+ β
∑
j∈E

(‖yj‖2 − β)

=
1

2

∑
j∈E

∥∥∥∥β yj
‖yj‖2

eTj

∥∥∥∥2

F

+
1

2

∑
j /∈E

‖yjeTj ‖2F + β
∑
j∈E
‖yj‖2 − β2|E|

= −1

2
β2|E|+ 1

2

∑
j /∈E

‖yj‖22 + β
∑
j∈E
‖yj‖2,
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which has the same value with (59). Therefore, strong duality holds, i.e., P ∗ = D∗, and the set of weights proposed in
(57) and (58) is optimal.

Theorem 4.4. Suppose Y is one hot encoded and the network is overparameterized such that the range of AL−2,j is Rn,
then an optimal solution to the following problem10

min
θ∈Θ

1

2

∥∥∥∥∥∥
m∑
j=1

(BNγ,α (AL−2,jwL−1,j))+ wL,j
T −Y

∥∥∥∥∥∥
2

F

+
β

2

m∑
j=1

(
γ

(L−1)
j

2
+ α

(L−1)
j

2
+ ‖wL,j‖22

)
,

can be formulated in closed-form as follows(
w∗L−1,j ,w

∗
L,j

)
=
(
A†L−2,jyj , (‖yj‖2 − β)+ ej

)
[
γ

(L−1)
j

∗

α
(L−1)
j

∗

]
=

1

‖yj‖2

[
‖yj − 1

n1n×nyj‖2
1√
n
1Tnyj

]
∀j ∈ [K], where ej is the jth ordinary basis vector.

Proof of Theorem 4.4. We first state the primal problem after applying the scaling between wL and (γ(L−1),α(L−1)) as
in Lemma A.4

P ∗ = min
θ∈Θs

1

2

∥∥∥∥∥∥
m∑
j=1

(BNγ,α (AL−2,jwL−1,j))+ wL,j
T −Y

∥∥∥∥∥∥
2

F

+ β

m∑
j=1

‖wL,j‖2 , (60)

where Θs = {θ ∈ Θ : γ
(L−1)
j

2
+ α

(L−1)
j

2
= 1, ∀j ∈ [m]} and the corresponding dual is

P ∗ ≥ D∗ = max
Λ
−1

2
‖Λ−Y‖2F +

1

2
‖Y‖2F s.t. max

θ∈Θs

∣∣∣ΛT (BNγ,α (AL−2,jwL−1,j))+

∣∣∣ ≤ β. (61)

We now show that the following set of solutions for the primal and dual problem achieves strong duality, i.e., P ∗ = D∗,
therefore, optimal.

(
w∗L−1,j ,w

∗
L,j

)
=

{(
A†L−2,jyj , (‖yj‖2 − β) ej

)
if β ≤ ‖yj‖2

− otherwise[
γ

(L−1)
j

∗

α
(L−1)
j

∗

]
=

1

‖yj‖2

[
‖yj − 1

n1n×nyj‖2
1√
n
1Tnyj

]

λ∗j =

{
β

yj
‖yj‖2 if β ≤ ‖yj‖2
yj otherwise

, ∀j ∈ [K].

Now let us first denote the set of indices that achieves the extreme point of the dual constraint as E = {j : β ≤ ‖yj‖2, j ∈
[K]}. Then the dual objective in (61) using the optimal dual parameter above

D∗L = −1

2
‖Λ∗ −Y‖2F +

1

2
‖Y‖2F

= −1

2

∑
j∈E

(β − ‖yj‖2)2 +
1

2

K∑
j=1

‖yj‖22

= −1

2
β2|E|+ β

∑
j∈E
‖yj‖2 +

1

2

∑
j /∈E

‖yj‖22. (62)

10Notice here we only regularize the last layer’s parameters, however, regularizing all the parameters does not change the analysis
and conclusion as proven in Appendix A.4.
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We next restate the scaled primal problem

P ∗L =
1

2

∥∥∥∥∥∥
K∑
j=1

(
(In − 1

n1n×n)AL−2,jw
∗
L−1,j

‖(In − 1
n1n×n)AL−2,jw∗L−1,j‖2

γ
(1)
j

∗
+

1√
n
α

(1)
j

∗
)

