
Supplemental Materials: Model-based Reinforcement Learning for Continuous
Control with Posterior Sampling

A. Proof of Lemma 1
We first prove the results in Rd when d = 1: Let p1(x), p2(x) be the probability density functions for P1, P2 respectively.
By the property of symmetric distribution, we have that p1(µ1 + x) = p1(µ1 − x) and p2(µ2 + x) = p2(µ2 − x) for any
x ∈ Rd. Let µ2 > µ1 without loss of generality.

Since ε1 and ε1 share the same distribution, we have that p1(x) = p2(x+ µ2 − µ1), ∀x ∈ Rd.

Note that p1(x) = p2(x) at x = µ1+µ2

2 . Thus the total variation difference between p1 and p2 can be simplified as twice the
integration of one side due to symmetry:

∫ ∞
−∞
|p2(x)− p1(x)|dx =

∫ µ1+µ2
2

−∞
|p2(x)− p1(x)|dx+

∫ ∞
µ1+µ2

2

|p2(x)− p1(x)|dx = 2

∫ ∞
µ1+µ2

2

|p2(x)− p1(x)|dx,

(12)

where the last equation come from

p1(
µ1 + µ2

2
− x) = p1(µ1 − x+

µ2 − µ1

2
) = p1(µ1 + x− µ2 − µ1

2
)

= p2(µ2 + x− µ2 − µ1

2
) = p2(

µ1 + µ2

2
+ x).

(13)

Case 1: If the density functions p1 and p2 are unimodal, we have p2(x) > p1(x) when x > µ1+µ2

2 . Let z1 = x− µ1, z2 =
x− µ2, we have:

∫ ∞
µ1+µ2

2

|p2(x)− p1(x)|dx

=

∫ ∞
µ1−µ2

2

p2(z2)dz2 −
∫ ∞
µ2−µ1

2

p1(z1)dz1

=

∫ µ2−µ1
2

µ1−µ2
2

p2(z2)dz2

≤
∫ µ2−µ1

2

µ1−µ2
2

pmaxdz = pmax|µ2 − µ1|,

(14)

where pmax is the maximum probiblity density of p2, which is dependent on the variance of the shared noise distribution.
The proof is completed by combing (12) and (14).

Case 2: When p1(x), p2(x) are not unimodal, there exist C0 such that p2(x) would be a descreasing function in x
when x > µ1+µ2

2 + C0(µ2 − µ1) (otherwise the integration of the density cannot be 1, and C0 is a constant which is
dependent on the specific distribution). Recall that p1(x) = p2(x + µ2 − µ1), so when x > µ1+µ2

2 + C0(µ2 − µ1),



Model-based Reinforcement Learning for Continuous Control with Posterior Sampling

p2(x) > p2(x+ µ2 − µ1) = p1(x). Let z1 = x− µ1, z2 = x− µ2, we have

∫ ∞
µ1+µ2

2

|p2(x)− p1(x)|dx

=

∫ µ1+µ2
2 +C0(µ2−µ1)

µ1+µ2
2

|p2(x)− p1(x)|dx+

∫ ∞
µ1+µ2

2 +C0(µ2−µ1)

|p2(x)− p1(x)|dx

≤ C0pmax(µ2 − µ1) +

∫ ∞
µ1−µ2

2 +C0(µ2−µ1)

p2(z2)dz2 −
∫ ∞
µ2−µ1

2 +C0(µ2−µ1)

p1(z1)dz1

≤ C0pmax(µ2 − µ1) +

∫ µ2−µ1
2 +C0(µ2−µ1)

µ1−µ2
2 +C0(µ2−µ1)

pmaxdz = (C0 + 1)pmax|µ2 − µ1|,

(15)

then the proof is complete by combining (12) and (15).

Now we extend the result to Rd(d ≥ 2): Let the shared covariance matrix for the overall noise distribution be σ2Id,
where the noise in each dimension is drawn independently with variance σ2. We can rotate the coordinate system recursively
to align the last axis with vector µ1 − µ2, such that the coordinates of µ1 and µ2 can be written as (0, 0, · · · , 0, µ̂1), and
(0, 0, · · · , 0, µ̂2) respectively, with |µ̂2 − µ̂1| = ‖µ2 − µ1‖2.

