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Abstract

The Dirichlet Belief Network (DirBN) was re-
cently proposed as a promising deep generative
model to learn interpretable deep latent distribu-
tions for objects. However, its current represen-
tation capability is limited since its latent distri-
butions across different layers is prone to form
similar patterns and can thus hardly use multi-
layer structure to form flexible distributions. In
this work, we propose Poisson-randomised Dirich-
let Belief Networks (Pois-DirBN), which allows
large mutations for the latent distributions across
layers to enlarge the representation capability.
Based on our key idea of inserting Poisson ran-
dom variables in the layer-wise connection, Pois-
DirBN first introduces a component-wise propa-
gation mechanism to enable latent distributions
to have large variations across different layers.
Then, we develop a layer-wise Gibbs sampling
algorithm to infer the latent distributions, lead-
ing to a larger number of effective layers com-
pared to DirBN. In addition, we integrate out
latent distributions and form a multi-stochastic
deep integer network, which provides an alterna-
tive view on Pois-DirBN. We apply Pois-DirBN to
relational modelling and validate its effectiveness
through improved link prediction performance
and more interpretable latent distribution visuali-
sations. The code can be downloaded at https:
//github.com/xuhuifan/Pois_DirBN.
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1. Introduction
The Dirichlet Belief Network (DirBN) (Zhao et al., 2018)
is a promising approach for learning easily interpretable
and meaningful deep latent distributions for objects. In
comparison to existing deep generative models (e.g., Vari-
ational AutoEncoders (VAE) (Kingma & Welling, 2013)
and Generative Adversarial Networks (GAN) (Goodfellow
et al., 2014)), which usually use parameterised functions to
build deep architectures, the DirBN uses a multi-stochastic-
layers (Zhou et al., 2016) structure to generate deep latent
distributions. Each node is affiliated with a latent distri-
bution at each layer, with these latent distributions again
generated through Dirichlet distributions, forming Dirichlet-
Dirichlet connections. The DirBN is claimed to be inter-
pretable as these latent distributions can be regarded as cat-
egorical distributions over latent components. The DirBN
has been used in two scenarios: topic modelling (Zhao
et al., 2018), in which the latent distributions correspond
to topic-word distributions; and relational modelling (Fan
et al., 2019; Li et al., 2020), in which nodes’ membership
distributions over communities are modelled through these
latent distributions.

However, the current modelling capability of the DirBN, es-
pecially in the relational modelling setting, is limited since
the latent distributions share similar patterns across different
layers. Figure 1 shows an example visualisation of the la-
tent distributions at layer 2 and layer 3 of the SDREM (Fan
et al., 2019) (a DirBN based relational model) on the PPI
dataset (Zitnik & Leskove, 2017). There are no obvious
variations in the patterns of the latent distributions from
layer 2 to layer 3. This phenomenon may be due to the fact
that the DirBN uses scaled latent distributions to constitute
the concentration parameters of the Dirichlet distribution
for the next layer. Accordingly, the generated latent distri-
butions at the next layer will have similar expectations to
those at the current layer, and so it may be difficult to gen-
erate new latent distribution patterns. As it is constructed
using similar patterns, the application of DirBN into rela-
tional modelling therefore appears unable to make full use
of deep structure to form flexible distributions and enhanced
modelling capability.

In this work, we propose a Poisson-randomised Dirichlet
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Figure 1. Visualisations of latent distributions on 150 nodes from
layers 2 and 3 in a SDREM (Fan et al., 2019), with K = 20.
Columns in each panel represent nodes’ latent distributions. The
entries are larger when their colours move from blue to yellow.

Belief Network (Pois-DirBN) to address the aforementioned
issue and thereby enhance the modeling capabilities of the
DirBN. We first insert auxiliary Poisson counting variables
into the DirBN’s layer-wise connections. This replaces
the previous Dirichlet-Dirichlet connection with a newly
formulated Dirichlet-Poisson-Dirichlet connection. These
Poisson counting variables can be organized to approximate
the latent distributions, which helps to maintain the existing
benefits of the DirBN. However, more importantly, they
introduce a new component-wise counting variable into the
layer-wise connection. In contrast to the previously fixed
components’ ratios in the concentration parameters of the
Dirichlet distribution, due to the scaled effect on the latent
distributions, our proposed component-wise propagation
can flexibly adjust the components’ ratios in the concentra-
tion parameters of the Dirichlet distribution. The modelling
capability is thereby enhanced by allowing for larger muta-
tions in these latent distributions across different layers.

For model inference, we introduce auxiliary variables to
augment the Poisson likelihood and construct an efficient
layer-wise Gibbs sampling algorithm. This algorithm can
circumvent the previously complicated strategy of upward
propagating latent counts and then downward sampling ran-
dom variables (Zhou et al., 2016; Zhao et al., 2018; Fan
et al., 2019; Li et al., 2020). As the observations can be
propagated to deeper layers based on the proposed sampling
algorithm, we can thus set arbitrary number of layers in the
deep architecture of the DirBN.

