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Abstract

We study regularized deep neural networks
(DNNs) and introduce a convex analytic frame-
work to characterize the structure of the hidden
layers. We show that a set of optimal hidden
layer weights for a norm regularized DNN train-
ing problem can be explicitly found as the ex-
treme points of a convex set. For the special case
of deep linear networks, we prove that each op-
timal weight matrix aligns with the previous lay-
ers via duality. More importantly, we apply the
same characterization to deep ReLU networks
with whitened data and prove the same weight
alignment holds. As a corollary, we also prove
that norm regularized deep ReLU networks yield
spline interpolation for one-dimensional datasets
which was previously known only for two-layer
networks. Furthermore, we provide closed-form
solutions for the optimal layer weights when data
is rank-one or whitened. The same analysis also
applies to architectures with batch normaliza-
tion even for arbitrary data. Therefore, we ob-
tain a complete explanation for a recent empir-
ical observation termed Neural Collapse where
class means collapse to the vertices of a simplex
equiangular tight frame.

1. Introduction
Deep neural networks (DNNs) have become extremely
popular due to their success in machine learning applica-
tions. Even though DNNs are highly over-parameterized
and non-convex, simple first-order algorithms, e.g.,
Stochastic Gradient Descent (SGD), can be used to suc-
cessfully train them. Moreover, recent work has shown that
highly over-parameterized networks trained with SGD ob-
tain simple solutions that generalize well (Savarese et al.,
2019; Parhi & Nowak, 2019; Ergen & Pilanci, 2020a;b),
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where two-layer ReLU networks with the minimum Eu-
clidean norm solution and zero training error are proven
to fit a linear spline model in 1D regression. In addi-
tion, a recent series of work (Pilanci & Ergen, 2020; Ergen
& Pilanci, 2021; Sahiner et al., 2021; Gupta et al., 2021)
showed that regularized two-layer ReLU network training
problems exhibit a convex loss landscape in a higher di-
mensional space, which was previously attributed to the
benign impacts of overparameterization (Brutzkus et al.,
2017; Li & Liang, 2018; Du et al., 2018b; Ergen & Pilanci,
2019). Therefore, regularizing the solution towards smaller
norm weights might be the key to understand the general-
ization properties and loss landscape of DNNs. However,
analyzing DNNs is still theoretically elusive even in the ab-
sence of nonlinear activations. To this end, we study norm
regularized DNNs and develop a framework based on con-
vex duality to characterize a set of optimal solutions to the
training problem.

Deep linear networks have been the subject of extensive
theoretical analysis due to their tractability. A line of re-
search (Saxe et al., 2013; Arora et al., 2018a; Laurent &
Brecht, 2018; Du & Hu, 2019; Shamir, 2018) focused on
GD training dynamics, however, they lack the analysis of
solution set and generalization properties of deep networks.
Another line of research (Gunasekar et al., 2017; Arora
et al., 2019; Bhojanapalli et al., 2016) studied the general-
ization properties via matrix factorization and showed that
linear networks trained with GD converge to minimum nu-
clear norm solutions. Later on, (Arora et al., 2018b; Du
et al., 2018a) showed that gradient flow enforces the layer
weights to align. (Ji & Telgarsky, 2019) further proved
that each layer weight matrix is asymptotically rank-one.
These results provide insights to characterize the structure
of the optimal layer weights, however, they require mul-
tiple strong assumptions, e.g., linearly separable training
data and strictly decreasing loss function, which makes
the results impractical. Furthermore, (Zhang et al., 2019)
provided some characterizations for nonstandard networks,
which are valid for hinge loss with an uncommon regular-
ization. Unlike these studies, we introduce a complete char-
acterization for regularized deep network training problems
without requiring such assumptions.
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1.1. Our contributions

Our contributions can be summarized as follows

• We introduce a convex analytic framework that charac-
terizes a set of optimal solutions to regularized training
problems as the extreme points of a convex set.

• For deep linear networks, we prove that each optimal
layer weight matrix aligns with the previous layers via
convex duality.

• For deep ReLU networks, we obtain the same weight
alignment result for whitened or rank-one data matrices.
As a corollary, we achieve closed-form solutions for the
optimal hidden layer weights when the data is whitened
or rank-one (see Theorem 4.1 and 4.3).

• As another corollary, we prove that the optimal regu-
larized ReLU networks are linear spline interpolators
for one-dimensional, i.e., rank-one, data which gener-
alizes the two-layer results for one-dimensional data in
(Savarese et al., 2019; Parhi & Nowak, 2019; Ergen &
Pilanci, 2020a;b) to arbitrary depth.

