Supplementary Material

1. Proof of Theorem 1
Proof. The definition of i can be expanded to
hE) = @' f(Z) + w7+, Z~N(0,5),
and be reinterpreted as
h(Z) ~ N (&7 f(Z) + b, 5T La).

Going further, we can see that the distribution of the margin
function is

mp(Z,y) ~ Ny’ f(Z) +b), 7" Sd),

for which the probability of being less than zero is given by
the cumulative distribution function for the normal distribu-
tion,

VT W

From the increasing monotonicity of ®, we also have that

P(my(&,y) < 0) = ® (WM))

s B —y (WL f(F+6)+b)
51181, <e VT Sw
s maxz 5 —y(@T f(Z+0) +b) .
VT S

Suppose the adversarial perturbation, §, causes the output
of the non-stochastic version of 1 to change by a magnitude
of A"(Z, €). There are a number of ways, such as local Lip-
schitz constants (Tsuzuku et al., 2018; Gouk & Hospedales,
2020), that can be used to bound the quantity for simple
networks. Substituting A;} into the previous equation yields

max P(mp(Z+4,y) <0)

5:/15]|p<e
@(—y(wa(f)) + A, e>). @
- Vi

Finally, we know that the difference in probabilities of mis-
classification when the model is and is not under adversarial
attack 4, is given by

Gr (Z,y) = _max P(mp(Z+0d,y) <0)
o:|6]lp<e (3)

Table 1. Values for learning rate and weight decay for all experi-
ments in our ablation study.

Benchmark Learning rate Weight decay
CIFAR-10 10—2 10~4
CIFAR-100 102 10~*
SVHN 102 10~*
FMNIST 10~* 10~4

Combining Equations 1 and 2 with Equation 3 results in

—y(@T f(Z) + b) + AR(, e>>

VT Sw
q)(—y(wa(f) + b))

G(7,y) §<I><

VT Ew

Because the Lipschitz constant of ® is \/%7, we can further
bound G by
Al(Z,¢)

G(Fy) < =22
@) V2w T Y

2. Hyperparameters of Experiments

In Table 1, we provide the hyperparameter setup for all the
experiments in our ablation study. Note that we use the same
values for both the isotropic and anisotropic variants of our
model within the same benchmark. We further clarify that
we use a batch size of 128 across all experiments. To choose
these values, we split the training data into a training and
a validation set and performed grid search. The grid con-
sisted of negative powers of 10 {1071,1072,1073,10~*}
for both hyperparameters.

3. Larger Architectures

In the main body of the paper we explore how our method
scales with the size of the backbone’s architecture by ex-
perimenting with LeNet++ (small, 60 thousand parameters)
and ResNet-18 (medium, 11 million parameters). In Table 2
we also provide some experimental results on CIFAR-10
with the much larger Wide-ResNet-34-10 architecture (46
million parameters)

Supplementary Material

Table 2. PGD test scores on CIFAR-10 using WRN-34-10, for
different values of attack strength e.
PGD(¢/255) Clean 1 2 4 8 16 32 64 128

No Defense 097 0.63 0.60 026 0.12 0 0 0 0
WCA-Net 097 0.80 080 0.77 073 0.70 034 0.10 0

4. Enforcing Norm Constraints

In Section 3.1 we elaborate on how we use an ¢ penalty
to prevent the magnitude of the classifier vectors w and co-
variance matrix > from increasing uncontrollably. Another
approach for controlling the magnitude of the parameters, is
enforcing norm constraints after each gradient descent up-
date, using a projected subgradient method. The projected
subgradient method changes the standard update rule of the
subgradient method from
gD « g1 — avL(g),
to
@ 60 — av,L[@")
g+ argmin |7 — @ |2,
veQ

where () is known as the feasible set. In our case there are
three sets of parameters: the feature extractor weights, the
linear classifier weights, and the covariance matrix. No pro-
jection needs to be applied to the extractor weights, as they
are unconstrained. The linear classifier weights have an £2
constraint on the vector associated with each class, so their
feasible set it an £ ball—there is a known closed form pro-
jection onto the ¢2 ball (see, e.g., Gouk et al. (2021)). The
feasible set for the covariance matrix is the set of positive
semi-definite matrices with bounded singular values. This
constraint can be enforced by performing a singular value
decomposition on the updated covariance matrix, clipping
the values to the appropriate threshold, and reconstructing

the new projected covariance matrix (Lefkimmiatis et al.,
2013). The final algorithm is given by

vy L 90 _ avgﬁ((;(t),zb’(t),L(t))
@ iy — aVg, LD, 5, L)
f;(tJrl) . f;(t) _ avqgﬁ((g(t),lﬁ(t),lzt)

1
T
max(1, 7”“1'7 ”2)
U®D g yOTy (1))
»® L @By (@)
LEDT L+ o 5 5)

where (4) is performing a singular value decomposition, S
represents the clipped version of .S, and (5) is computing
the Cholesky decomposition.

5. Source Code and Reproducibility

The source code is openly available on GitHub: https:
//github.com/peustr/WCA-net.

References

Gouk, H. and Hospedales, T. M. Optimising network ar-
chitectures for provable adversarial robustness. In SSPD,
2020.

Gouk, H., Hospedales, T. M., and Pontil, M. Distance-based
regularisation of deep networks for fine-tuning. In /CLR,
2021.

Lefkimmiatis, S., Ward, J. P., and Unser, M. Hessian
schatten-norm regularization for linear inverse problems.
IEEE transactions on image processing, 22(5):1873—
1888, 2013.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In NeurIPS, 2018.

https://github.com/peustr/WCA-net
https://github.com/peustr/WCA-net