By integrating out the latent distributions, the Pois-DirBN
can alternatively be reformulated as a multi-stochastic deep
integer network, in which each layer is composed of count-
ing variables. This integer network may benefit from small
storage and low-memory requirements. We demonstrate
the modelling advantages of the Pois-DirBN for relational
modelling, by improved link prediction performance over
the state-of-the-art models, and more interpretable visuali-
sations on the latent distributions.

2. DirBN preliminaries
The modelling strategy of the DirBN is to construct a multi-
stochastic layered architecture to represent interpretable
hierarchical latent distributions for objects. In general, the

DirBN constructs L layers of K-length latent distributions
πππi ={πππ(l)

i }Ll=1 for each object i. The generative process of
propagating the latent distributions {πππ(l−1)

j }j at layer (l− 1)

to πππ(l)
i at layer l can be constructed as

ω
(l)
ji ∼ Gam(cj , d), πππ

(l)
i ∼ Dir(

∑
j

ω
(l)
ji πππ

(l−1)
j ) (1)

where Gam(c, d) is the Gamma distribution with mean c/d
and variance c/d2, ω(l)

ji represents the information propaga-
tion coefficient from node j at layer l − 1 to node i at layer
l, and cj , d are hyper-parameters.

Particular observation types can then be generated by speci-
fying suitable probabilistic distributions, with nodes’ latent
distributions at layer L constituting the distribution’s param-
eters. For example, a Bernoulli distribution can be used
to generate the binary relation value between nodes i and
j, with the probability being a combination of their latent
distributions at layer L. The DirBN has found promising
application in topic modelling and relational modelling.

However, it seems inefficient that the concentration parame-
ter vector of the Dirichlet distribution in Eq. (1) only uses
the previous layers’ scaled latent distributions. Under this
setting, the components’ weight ratio may be highly similar
to the expected components’ weight ratio for the latent distri-
butions at the previous layer. Because the latent distributions
at the current and previous layers will then share similar
patterns, it might be difficult for the Dir-BN to be suffi-
ciently flexible to model complex real-world data structures,
and efficiently utilize deep structure to enhance modelling
capability.

Another disadvantage of the DirBN is that little informa-
tion can be propagated to higher layers via the sampling
algorithm. As observed in (Zhou et al., 2016; Fan et al.,
2019), the DirBN uses the CRT distribution to upward prop-
agate counts to higher layers. As a result, the amount of
information arriving at the higher layer scales O(log) to
the information at the previous layer (Zhou et al., 2016).
For a deep architecture with L layers at the output layer,
the expected amount of information will be reduced with
a function of O(logL(·)), which is quite small when L is
large. As higher layers can only receive little information,
the effectiveness of the DirBN is limited to a few layers.

3. Poisson-Randomised Dirichlet Belief
Networks

We introduce the Poisson-randomised Dirichlet Belief Net-
work (Pois-DirBN) to generate L-layered hierarchical latent
distributions for N nodes, in which we use πππ(l)

i to denote
node i’s latent distribution at layer l. The Pois-DirBN is
able to promote large mutations in latent distributions across
different layers, and build the deep architecture with no re-
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strictions on the number of layers.

3.1. Dirichlet-Poisson-Dirichlet connection

In the Pois-DirBN, we insert Poisson counting variables into
the DirBN’s Dirichlet-Dirichlet layer-wise connection (i.e.
Eq. (1)) to form a new Dirichlet-Poisson-Dirichlet layer-
wise connection. These Poisson variables can be catego-
rized into two groups: C(l+ 1

2
)

iki′ , which denotes the counting
information of node i at layer l propagated to node i′ at
layer (l + 1) within component k; and D(l+ 1

2
)

ikk′ , which rep-
resents the information of node i in component k at layer
l propagated to its component k′ at layer l + 1, where the
superscript of (l + 1

2 ) denotes that these counting variables
are located between layer l and layer (l + 1). The new
layer-wise connections can be expressed as:

C
(l+ 1

2
)

iki′ ∼ Poisson(Mcπ
(l)
ik ω

(l)

ii′ ),

D
(l+ 1

2
)

ikk′ ∼ Poisson(Mdπ
(l)
ik φ

(l)

kk′),

πππ
(l+1)
i ∼ Dirichlet(α(π)

k +
∑
i′

CCC
(l+ 1

2
)

i′·i +
∑
k′

DDD
(l+ 1

2
)

ik′· ), (2)

where Mc,Md are hyper-parameters to control the scale
of the variables CCC(l+ 1

2 ),DDD(l+ 1
2 ); ω(l)

ii′ regulates the infor-
mation propagation of the latent distribution of node i at
layer l to node i′ at layer (l + 1); φ(l)kk′ regulates the propa-
gation of component k at layer l to component k′ at layer
(l + 1) within the same node; and α(π)

k is the offset param-
eter to circumvent the case of 0 incoming counts. The ith
row ωωω

(l)
i in ωωω(l) and the kth row φφφ

(l)
k in φφφ(l) are restricted

to have an L1 norm for scale identifiability and inferential
convenience. We let ωωω(l)

i ,φφφ
(l)
k follow a Dirichlet distribu-

tion: ωωω(l)
i ∼ Dirichlet(ααα(ω)),φφφ

(l)
k ∼ Dirichlet(ααα(φ)), where

ααα(ω),ααα(φ) ∈ [R+]1×K are the concentration parameters.