• We show that whitening/rank-one assumptions can be re-
moved by placing batch normalization in between layers
(see Theorem 4.4). Hence, our results explain a recent
empirical observation, termed Neural Collapse (Papyan
et al., 2020), where class means collapse to the vertices
of a simplex equiangular tight frame (see Corollary 4.3).

1.2. Overview of our results

Notation: We denote matrices/vectors as upper-
case/lowercase bold letters. We use 0k (or 1k) and
Ik to denote a vector of zeros (or ones) and the identity
matrix of size k × k, respectively. We denote the set of
integers from 1 to n as [n]. To denote Frobenius, operator,
and nuclear norms, we use ‖ · ‖F , ‖ · ‖2, and ‖ · ‖∗,
respectively. We also use tr to denote the trace of a matrix.
Furthermore, σmax(·) and σmin(·) represent the maximum
and minimum singular values, respectively and the unit
`2-ball B2 is defined as B2 = {u ∈ Rd | ‖u‖2 ≤ 1}. We
also provide further explanations about our notation in
Table 2 in Appendix.

We consider anL-layer network with layer weights Wl,j ∈
Rml−1×ml and wL ∈ Rm, ∀l ∈ [L], ∀j ∈ [m], where
m0 = d and mL−1 = 1, respectively. Then, given
a data matrix X ∈ Rn×d, the output is fθ,L(X) =
AL−1wL, Al,j = g(Al−1,jWl,j) ∀l ∈ [L − 1], where
A0,j = X, AL−1 ∈ Rn×m, and g(·) is the activation func-
tion. Given labels y ∈ Rn, the training problem is as fol-
lows

min
{θl}Ll=1

L(fθ,L(X),y) + βR(θ) , (1)

where L(·, ·) is an arbitrary loss function, R(θ) is regu-
larization for the layer weights, β > 0 is a regularization
parameter, θl = {{Wl,j}mj=1,ml}, and θ = {θl}Ll=1. In
the paper, for the sake of presentation simplicity, we illus-
trate the conventional training setup with squared loss and
`22-norm regularization. However, our analysis is valid for
arbitrary convex loss functions as proven in Appendix A.1.
Thus, we consider the following optimization problem

P ∗ = min
{θl}Ll=1

L(fθ,L(X),y) +
β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F . (2)

Next, we show that the minimum `22-norm is equivalent to
minimum `1-norm after a rescaling.

Lemma 1.1. The following problems are equivalent :

min
{θl}Ll=1

L(fθ,L(X),y) +
β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F

= min
{θl}Ll=1,{tj}

m
j=1

L(fθ,L(X),y) + β‖wL‖1

+
β

2
(L− 2)

m∑
j−1

t2j

s.t. wL−1,j ∈ B2, ‖Wl,j‖F ≤ tj , ∀l ∈ [L− 2]

.

Using Lemma 1.11, we first take the dual with respect to
the output layer weights wL and then change the order of
min-max to achieve the following dual as a lower bound 2

P ∗ ≥D∗ = min
{tj}mj=1

max
λ
−L∗(λ) +

β

2
(L− 2)

m∑
j−1

t2j

s.t. max
wL−1,j∈B2

‖Wl,j‖F≤tj

‖AT
L−1,jλ‖∞ ≤ β . (3)

To the best of our knowledge, the dual DNN characteriza-
tion (3) is novel. Using this result, we first characterize a
set of weights that minimize the objective via the optimality
conditions and active constraints in (3). We then prove the
optimality of these weights by proving strong duality, i.e.,
P ∗ = D∗, for DNNs. We then show that, for deep linear
networks, optimal weight matrices align with the previous
layers.

More importantly, the same analysis and conclusions also
apply to deep ReLU networks when the input is whitened
and/or rank-one. Here, we even obtain closed-form so-
lutions for the optimal layer weights. As a corollary, we
show that deep ReLU networks fit a linear spline interpo-
lation when the input is one-dimensional. We also provide
an experiment in Figure 1 to verify this claim. Note that

1The proof is presented in Appendix A.3.
2For the definitions and details see Appendix A.1 and A.2.
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Width (m) Assumption Depth (L) # of outputs (K)
(Savarese et al., 2019) ∞ 1D data (d = 1) 2 7 (K = 1)