+

w∗
T

L,j −Y

∥∥∥∥∥∥
2

F

+ β

K∑
j=1

∥∥w∗L,j∥∥2

=
1

2

∥∥∥∥∥∥
∑
j∈E

(‖yj‖2 − β)
yj
‖yj‖2

eTj −Y

∥∥∥∥∥∥
2

F

+ β
∑
j∈E

(‖yj‖2 − β)

=
1

2

∑
j∈E

∥∥∥∥β yj
‖yj‖2

eTj

∥∥∥∥2

F

+
1

2

∑
j /∈E

‖yjeTj ‖2F + β
∑
j∈E
‖yj‖2 − β2|E|

= −1

2
β2|E|+ 1

2

∑
j /∈E

‖yj‖22 + β
∑
j∈E
‖yj‖2, (63)

which is the same with (62). Therefore, strong duality holds, i.e., P ∗ = D∗, and the proposed set of weights is optimal for
the primal problem (60).

Corollary 4.3. Computing the last hidden layer activations after BN, i.e., AL−1 ∈ Rn×K , using the optimal layer weight
in Theorem 4.4 and then subtracting their global mean as in (Papyan et al., 2020) yields(

In −
1

n
1n×n

)
AL−1 =

√
K

n

(
IK ⊗ 1 n

K
− 1

K
1n×K

)
,

where we assume that samples are ordered, i.e., the first n/K samples belong to class 1, next n/K samples belong to class
2 and so on. Therefore, all the activations for a certain class k are the same and their mean is given by (

√
K/n)(ek −

1K/K), which is the kth column of a general simplex ETF with α =
√

(K − 1)/n and U = IK .

Proof of Corollary 4.3 . We first restate a crucial assumptions in (Papyan et al., 2020).

Assumption 1. The training dataset has balanced class distribution. Therefore, if we denote the number of data samples
as n, then we have n

K samples for each class j ∈ [K].

Due to Assumption 1 and one-hot encoded labels, we have ‖y1‖2 = ‖y2‖2 = . . . = ‖yK‖2 =
√

n
K . Now, we assume

that
√

n
K > β since otherwise none of the neurons will be optimal as proven in Theorem 4.4. We also remark that√

n
K > 1 � β in practice so that this assumption is trivially satisfied for practical scenarios considered in (Papyan et al.,

2020). Therefore, the weights in Theorem 4.4 imply that

A(L−1),j =

 (In − 1
n1n×n)AL−2,jw

∗
(L−1),j∥∥∥(In − 1

n1n×n)AL−2,jw∗(L−1),j

∥∥∥
2

γ(L−1)∗ +
1n√
n
α(L−1)∗


+

=

(
(In − 1

n1n×n)yj

‖yj‖2
+

1n×nyj
n ‖yj‖2

)
+

=
yj
‖yj‖2

=

√
Kyj√
n

,

where A(L−1),j denotes the jth column of the last hidden layer activations after BN and the last equality follows from
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Assumptions 1. We then subtract mean from AL−1 as follows

(
In −

1

n
1n×n

)
AL−1 =

(
In −

1

n
1n×n

) √
K√
n

Y =

√
K√
n



1− 1
K − 1

K − 1
K . . . − 1

K
1− 1

K − 1
K − 1

K . . . − 1
K

... · · ·
− 1
K 1− 1

K − 1
K . . . − 1

K
− 1
K 1− 1

K − 1
K . . . − 1

K
... . . .


=

√
K√
n

(
IK ⊗ 1 n

K
− 1

K
1n×K

)
,

where we assume that samples are ordered, i.e., the first n/K samples belong to class 1, next n/K samples belong to class
2 and so on. Therefore, all the activations for a certain class k are the same and their mean is given by

√
K√
n

[
− 1

K
. . . 1− 1

K︸ ︷︷ ︸
kth entry

. . . − 1

K

]
=

√
K√
n

(
eTk −

1

K
1TK

)
,

which is the kth column of a general simplex ETF with α =
√

(K − 1)/n and U = IK in Definition 2. Hence, our analysis
in Theory 4.4 completely explains why the patterns claimed in (Papyan et al., 2020) emerge throughout the training of the
state-of-the-art architectures. We also remark that even though we use squared loss for the derivations, this analysis directly
applies to the other convex loss functions including cross entropy and hinge loss as proven in Appendix A.1.