Due to the Poisson-Multinomial equivalence (Dunson &
Herring, 2005) and the fact that

∑
k πik = 1,

∑
i′ ω

(l)
ii′ =

1,
∑
k′ φ

(l)
kk′ = 1, we can observe the following for the

summary statistics of the counting variablesCCC,DDD:

M
(l+ 1

2
)

i,C ,M
(l+ 1

2
)

k,C ∼ Poisson(Mc),

M
(l+ 1

2
)

i,D ,M
(l+ 1

2
)

k,D ∼ Poisson(Md),

(
∑
i′

C
(l+ 1

2
)

i1i′ , . . . ,
∑
i′

C
(l+ 1

2
)

iKi′ ) ∼ Multinomial (M
(l+ 1

2
)

i,C ;πππ
(l)
i ),

(
∑
k

C
(l+ 1

2
)

ik1 , . . . ,
∑
k

C
(l+ 1

2
)

ikN ) ∼ Multinomial (M
(l+ 1

2
)

k,C ;ωωω
(l)
i ),

(
∑
k′

D
(l+ 1

2
)

i1k′ , . . . ,
∑
k′

D
(l+ 1

2
)

iKk′ ) ∼ Multinomial(M
(l+ 1

2
)

i,D ;πππ
(l)
i ),

(
∑
k

D
(l+ 1

2
)

ik1 , . . . ,
∑
k

D
(l+ 1

2
)

ikK ) ∼ Multinomial(M
(l+ 1

2
)

k,D ;φφφ
(l)
k ).

That is, the component-wise vector of sums over the counts
from node i to other nodes follows a Multinomial distri-

bution with πππi as event probabilities, the node-wise vec-
tor of sums over the counts on all the components from
node i to other nodes follows a Multinomial distribu-
tion with ωωω(l)

i as event probabilities, and the component-
wise vector of sums over the counts from component
k to all other components follows a Multinomial distri-
bution with φφφ

(l)
k as event probabilities. It is easy to

see that 1

M
(l)
i,i,C

E[
∑
i′ CCC

(l+ 1
2
)

i·i′ ] = 1

M
(l)
i,k,D

E[
∑
k′DDD

(l+ 1
2
)

i·k′ ] =

πππi,
1

M
(l)
i,k,C

E[
∑
kCCC

(l+ 1
2
)

ik· ] = ωωω
(l)
i ,

1

M
(l)
i,k,D

E[
∑
kDDD

(l+ 1
2
)

ik· ] = φφφ
(l)
k ,

which shows that these summary statistics ofCCC,DDD can be
seen as a finite proxy of the distributions πππ,ωωω(l),φφφ(l). It is
obvious that larger values of M (l)

i,i,C ,M
(l)
i,i,D,M

(l)
i,k,C ,M

(l)
i,k,D

would result in closer approximations.

After obtaining these counting variables, we use the Dirich-
let distribution (Eq. (2)) to generate the new latent distribu-
tion at layer (l + 1), with the concentration parameter sum-
marizing all the countsCCC that propagated to node i and all
the countsDDD that propagated to the components within the
node (see Figure 2 for an graphical illustration). Due to the
structure of these distributions, we refer to such layer-wise
connections as Dirichlet-Poisson-Dirichlet connections.

It is easy to see that the generation of the Poisson counting
variablesCCC,DDD makes the prior and posterior distribution of
πππ
(l)
i conjugate (i.e. Dirichlet distributions). We do not need

to use the usual upward propagation of latent counts to form
the “pseudo” counts for πππ(l)

i , and can thereby circumvent
the issue of “insufficient counts” for higher layers. Also, as
the Poisson counting variables form finite approximations
to the πππ(l)

i , the primary structure of the DirBN is maintained,
and so the Pois-DirBN retains its original properties.

Component-wise propagation through DDD: Note that us-
ing the counting variableCCC produces similar benefits as the
Dirichlet-Dirichlet connections in the DirBN (Zhao et al.,
2018; Fan et al., 2019; Li et al., 2020), which incorporate
the sum of scaled latent distributions into the concentration
parameters of the next layer’s latent distributions. While
this node-wise propagation helps the sharing of latent dis-
tributions between interacting nodes, the component-wise
propagation, which may promote cross-component weights
transfer within the same node, has never been explored
before.

The counting variable DDD is used to model the cross-
component information propagation. The expectation of
each DDD’s entry is E[D

(l+ 1
2 )

ikk′ ] = Mdπ
(l)
ik φ

(l)
kk′ , representing

that node i propagates its component k to its component
k′ through the coefficient φ(l)kk′ . As with the above, the us-
age of CCC,DDD produces similar effects with the generation
πππ
(l+1)
i ∼ Dirichlet(

∑
i′ ω

(l−1)
i′i πππ

(l−1)
i′ + πππ

(l)
i φφφ

(l)) as for the
DirBN. However, the usage of φφφ(l) changes the component
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Figure 2. Graphical illustrations of the layer-wise connection for the Dirichlet Belief Network (DirBN) (left panel (a)) and the Poisson-
randomised Dirichlet Belief Network (Pois-DirBN) (right panel (b)). In the right panel, we use green (or orange) nodes and arrows to
denote the node-wise Poisson counting variablesCCC (or component-wise Poisson counting variablesDDD) and their related connections.

ratio and thus violates the implicit condition mentioned in
Section 2. It is thereby difficult to use the algorithm of
first upward propagating latent counts and then downward
sampling random variables (Zhou et al., 2016; Zhao et al.,
2018) to infer the latent distribution πππ(l)

i .