(Parhi & Nowak, 2019) ∞ 1D data (d = 1) 2 7 (K = 1)
(Ergen & Pilanci, 2020a;b) finite rank-one/whitened 2 3 (K ≥ 1)

Our results finite
rank-one/whitened

or BatchNorm L ≥ 2 3 (K ≥ 1)

Figure 1 & Table 1: One dimensional interpolation using L-layer ReLU networks with 20 neurons in each hidden layer. As predicted
by Corollary 4.2, the optimal solution is given by piecewise linear splines for any L ≥ 2. Additionally, we provide a comparison with
previous studies about this characterization.

this result was previously known only for two-layer net-
works (Savarese et al., 2019; Parhi & Nowak, 2019; Er-
gen & Pilanci, 2020a;b) and here we extend it to arbitrary
depth L (see Table 1 for details). We also show that the
whitened/rank-one assumption can be removed by intro-
ducing batch normalization in between layers, which re-
flects the training setup in practice.

2. Warmup: Two-layer linear networks
As a warmup, we first consider the simple case of two-
layer linear networks with the output fθ,2(X) = XW1w2

and the parameters as θ ∈ Θ = {(W1,w2,m) |W1 ∈
Rd×m,w2 ∈ Rm,m ∈ Z+}. Motivated by recent re-
sults (Neyshabur et al., 2014; Savarese et al., 2019; Parhi
& Nowak, 2019; Ergen & Pilanci, 2020a;b), we first fo-
cus on a minimum norm3 variant of (1) with squared loss,
which can be written as

min
θ∈Θ
‖W1‖2F + ‖w2‖22 s.t. fθ,2(X) = y. (4)

Using Lemma A.14, we equivalently have

P ∗ = min
θ∈Θ
‖w2‖1 s.t. fθ,2(X) = y,w1,j ∈ B2,∀j, (5)

which has the following dual form.

Theorem 2.1. The dual of the problem in (5) is given by

P ∗ ≥ D∗ = max
λ∈Rn

λTy s.t. max
w1∈B2

∣∣λTXw1

∣∣ ≤ 1 . (6)

For (5), ∃m∗ ≤ n + 1 such that strong duality
holds, i.e., P ∗ = D∗, ∀m ≥ m∗ and W∗

1 satisfies
‖(XW∗

1)Tλ∗‖∞ = 1 , where λ∗ is the dual optimal pa-
rameter.

Using Theorem 2.1, we now characterize the optimal neu-
rons as the extreme points of a convex set.

Corollary 2.1. By Theorem 2.1, the optimal neurons are
extreme points which solve argmaxw1∈B2

|λ∗TXw1 |.
3This corresponds to weak regularization, i.e., β → 0 in (1)

(see e.g. (Wei et al., 2018).).
4All the equivalence lemmas are presented in Appendix A.3.

Definition 1. We call the maximizers of the constraint in
Corollary 2.1 extreme points throughout the paper.

From Theorem 2.1, we have the following dual problem

max
λ

λTy s.t. max
w1∈B2

|λTXw1| ≤ 1. (7)

Let X = UxΣxV
T
x be the singular value decomposition

(SVD) of X5. If we assume that there exists w∗ such that
Xw∗ = y due to Proposition 2.1, then (7) is equivalent to

max
λ̃

λ̃
T
Σxw̃

∗ s.t. ‖ΣT
x λ̃‖2 ≤ 1, (8)

where λ̃ = UT
xλ, w̃∗ = VT

xw∗, and we changed the
constraint since the extreme point is achieved when w1 =
XTλ/‖XTλ‖2. Given rank(X) = r, we have

λ̃
T
Σxw̃

∗ = λ̃
T
Σx

[
Ir 0r×d−r

0d−r×r 0d−r×d−r

]
w̃∗︸ ︷︷ ︸

w∗r

≤ ‖ΣT
x λ̃‖2‖w̃∗r‖2 ≤ ‖w̃∗r‖2, (9)

which shows that the maximum objective value is achieved
when ΣT

x λ̃ = c1w̃
∗
r . Thus, we have

w∗1 =
VxΣ

T
x λ̃

‖VxΣT
x λ̃‖2

=
Vxw̃

∗
r

‖w̃∗r‖2
=
PXT (w∗)

‖PXT (w∗)‖2
,

where PXT (·) projects its input onto the range of XT . In
the sequel, we first show that one can consider a planted
model without loss of generality and then prove strong du-
ality for (5).