This component-wise propagation provides convenient ways
to set flexible concentration parameters. Under the pre-
vious node-wise propagation methods, it would be diffi-
cult to set larger weights on features when these features
are unimportant in other latent distributions. Through the
component-wise propagation, the weights of these features
can be enlarged by propagating other features into it. More
importantly, we can have different components’ ratios for
the same node’s latent distributions across consecutive lay-
ers, which promotes larger mutations than those without
component-wise propagation.

It should be noted that, we cannot directly sampling each
entries of the propagation variable DDD when applying DDD
in the topic modelling setting, which regards topic-word
distributions as the latent distributions. As the vocabulary
size is usually large, it is usually impossible to infer each
DDD entry. Instead, we can manually set the sparsity ofDDD by
observing the co-occurence of words in the same document.
For example, we may only sample the entries when the
two corresponding vocabularies have appeared in the same
document at least two times.

3.2. Marginal deep stochastic integer networks ofCCC,DDD

We can integrate out the latent distributions {πππ(l)
i }i,l in

the Pois-DirBN to obtain a counting variables CCC,DDD com-
posed deep neural network. Let ψ(l− 1

2
)

ik =
∑
i′ C

(l− 1
2
)

i′ki +∑
k′ D

(l− 1
2
)

ik′k , which summarizes the counts from layer (l− 1
2 )

into the component k of node i at layer (l+ 1
2 ). The counting

variables CCC(l+ 1
2 )

ik· ,DDD
(l+ 1

2 )

ik· for layer (l + 1
2 ) can be directly

generated as follows:

1. M
(l+ 1

2
)

i,C ∼ Poisson(Mc),M
(l+ 1

2
)

i,D ∼ Poisson(Md);

2. P ({M (l+ 1
2
)

ik,C/D}
K
k=1) ∝

∏
k

(α(π)
k

+ψ
(l− 1

2
)

ik
+M

(l+1
2
)

ik,C/D

M
(l+1

2
)

ik,C/D

)
, such

that
∑
kM

(l+ 1
2
)

ik,C = M
(l+ 1

2
)

i,C ,
∑
kM

(l+ 1
2
)

ik,D = M
(l+ 1

2
)

i,D ;

3. (C
(l+ 1

2
)

ik1 , . . . , C
(l+ 1

2
)

ikN ) ∼ Multinomial(M
(l+ 1

2
)

ik,C ;ωωω
(l)
i );

4. (D
(l+ 1

2
)

ik1 , . . . , D
(l+ 1

2
)

ikK ) ∼ Multinomial(M
(l+ 1

2
)

ik,D ;φφφ
(l)
k ),

where we use M (l+ 1
2
)

ik,C/D to denote either M (l+ 1
2
)

ik,C or M (l+ 1
2
)

ik,D

as their probability mass functions are the same, and where

(α(π)
k

+ψ
(l− 1

2
)

ik
+M

(l+1
2
)

ik,C/D

M
(l+1

2
)

ik,C/D

)
=

∏M(l+1
2
)

ik,C/D
−1

v=0 (α
(π)
k

+ψ
(l− 1

2
)

ik
+v)

(M
(l+1

2
)

ik,C/D
)!

is the

generalized binomial coefficient (L Graham, 1994). The
variablesMMM (l+ 1

2
)

i·,C ,MMM
(l+ 1

2
)

i·,D in step (2) can be sampled by first
calculating the ratios of all their potential configurations and
then sampling one particular configuration with probabil-
ities proportional to these ratios. Note that although this
generative process may require high computational cost for
large values of M (l+ 1

2 )

i,C ,M
(l+ 1

2 )

i,D ,K, the computational cost
of posterior sampling, which can be found in the Supplemen-
tary Material, is the same as the Dirichlet-Poisson-Dirichlet
connections.

Marginalizing out the latent distributions enables us to view
the Pois-DirBN as a multi-stochastic deep integer network,
in which the architecture is composed of {l + 1

2}l integer
composed layers and the latent distribution are marginalized
out. The distribution in step 2. can be regarded as non-linear
activation function in this deep network structure. Since
the integer variables have smaller storage and low memory
requirements, this deep stochastic integer network may have
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unique merits in dealing with large-scale data tasks. This
may be worth future exploration.

3.3. Layer-wise Gibbs sampling

The Pois-DirBN random variables include the latent dis-
tributions {πππ(l)

i }i,l, counting variables {CCC(l+ 1
2 ),DDD(l+ 1

2 )}l
and layer-wise propagation coefficients {φφφ(l),ωωω(l)}l. We
develop an efficient layer-wise Gibbs sampling algorithm to
infer the posterior distributions of these variables.

SamplingCCC: Combining the prior and likelihood terms of
C

(l+ 1
2 )

iki′ , the conditional posterior of C(l+ 1
2 )

iki′ is:

P (C
(l+ 1

2
)

iki′ |−) ∝
[Mcπ

(l)
ik wii′π

(l+1)

i′k ]C
(l+1

2
)

iki′

C
(l+ 1

2
)

iki′ !
·

Γ(
∑
k′ vk′)

Γ(vk)

where vk = α
(π)
k + C

(l+ 1
2
)

·ki′ +D
(l+ 1

2
)

i′·k and Γ(·) is the Gamma
function.

The second term (i.e. Γ(
∑
k′ vk′)/Γ(vk)) in the RHS of the

above equation is a ratio of two Gamma functions which
may impair the ability to form conjugate relations. In order
to proceed with efficient Gibbs sampling for C(l+ 1

2 )

iki′ , we
first fix α(π)

k = 1
K−1 , which makes the difference between∑

k′ vk′ and vk to be an integer. Then, we introduce two

auxiliary variables y(l+
1
2
)

iki′ , z
(l+ 1

2
)

iki′ to augment this Gamma
function ratio and form the joint likelihood as

y
(l+ 1

2
)

i′k ∼ CRT(1 + C
(l+ 1

2
)

··i′ +D
(l+ 1

2
)

i′·· , α
(π)
k + C

(l+ 1
2
)

·ki′ +D
(l+ 1

2
)

i′·k ),

z
(l+ 1

2
)

iki′ ∼ Binomial(y
(l+ 1

2
)

i′k , C
(l+ 1

2
)

iki′ /(αk + C
(l+ 1

2
)

·ki′ +D
(l+ 1

2
)

i′·k )),

P (C
(l+ 1

2
)

iki′ , z
(l+ 1

2
)

iki′ |−) ∝
[γ

(C,l+ 1
2
)

iki′ ]C
(l+1

2
)

iki′

C
(l+ 1

2
)

iki′ !
· [C(l+ 1

2
)

iki′ ]z
(l+1

2
)

iki′ ,

where CRT(·, ·) is the Chinese Restaurant Table (CRT)
distribution (Zhou & Carin, 2015). Note that this CRT
distribution will not lead to information loss in the Pois-
DirBN. The expected value of y(l+

1
2 )

i′k is on the same scale as

that of the counting information, which is O(E[y
(l+ 1

2 )

i′k ]) =

O(α
(π)
k + C

(l+ 1
2 )

·ki′ +D
(l+ 1

2 )

i′·k ) log(1 + C
(l+ 1

2 )

··i′ +D
(l+ 1

2 )

i′·· ).

Since the distribution of C(l+ 1
2 )

iki′ is then in the form of
Touchard polynomials (Roman & Rota, 1978), we can ob-
tain samples by using the method of (Fan et al., 2019).

SamplingDDD(l+ 1
2 )

ikk′ : The conditional posterior of D(l+ 1
2 )

ikk′ is

P (D
(l+ 1

2
)

ikk′ |−) ∝
[Mdπ

(l)
ik φ

(l)

kk′π
(l+1)

ik′ ]D
(l+1

2
)

ikk′

D
(l+ 1

2
)

ikk′ !
·

Γ(
∑
k′ vk′)

Γ(vk)
,

where vk = α
(π)
k + D

(l+ 1
2
)

i·k + C
(l+ 1

2
)

·ki . We can sample from
this distribution in a similar manner toCCC.

Sampling πππ: πππ(l)
i ’s conditional posterior distribution is

πππ
(l)
i ∼ Dirichlet(ααα(π,l) +ψψψ

(l− 1
2
)

i +
∑
i′

C
(l+ 1

2
)

i·i′ +
∑
k′

D
(l+ 1

2
)

i·k′ )

where ψψψ(l− 1
2 )

i =
∑
i′ C

(l− 1
2 )

i′·i +
∑
k′ D

(l− 1
2 )

ik′· .

Sampling ωωω(l),φφφ(l): Let the prior distribution of ωωω(l) and
φφφ(l) beωωω(l)

i ∼ Dirichlet(ααα(ω)),φφφ
(l)
k ∼ Dirichlet(ααα(φ)). The

conditional posterior distributions of ωωω(l)
i and φφφ(l)k are then

ωωω
(l)
i ∼ Dirichlet(ααα(ω) +

∑
k′

CCC
(l+ 1

2
)

ik′· ) (3)

φφφ
(l)
k ∼ Dirichlet(ααα(φ) +

∑
i

DDD
(l+ 1

2
)

ik· ). (4)

4. Related Work
In addition to the DirBN variants mentioned in the Intro-
duction, the DirBN is closely related to the Gamma Belief
Network (GBN) (Zhou et al., 2016), which is another multi-
stochastic layered deep generative model. Instead of using
Dirichlet distributions, the GBN uses Gamma distributions
to propagate scalar variables across layers, and was the
first to develop the algorithm for upward propagating latent
counts and then downward sampling random variables for
model inference. Applications of the GBN and its inferen-
tial algorithm have been observed in factor analysis (Wang
et al., 2019), natural language modelling (Guo et al., 2020),
Poisson Gamma Dynamic Systems (Schein et al., 2016;
Guo et al., 2018; Yang & Koeppl, 2018) and even varia-
tional autoencoder methods (Zhang et al., 2018). The GBN
does not enjoy the unique sparsity property of the Dirichlet
distribution and cannot be used to model latent distributions.