Proposition 2.1. [(Du & Hu, 2019)] Given w∗ =
argminw ‖Xw − y‖2, we have

argmin
W1,w2

‖XW1w2 −Xw∗‖22 = argmin
W1,w2

‖XW1w2 − y‖22.

Theorem 2.2. Let {X,y} be feasible for (5), then strong
duality holds for finite width networks.

5In this paper, we use full SVD unless otherwise stated.
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2.1. Regularized training problem

In this section, we define the regularized version of (5) as

min
θ∈Θ

1

2
‖fθ,2(X)− y‖22 + β‖w2‖1 s.t. w1,j ∈ B2, (10)

which has the following dual form

max
λ
−1

2
‖λ− y‖22 +

1

2
‖y‖22 s.t. max

w1∈B2

|λTXw1| ≤ β.

Then, an optimal neuron needs to satisfy the condition

w∗1 =
XTPX,β(y)

‖XTPX,β(y)‖2

where PX,β(·) projects to {u ∈ Rn | ‖XTu‖2 ≤ β}. We
now prove strong duality.

Theorem 2.3. Strong duality holds for (10) with finite
width.

2.2. Training problem with vector outputs

Here, our model is fθ,2(X) = XW1W2 to estimate Y ∈
Rn×K , which can be optimized as follows

min
θ∈Θ
‖W1‖2F + ‖W2‖2F s.t. fθ,2(X) = Y. (11)

Using Lemma A.2, we reformulate (11) as

min
θ∈Θ

m∑
j=1

‖w2,j‖2 s.t. fθ,2(X) = Y,w1,j ∈ B2, (12)

which has the following dual with respect to W2

max
Λ

tr(ΛTY) s.t. ‖ΛTXw1‖2 ≤ 1, ∀w1 ∈ B2. (13)

Since we can assume Y = XW∗ due to Proposition 2.1,

tr(ΛTY) = tr(ΛTXW∗) = tr(ΛUxΣxW̃
∗
r)

≤ σmax(ΛTUxΣx)
∥∥∥W̃∗

r

∥∥∥
∗
≤ ‖W̃∗

r‖∗ (14)

where σmax(ΛTX) ≤ 1 due to (13) and W̃∗
r =[

Ir 0r×d−r
0d−r×r 0d−r×d−r

]
VT
xW∗. Given the SVD of W̃∗

r ,

i.e., UwΣwVT
w, choosing

ΛTUxΣx = Vw

[
Irw 0rw×d−rw

0K−rw×rw 0K−rw×d−rw

]
UT
w

achieves the upper-bound above, where rw = rank(W̃∗
r).

Thus, optimal neurons are a subset of the first rw right sin-
gular vectors of ΛTX. We next prove strong duality.

Theorem 2.4. Let {X,Y} be feasible for (12), then strong
duality holds for finite width networks.

2.2.1. REGULARIZED CASE

Here, we define the regularized version of (12) as follows

min
θ∈Θ

1

2
‖fθ,2(X)−Y‖2F + β

m∑
j=1

‖w2,j‖2 s.t. w1,j ∈ B2,

which has the following dual with respect to W2

max
Λ
−1

2
‖Λ−Y‖2F +

1

2
‖Y‖2F s.t. σmax(ΛTX) ≤ β.

Then, the optimal neurons are a subset of the maximal right
singular vectors of PX,β(Y)TX, where PX,β(·) projects
its input to the set {U ∈ Rn×K | σmax(UTX) ≤ β}.
Remark 2.1. Note that the optimal neurons are the
right singular vectors of PX,β(Y)TX that achieve
‖PX,β(Y)TXw∗1‖2 = β, where ‖w∗1‖2 = 1. This implies
that ‖YTXw∗1‖2 ≥ β, therefore, the number of optimal
neurons and rank(W∗

1) are determined by β.

Remark 2.2. The right singular vectors of PX,β(Y)TX
are not the only solutions. Consider u1 and u2 as the opti-
mal right singular vectors. Then, u = α1u1 + α2u2 with
α2

1 +α2
2 = 1 also achieves the upper-bound, thus, optimal.

3. Deep linear networks6

We now consider an L-layer linear network with the output
function fθ,L(X) =

∑m
j=1 XW1,j . . . wL,j , and the train-

ing problem

min
{θl}Ll=1

1

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F s.t. fθ,L(X) = y. (15)

Proposition 3.1. First L− 2 layer weight matrices in (15)
have the same operator and Frobenius norms, i.e., tj =
‖Wl,j‖F = ‖Wl,j‖2,∀l ∈ [L− 2], ∀j ∈ [m].