The Poisson Randomised Gamma Dynamic System
(PRGDS) (Schein et al., 2019) may be the closest to our
approach, which inserted Poisson variables between the
Gamma-Gamma connections. The Pois-DirBN differs from
the PRGDS in two aspects: (1) the targets are different
as the Pois-DirBN works on Dirichlet-Dirichlet connected
deep generative models and aims to address the latent distri-
bution mutation problem, whereas the PRGDS iss applied
in the dynamic system setting; (2) the inference method
is different. We have independently developed an efficient
Gibbs sampling algorithm to sample the counting variables
CCC,DDD. The PRGDS discusses the cases where α = 0 and
α > 0 for the shape parameter α of the Gamma distribution.
The Pois-DirBN discusses the case where α = 1

K−1 for the
concentration parameter of the Dirichlet distribution. Our
developed deep stochastic integer networks (Section 3.2)
can be directly used to model the case of α = 0.
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5. Application of Pois-DirBN to relational
modeling

5.1. Model

The performance of the Pois-DirBN is evaluated in the re-
lational modeling setting. The relational data RRR are rep-
resented as a binary matrix RRR ∈ {0, 1}N×N , where N is
the number of nodes and the element Rij (∀i, j) indicates
whether node i relates to node j (Rij = 1 if the relation
exists, otherwise Rij = 0). The self-connection relation
Rii is not considered here. The matrixRRR can be symmetric
(i.e. undirected) or asymmetric (i.e. directed).

Following similar settings to (Fan et al., 2019), the genera-
tive process of the Pois-DirBN in the relational modelling
settings can be described as follows:

1. rk ∼ Gamma(r0/K, c0),

2. Λk1k2 ∼
{

Gamma(ξrk1 , η), if k1 = k2;
Gamma(rk1rk2 , η), if k1 6= k2.

3. πππ(L)
i ∼ Pois-DirBN(−), Xik ∼ Poisson(Mπ

(L)
ik )

4. Zij,k1k2 ∼ Poisson (Xik1Λk1k2Xjk2) ,∀i 6= j

5. Rij = 111
(∑

k1,k2
Zij,k1k2 > 0

)
,∀i 6= j

where r0, c0, ξ, η,M are hyper-parameters.

In the above generative process, steps (1), (2) use the Hier-
archical Gamma Process (HGaP) (Zhou, 2015a) to generate
community popularity variable rk and community compat-
ibility value Λk1k2 , in which larger rk values make com-
munity k generate larger compatibility values. Λk1,k2 is
a community-versus-community compatibility parameter,
where a larger value of Λk1,k2 indicates a higher probability
of generating a link between community k1 and k2. Step (3)
uses the Pois-DirBN to generate nodes’ latent distributions
at layer L and then use these latent distributions to generate
nodes’ counting vectorsXXXi. Similar to the discussions with
CCC,DDD, XXXi/M can also be regarded as a finite approxima-
tion to πππ(L)

i as we have E[XXXi]/M = πππ
(L)
i . Steps (4), (5)

use the Poisson-Bernoulli link function (Rai et al., 2015;
Zhou, 2015a) to generate the relation Rij , which first gen-
erates the (k1, k2)-th latent integer Zij,k1k2 and then uses
the sum over all K2 integers to determine the positiveness
of Rij . Steps (4), (5) can be alternatively represented as
Rij ∼ Bernoulli(1 − exp(

∑
k1,k2

Xik1Λk1k2Xjk2)) if we
integrate out Zij,k1k2 .

We follow the setting of (Fan et al., 2019) and restrict the
entries of ωωω(l)

i to be 0 if there is no observed link from
node i to the given nodes. Each relation Rij is decomposed
into community-to-community latent integers, and only the

Table 1. Dataset information. N is the number of nodes, NE is the
number of positive links.

Dataset N NE Dataset N NE
Citeer 3 312 4 715 Cora 2 708 5 429

Pubmed 2 000 17 522 PPI 4 000 105 775

relations with the summation of its latent integers larger
than 0 are taken as observed. In this way, the computational
cost scales to the number of positive links only.

5.2. Experiments

Dataset Information We examine four real-world datasets:
three standard citation networks (Citeer, Cora, Pubmed (Sen
et al., 2008) and one protein-to-protein interaction net-
work (PPI) (Zitnik & Leskove, 2017). Summary statistics
for these datasets are displayed in Table 1. For fair com-
parison, we use an identity matrix IN×N as the feature
information for all the datasets and comparison methods
and do not involve any detailed feature values.

Experimental settings For hyper-parameters, we set
r0, c0, ξ, η ∼ Gam(1, 1),M ∼ Gam(100, 1) for all
datasets. Hyper-parameters not directly related to the Pois-
DirBN are specified in the supplementary material. Each
run uses 2 000 MCMC iterations with the first 1 000 dis-
carded as burn-in and the mean values of the second 1 000
posterior samples’ performance score are reported. Unless
specified, we are using 90% (per row) of the relational data
as training data and the remaining 10% as test data. We use
Area Under the ROC curve (AUC) and average precision
value on the testing data to measure the link prediction per-
formance. Unless specified otherwise, we set the number of
layers L = 3 and the number of communities K = 20.

Comparison methods: Several Bayesian methods for rela-
tional data and two Graph Auto-Encoder models are used
for comparison: the Mixed-Membership Stochastic Block-
model (Airoldi et al., 2009), the Hierarchical Latent Feature
Relational Model (HLFM) (Hu et al., 2017), the Node At-
tribute Relational Model (NARM) (Zhao et al., 2017), the
Hierarchical Gamma Process-Edge Partition Model (HGP-
EPM) (Zhou, 2015b), the graph autoencoder (GAE)
and variational graph autoencoder (VGAE) (Kipf &
Welling, 2016), and the Scalable Deep Relational
Model (SDREM) (Fan et al., 2019).

The NARM, HGP-EPM, GAE, VGAE and SDREM meth-
ods are executed using their respective implementations
from the authors, under their default settings. The MMSB
and HLFM are implemented to the best of our abilities and
we set the number of layers and the length of the latent
binary representation in the HLFM the same as those in
the Pois-DirBN. For the GAE and VGAE, the AUC and
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Table 2. Links prediction performance comparison (values are displayed in percentage format). It is noted that we do not use nodes’
feature information in these relational datasets.

AUC (mean and standard deviation) Average Precision (mean and standard deviation)
Model Citeer Cora Pubmed PPI Citeer Cora Pubmed PPI

MMSB 69.0± 0.4 74.3± 0.7 77.4± 0.5 80.1± 0.3 66.1± 0.4 70.4± 0.5 74.2± 0.4 82.3± 0.3
NARM 75.9± 0.3 80.9± 0.3 80.8± 0.4 82.1± 0.2 78.1± 0.4 83.1± 0.4 77.1± 0.5 84.4± 0.2
HGP-EPM 76.3± 0.3 81.0± 0.3 80.3± 0.6 83.4± 0.4 77.6± 0.2 84.0± 0.3 78.6± 0.6 86.4± 0.4
HLFM 78.1± 1.0 82.9± 0.5 82.9± 0.5 85.6± 1.0 79.3± 0.4 84.2± 0.3 80.2± 0.3 88.3± 0.8
GAE 78.9± 0.4 84.6± 0.6 82.2± 0.4 87.4± 0.9 83.9± 0.4 88.4± 0.7 84.6± 0.4 88.9± 0.3
VGAE 79.0± 0.3 84.9± 0.4 82.6± 0.2 88.0± 0.7 84.6± 0.3 88.9± 0.4 85.0± 0.3 88.2± 0.4
DirBN (SDREM) 77.9± 0.4 83.2± 0.8 84.5± 0.8 89.2± 0.7 81.9± 0.4 87.5± 3.0 86.0± 0.7 88.4± 0.2

Pois-DirBN-C 78.3± 0.6 83.6± 1.1 82.4± 0.3 88.7± 0.7 82.8± 0.3 87.4± 0.6 84.3± 0.7 88.7± 0.5
Pois-DirBN-D 80.5± 0.8 86.1± 0.3 86.8± 0.7 92.4± 0.5 88.288.288.2± 0.3 90.8± 0.3 88.7± 0.3 91.8± 0.4
Pois-DirBN-CD 82.982.982.9± 0.3 88.4± 0.4 87.887.887.8± 0.2 92.7± 0.3 88.1± 1.1 91.5± 0.7 89.389.389.3± 0.2 92.392.392.3± 0.5
Integer-DirBN 82.3± 1.0 89.189.189.1± 0.4 87.6± 0.7 93.193.193.1± 0.7 88.288.288.2± 0.4 92.292.292.2± 0.6 89.2± 0.7 92.8± 0.2
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Figure 3. Barplots for AUC and average precision versus different number of communities and different number of layers.

precision values are calculated based on the pairwise simi-
larities between the node representations. We consider the
cases of introducing either CCC, DDD, both CCC and DDD, or the
integer version to verify the effectiveness of introducing the
Poisson counting vectors in the Pois-DirBN, which we refer
to as Pois-DirBN-C, Pois-DirBN-D, Pois-DirBN-CD and
Integer-DirBN, respectively.

Link prediction performance: Table 2 displays the result-
ing link prediction performance on the Pois-DirBN models
and other comparison methods. As can be seen, almost
all deep generative models perform better than the shallow
approaches, which supports the adoption of a deep structure.
Among all deep generative models, the Pois-DirBN-CD usu-
ally perform the best in all four datasets. The performance
of the Poisson-DirBN-C is quite comparable to the SDREM,
but is worse than that of the Pois-DirBN-D and Pois-DirBN-
CD, which shows that only using scaled latent distributions
is not enough to fully use the deep structure. The perfor-
mance of Pois-DirBN-D is comparable to the Pois-DirBN-
CD, which indicates the importance of the component-wise
propagation in the Pois-DirBN.