This result shows that the layer weights obey an alignment
condition. After using the scaling in Lemma A.3 and the
same convex duality arguments, a set of optimal solutions
to the training problem can be described as follows.

Theorem 3.1. Optimal layer weights for (15) are

W∗
l,j =


t∗j

Vxw̃∗r
‖w̃∗r‖2

ρT1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where ρl,j ∈ Rml such that ‖ρl,j‖2 = 1, ∀l ∈ [L −
2], ∀j ∈ [m] and w̃∗r is defined in (9).

Next, we prove strong duality holds.

6Since the derivations are similar, we present the details in
Appendix A.7.
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Theorem 3.2. Let {X,y} be feasible for (15), then strong
duality holds for finite width networks.

Corollary 3.1. Theorem 3.1 implies that deep linear net-
works can obtain a scaled version of y using only the first
layer, i.e., XW1ρ1 = cy, where c > 0. Therefore, the
remaining layers do not contribute to the expressive power
of the network.

3.1. Regularized training problem

We now present the regularized training problem as follows

min
{θl}Ll=1

1

2
‖fθ,L(X)− y‖22 +

β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F . (16)

Next result provides a set of optimal solutions to (16).

Theorem 3.3. Optimal layer weights for (16) are

W∗
l,j =


t∗j

XTPX,β(y)
‖XTPX,β(y)‖2ρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

wherePX,β(·) projects to
{

u ∈ Rn | ‖XTu‖2 ≤ βt∗
2−L

j

}
.

Corollary 3.2. Theorem 3.2 also shows that strong duality
holds for the training problem in (16).

3.2. Training problem with vector outputs

Here, we consider vector output deep networks with the
output function fθ,L(X) =

∑m
j=1 XW1,j . . .w

T
L,j . In this

case, we have the following training problem

min
{θl}Ll=1

m∑
j=1

L∑
l=1

‖Wl,j‖2F s.t. fθ,L(X) = Y. (17)

Using the scaling in Lemma A.4 and the same convex dual-
ity arguments, optimal layer weights for (17) are as follows.

Theorem 3.4. Optimal layer weight for (17) are

W∗
l,j =


t∗j ṽw,jρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where j ∈ [K], ṽw,j is the jth maximal right singular vec-
tor of Λ∗

T

X and {ρl,j}L−2
l=1 are arbitrary unit norm vectors

such that ρTl,jρl,k = 0, ∀j 6= k.

The next theorem formally proves that strong duality holds
for the primal problem in (17).

Theorem 3.5. Let {X,Y} be feasible for (17), then strong
duality holds for finite width networks.

3.2.1. REGULARIZED CASE

We now examine the following regularized problem

min
{θl}Ll=1

1

2
‖fθ,L(X)− y‖22 +

β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F . (18)

Next result provides a set of optimal solutions to (18).
Theorem 3.6. Optimal layer weights for (18) are

W∗
l,j =


t∗j ṽx,jρ

T
1,j if l = 1

t∗jρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where j ∈ [K], ṽx,j is a maximal right singular
vector of PX,β(Y)TX and PX,β(·) projects to {U ∈
Rn×k | σmax(UTX) ≤ βt∗2−Lj }. Additionally, ρl,j’s is an
orthonormal set. Therefore, the rank of each hidden layer
is determined by β as in Remark 2.1.

4. Deep ReLU networks
Here, we consider an L-layer ReLU network with the
output function fθ,L(X) = AL−1wL, where Al,j =
(Al−1,jWl,j)+,, A0,j = X, ∀l, j, and (x)+ =
max{0, x}. Below, we first state the minimum norm train-
ing problem and then present our results

min
{θl}Ll=1

m∑
j=1

L∑
l=1

‖Wl,j‖2F s.t. fθ,L(X) = y. (19)

Theorem 4.1. Let X be a rank-one matrix such that X =
caT0 , where c ∈ Rn+ and a0 ∈ Rd, then strong duality holds
and the optimal weights are

Wl,j =
φl−1,j

‖φl−1,j‖2
φTl,j , ∀l ∈ [L− 2], wL−1,j =

φL−2,j

‖φL−2,j‖2
,

where φ0,j = a0 and {φl,j}L−2
l=1 is a set of vectors such that

φl,j ∈ Rml+ and ‖φl,j‖2 = t∗j , ∀l ∈ [L− 2],∀j ∈ [m].

In the sequel, we first examine a two-layer network training
problem with bias and then extend this to multi-layer.
Theorem 4.2. Let X be a matrix such that X = caT0 ,
where c ∈ Rn and a0 ∈ Rd. Then, when L = 2, a
set of optimal solutions to (19) is {(wi, bi)}mi=1, where
wi = si

a0

‖a0‖2 , bi = −sici‖a0‖2 with si = ±1,∀i ∈ [m].

Corollary 4.1. As a result of Theorem 4.2, when we have
one dimensional data, i.e., x ∈ Rn, an optimal solution to
(19) can be formulated as {(wi, bi)}mi=1, where wi = si,
bi = −sixi with si = ±1,∀i ∈ [m]. Therefore, the
optimal network output has kinks only at the input data
points, i.e., the output function is in the following form:
fθ,2(x̂) =

∑
i (x̂− xi)+. Hence, the network output be-

comes a linear spline interpolation.



Revealing the Structure of Deep Neural Networks via Convex Duality

We now extend the results in Theorem 4.2 and Corollary
4.1 to multi-layer ReLU networks.

Proposition 4.1. Theorem 4.1 still holds when we
add a bias term to the last hidden layer, i.e.,∑
j (AL−2,jwL−1,j + 1nbj)+ wL,j = y.

Corollary 4.2. As a result of Theorem 4.2 and Proposition
4.1, for one dimensional data, i.e., x ∈ Rn, the optimal
network output has kinks only at the input data points, i.e.,
the output function is in the following form: fθ,L(x̂) =∑
i (x̂− xi)+. Therefore, the optimal network output is a

linear spline interpolation.

In Corollary 4.1 and 4.2, the optimal output function for
multi-layer ReLU networks are linear spline interpolators
for rank-one data, which generalizes the two-layer results
for one-dimensional data in (Savarese et al., 2019; Parhi &
Nowak, 2019; Ergen & Pilanci, 2020a;b) to arbitrary depth.

4.1. Regularized problem with vector outputs

We now extend the analysis to regularized training prob-
lems with K outputs, i.e., Y ∈ Rn×K .

The result in Theorem 4.1 also holds for vector output
multi-layer ReLU networks as shown below.

Proposition 4.2. Theorem 4.1 extends to deep ReLU net-
works with vector outputs, therefore, the optimal layer
weights can be formulated as in Theorem 4.1.

Now, we extend our characterization to arbitrary rank
whitened data matrices and fully characterize the optimal
layer weights of a deep ReLU network withK outputs. We
also note that one can even obtain closed-form solutions for
all the layers weights as proven in the next result.

Theorem 4.3. Let {X,Y} be a dataset such that XXT =
In and Y is one-hot encoded, then a set of optimal solu-
tions for the following regularized training problem

min
θ∈Θ

1

2
‖fθ,L(X)−Y‖2F +

β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2F (20)

can be formulated as follows

Wl,j =

{ φl−1,j

‖φl−1,j‖2
φTl,j , if l ∈ [L− 1](

‖φ0,j‖2 − β
)

+
φl−1,je

T
r if l = L

,

where φ0,j = XTyj , {φl,j}L−2
l=1 are vectors such that

φl,j ∈ Rml+ , ‖φl,j‖2 = t∗j , and φTl,iφl,j = 0, ∀i 6= j,
Moreover, φL−1,j = ej is the jth ordinary basis vector.

Remark 4.1. We note that the whitening assumption
XXT = In necessitates that n ≤ d, which might ap-
pear to be restrictive. However, this case is common in
few-shot classification problems with limited labels (Chen

et al., 2018). Moreover, it is challenging to obtain reliable
labels in problems involving high dimensional data such as
in medical imaging (Hyun et al., 2020) and genetics (Singh
& Yamada, 2020), where n ≤ d is typical. More impor-
tantly, SGD employed in deep learning frameworks, e.g.,
PyTorch and Tensorflow, operate in mini-batches rather
than the full dataset. Therefore, even when n > d, each
gradient descent update can only be evaluated on small
batches, where the batch size nb satisfies nb � d. Hence,
the n ≤ d case implicitly occurs during the training phase.

Remark 4.2. We also note that the conditions in Theorem
4.3 are common in practical frameworks. As an example,
for image classification, it has been shown that whiten-
ing significantly improves the classification accuracy of the
state-of-the-art architectures, e.g., ResNets, on benchmark
datasets such as ImageNet (Huang et al., 2018). Further-
more, the label matrix is one hot encoded in image classifi-
cation. Therefore, in such cases, there is no need to train a
deep ReLU network in an end-to-end manner. Instead one
can directly use the closed-form formulas in Theorem 4.3.