Comparisons on the model structure: We set different
values for the number of layers L and the number of com-
munities K to explore the performance of the Pois-DirBN-
CD. In particular, we consider two scenarios: K = 15 and

L = 2, 3, 5, 10; L = 3 and K = 5, 10, 15, 20, 30. Fig-
ure 3 shows the resulting performance. We can see that
the performance of the Pois-DirBN-CD for different values
of K is consistent with expectations: AUC and Average
Precision increase as K increases, for all four datasets. The
performance increase is not significant when K is larger
than 20. This phenomenon might be due to the shrinkage
property of the compatibility matrix ΛΛΛ. The performance
when L = 2 seems be significantly worse than other cases,
which may indicate that a 2-layered structure may not be
deep enough. Although the performance gain is not large
when L increases further, it is still the case that L = 10 is
the best performing.

Latent distribution visualisations: Figure 4 displays visu-
alisations of the latent distributions across different layers
for the SDREM (DirBN), Pois-DirBN-C, Pois-DirBN-D
and Pois-DirBN-CD models. For the SDREM, we can see
that the patterns of latent distributions do not vary much
across different layers. Their main difference is that the
latent distribution patterns are clearer in the lower layers,
which might be due to less information being propagated to
the upper layers.

For the Pois-DirBN-C, the patterns are still quite similar
across different layers, however, these patterns are still quite
clear and distinguishable even in upper layers. For the
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Figure 4. Visualisations of first 50 nodes’ latent distributions {πππ(l)
i }l for the SDREM (DirBN), Pois-DirBN-C, Pois-DirBN-D and

Pois-DirBN-CD models. The columns in each panel represent different latent distributions. The membership value are larger when their
colours from blue to yellow.

Pois-Dir-D, the patterns are different across different lay-
ers, however, there seems to be no significant variations
among the nodes’ latent distributions in the same layer. This
phenomenon might be related to the component-wise prop-
agation matrix φφφ(l), in which the dominating entries might
determine the largest-weighted component for all latent dis-
tributions. For the Pois-Dir-CD, we can see there are clear
pattern changes across different layers and the patterns are
varied for the nodes in the same layer, which is consistent
with our expectations.

Node-wise and component-wise propagation matrix:
Figure 5 visualises the node-wise propagation matrix ωωω(2)

at layer 2 and the community compatibility matrix ΛΛΛ for the
Pois-DirBN-CD and SDREM. While the values of ωωω(2) for
the Pois-DirBN-CD do not have clear patterns, the diago-
nal values of ωωω(2) for the SDREM are significantly larger
than the non-diagonal ones. This might explain the du-
plicate patterns of latent distributions in the SDREM. For
both the Pois-DirBN-CD and SDREM, we can see that the
intra-community compatibilities (diagonals) dominate the
community compatibility matrix.

The left panels of Figure 6 display the component-wise
propagation matrices φφφ(1),φφφ(2),φφφ(3) for the Pois-DirBN-
CD on the Citeer dataset. It is interesting that the intra-
component propagation is not significant for φφφ(l). Except
for φφφ(2), which seems to propagate more information to
components 14, 15, the other matrix do not have clear pat-
terns. The right panel of Figure 6 displays the convergence
behaviour of the Pois-DirBN-CD and Integer-DirBN on
the Citeer dataset. It is clear that the Integer-DirBN con-

ω(2) in Pois-DirBN-CD {Λk1k2
}k1,k2

in Pois-DirBN-CD ω(2) in SDREM {Λk1k2
}k1,k2

in SDREM

Figure 5. Visualisations of the node-wise propagation matrix ωωω(2)

and community compatibility matrix ΛΛΛ for both Pois-DirBN-CD
and SDREM.
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Figure 6. Left: Visualisations of the component-wise propagation
matrix φφφ(1),φφφ(2),φφφ(3) for the Pois-DirBN-CD. Right: Conver-
gence behaviour forthe Pois-DirBN-CD and Integer-DirBN.

verges slightly earlier than the Pois-DirBN-CD, due to the
collapsed variable effect.

6. Conclusion
We have proposed the Pois-DirBN to promote larger mu-
tations for the latent distributions across different layers
in Dirichlet Belief Networks, by introducing a component-
wise propagation mechanism in its layer-wise connections.
We introduced a Poisson counting variable between the
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Dirichlet-Dirichlet layerwise-connection, forming Dirichlet-
Poisson-Dirichlet connections, and developed a layer-wise
Gibbs sampling method which can overcome the disadvan-
tages of the previous methods. We also integrated out the
latent distributions and formed a multi-stochastic integer
network, which may be promising for reducing memory
requirements and accelerating computation. The promis-
ing experimental results validate the effectiveness of the
Pois-DirBN over the DirBN in terms of improved link pre-
diction performance and more interpretable latent distribu-
tion visualisations. Using these counting variables to form
a Bayesian nonparametric stick-breaking process to allow
flexible model architectures and developing scalable varia-
tional amortized inference method would be worth exploring
in the future.
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