4.2. Regularized problem with Batch Normalization

We now consider a more practical setting with an arbitrary
L-layer network and batch normalization (Ioffe & Szegedy,
2015). We first define batch normalization as follows. For
the activation matrix Al−1 ∈ Rn×ml−1 , batch normaliza-
tion applies to each column j independently as follows

BNγ,α (Al−1,jwl,j) =

(In − 1
n1n×n)Al−1,jwl,j

‖(In − 1
n1n×n)Al−1,jwl,j‖2

γ
(l)
j +

1n√
n
α

(l)
j ,

where γ(l)
j and α(l)

j scales and shifts the normalized value,
respectively. The following theorem presents a complete
characterization for the last two layers’ weights.

Theorem 4.4. Suppose Y is one hot encoded and the net-
work is overparameterized such that the range of AL−2,j

is Rn, then an optimal solution to the following problem7

min
θ∈Θ

1

2

∥∥∥∥∥∥
m∑
j=1

(BNγ,α (AL−2,jwL−1,j))+ wL,j
T −Y

∥∥∥∥∥∥
2

F

+
β

2

m∑
j=1

(
γ

(L−1)
j

2
+ α

(L−1)
j

2
+ ‖wL,j‖22

)
,

7Notice here we only regularize the last layer’s parameters,
however, regularizing all the parameters does not change the anal-
ysis and conclusion as proven in Appendix A.4.
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Figure 2: Verification of Remark 2.1. (a) Rank of the hidden layer weight matrix as a function of β and (b) rank of the hidden layer
weights for different regularization parameters, i.e., β1 < β2 < β3 < β4.
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Figure 3: Verification of Proposition 3.1 and 4.1. (a) Evolution of the operator and Frobenius norms for the layer weights of a linear
network and (b) Rank of the layer weights of a ReLU network with K = 1.

can be formulated in closed-form as follows(
w∗L−1,j ,w

∗
L,j

)
=
(
A†L−2,jyj , (‖yj‖2 − β)+ ej

)
[
γ

(L−1)
j

∗

α
(L−1)
j

∗

]
=

1

‖yj‖2

[
‖yj − 1

n1n×nyj‖2
1√
n
1Tnyj

]
∀j ∈ [K], where ej is the jth ordinary basis vector.

Remark 4.3. We note that the results in Theorem 4.3 and
4.4 indicate that whitened data and arbitrary data trained
with batch normalization effectively yield the same results
in the last layer, i.e., both achieve a scaled version of the
labels. The difference is that in Theorem 4.3, the labels
are obtained after the first layer and carried out to the last
layer by aligned layer weights. However, in Theorem 4.4,
since batch normalization normalizes layers individually,
the scaled labels are obtained after the last hidden layer.

One-hot encoding is one of the common strategies to con-
vert categorical variables into a binary representation that
can be processed by DNNs. Although (Papyan et al.,
2020) empirically verified the emergence of certain pat-
terns, termed Neural Collapse, for one-hot encoded labels
trained with batch normalization, the theory behind these
findings are still unknown. Therefore, we first define a

new notion of simplex Equiangular Tight Frame (ETF) and
then explain the Neural Collapse phenomenon where class
means collapse to the vertices of a simplex ETF. We also
note that all of our derivations hold for arbitrary convex
loss functions, therefore, are also valid for the commonly
adopted cross entropy loss as proven in Appendix A.1.

Definition 2. A standard simplex ETF is a set of points in
RK selected from the columns of the following matrix

S =

√
K

K − 1

(
IK −

1

K
1K×K

)
.

However, (Papyan et al., 2020) also allows rescaling and
rotations of S, i.e., they define a general simplex ETF as
Sg = αUS ∈ Rp×K , where UTU = IK and α ∈ R+.

Corollary 4.3. Computing the last hidden layer activations
after BN, i.e., AL−1 ∈ Rn×K , using the optimal layer
weight in Theorem 4.4 and then subtracting their global
mean as in (Papyan et al., 2020) yields(

In −
1

n
1n×n

)
AL−1 =

√
K

n

(
IK ⊗ 1 n

K
− 1

K
1n×K

)
,

where we assume that samples are ordered, i.e., the first
n/K samples belong to class 1, next n/K samples belong
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Figure 4: Training and test performance on whitened and sampled datasets, where (n, d) = (60, 90), K = 10, L = 3, 4, 5 with 50
neurons per layer and we use squared loss with one hot encoding. For Theory, we use the layer weights in Theorem 4.3, which achieves
the optimal performance as guaranteed by Theorem 4.3.

to class 2 and so on. Therefore, all the activations for a
certain class k are the same and their mean is given by
(
√
K/n)(ek − 1K/K), which is the kth column of a gen-

eral simplex ETF with α =
√

(K − 1)/n and U = IK .

5. Numerical experiments
Here, we present numerical results to verify our theoreti-
cal analysis. We first use synthetic datasets generated from
a random data matrix with zero mean and identity covari-
ance and the corresponding output vector is obtained via
a randomly initialized teacher network8. We first con-
sider a two-layer linear network with W1 ∈ R20×50 and
W2 ∈ R50×5. To prove our claim in Remark 2.1, we train
the network using GD with different β. In Figure 2a, we
plot the rank of W1 as a function of β, as well as the lo-
cation of the singular values of YTX using vertical red
lines. This shows that the rank of the layer changes when β
is equal to one of the singular values, which verifies Re-
mark 2.1. We also consider a four-layer linear network
with W1,j ∈ R5×50, W2,j ∈ R50×30, W3,j ∈ R30×40,
and W4,j ∈ R40×5. We then select different regulariza-
tion parameters as β1 < β2 < β3 < β4. As illustrated
in Figure 2b, β determines the rank of each weight ma-
trix and the rank is same for all the layers, which matches
with our results. Moreover, to verify Proposition 3.1, we

8Additional numerical results can be found in Appendix A.5.

choose β such that the weights are rank-two. In Figure 3a,
we numerically show that all the hidden layer weight ma-
trices have the same operator and Frobenius norms. We
also conduct an experiment for a five-layer ReLU network
with W1,j ∈ R10×50, W2,j ∈ R50×40, W3,j ∈ R40×30,
W4,j ∈ R30×20, and w5,j ∈ R20×1. Here, we use data
such that X = caT0 , where c ∈ Rn+ and a0 ∈ Rd. In
Figure 3b, we plot the rank of each weight matrix, which
converges to one as claimed Proposition 4.1.

We also verify our theory on two real benchmark datasets,
i.e., MNIST (LeCun) and CIFAR-10 (Krizhevsky et al.,
2014). We first randomly undersample and whitened these
datasets. We then convert the labels into one hot en-
coded form. Then, we consider a ten class classifica-
tion/regression task using three multi-layer ReLU network
architectures with L = 3, 4, 5. For each architecture, we
use SGD with momentum for training and compare the
training/test performance with the corresponding network
constructed via the closed-form solutions (without any sort
of training) in Theorem 4.3, i.e., denoted as “Theory”. In
Figure 4, Theory achieves the optimal training objective,
which also yields smaller error and higher test accuracy.
Thus, we numerically verify the claims in Theorem 4.3.

6. Concluding remarks
We studied regularized DNN training problems and devel-
oped an analytic framework to characterize the optimal so-
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lutions. We showed that optimal weights can be explicitly
formulated as the extreme points of a convex set via the
dual problem. We then proved that strong duality holds for
both deep linear and ReLU networks and provided a set of
optimal solutions. We also extended our derivations to the
vector outputs and many other loss functions. More im-
portantly, our analysis shows that when the input data is
whitened or rank-one, instead of training an L-layer deep
ReLU network in an end-to-end manner, one can directly
use the closed-form solutions provided in Theorem 4.1 and
4.3. Furthermore, we showed that whitening/rank-one as-
sumptions can be removed via batch normalization (see
Theorem 4.4). After our work, this was also realized by
(Ergen et al., 2021), where the authors proved that batch
normalization effectively whitens the input data matrix. As
a corollary, we uncovered theoretical reasons behind a re-
cent empirical observation termed Neural Collapse (Papyan
et al., 2020). As another corollary, we proved that the kinks
of ReLU occur exactly at the input data so that the opti-
mal network outputs linear spline interpolations for one-
dimensional datasets, which was previously known only for
two-layer networks (Savarese et al., 2019; Parhi & Nowak,
2019; Ergen & Pilanci, 2020a;b).

As the limitation of this work, we note that for net-
works with more than two-layers (i.e., L > 2), we use a
non-standard architecture, where each layer consists of m
weight matrices. Thus, we are able to achieve strong dual-
ity which is essential for our analysis. We leave the strong
duality analysis of standard deep networks as an open re-
search problem for future work.
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