The new covariance matrix after rotation will still be σ2Id since the rotation matrix is orthogonal. Notice that rotation is a
linear transformation on the original noises, and the original noises are independently drawn from each axis, so the new
covariance matrix indicates the noises in each new axis (after rotation) can also be viewed as independent6. Without loss of
generality, let µ̂1 ≥ µ̂2. Using p′1, p

′
2 to indicate the marginal probability density in d-th dimension, we have:

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞
|p2(x)− p1(x)|dx1dx2 · · · dxd

=

∫ ∞
−∞
|p′2(xd)− p′1(xd)|dxd

(16)

Then we can follow the same steps in R1 to finish the proof.

Remark For Gaussian noises with shared covariance σ2Id, Pinsker’s inequality and the KL-divergence of two Gaussian
distributions can also show that

∫
|p1(x)− p2(x)|dx ≤ 1

σ ||µ1 − µ2||2. But our upper bound for Gaussian noises is tighter:

we have
∫
|p1(x)− p2(x)|dx ≤

√
2
πσ2 ||µ1 − µ2||2. Also here we develop upper bounds for a wide class of symmetric

distributions.

B. Detailed comparison with previous works in Section 3.4
Here we compare our result with Corollary 2 in (Osband & Van Roy, 2014). In their Corollary 2 of linear quadratic
systems, the regret bound is Õ(σCλ1n

2
√
T ), where λ1 is the largest eigenvalue of the matrix Q in the optimal value

function V1(s) = sTQs, where V1 denotes the value function counting from step 1 to H within an episode, s is the initial
state, reward at the i-th step ri = sTi Psi + aTi Rai + εP,i, and the state at the i + 1-th step si+1 = Asi + Bai + εP,i
, i ∈ [H]. However, the largest eigenvalue of Q is actually exponential in H: Recall the Bellman equation we have
Vi(si) = minai E[sTi Psi + aTi Rai + εP,i +Vi+1(Asi +Bai + εP,i)], VH+1(s) = 0. Thus in V1(s), we can observe a term
of (AH−1s)TP (AH−1s), and the eigenvalue of the matrix (AH−1)TPAH−1 is exponential in H .

Even if we change the reward function from quadratic to linear, say ri = sTi P + aTi R+ εP,i the Lipschitz constant of the
optimal value function is still exponential in H since there is still a term of (AH−1s)TP in V1(s). Chowdhury & Gopalan
(2019) maintain the assumption of this Lipschitz property, thus there exists E[L∗] in their bound. As a result, there is still no

6If noises in each new axis are not independent, they can only be linearly related, which would result in non-zero covariance and
causes contradiction.



Model-based Reinforcement Learning for Continuous Control with Posterior Sampling

clear dependency on H in their regret, and in their Corollary 2 of LQR, they follow the same steps as Osband & Van Roy
(2014), and still maintain a term with λ1, which is actually exponential in H as discussed. Although Osband & Van Roy
(2014) mention that system noise helps to smooth future values, but they do not explore it although the noise is assumed to
be subgaussian. The authors directly use the Lipschitz continuity of the underlying function in the analysis of LQR, thus
they have an exponential bound on H which is very loose, and it can be improved by our analysis. (Chowdhury & Gopalan,
2019) do not explore how the system noise can improve the theoretical bound either.

C. Details for bounding the sum of posterior variances in Section 3.4
Here we slightly modify the Proof of Lemma 5.4 in (Srinivas et al., 2012) and show that Σni=1σ

2
i (hi) = O((ds+da) log(n)),

then we can write Σ
[ TH ]

k=1σ
′2
k (hkmax) = O((ds + da) log[ TH ]) with just changes of notations.

For any s2 ∈ [0, σ−2f C1] we have s2 ≤ C2 log(1 + s2), where C2 =
σ−2
f C1

log(1+σ−2
f C1)

. We treat C1 as the upper bound of the

variance (note that the bounded variance property for linear kernels only requires the range of all state-action pairs actually
encountered in M∗ not to expand to infinity as T grows, which holds in general episodic MDPs).

Lemma 5.3 in (Srinivas et al., 2012) shows that the information gain for dataset {h1, ..., hn} is equal to 1
2Σni=1log(1 +

σ−2f σ2
i (hi)), and we also have σ2

i (hi) ≤ C2 log(1 + σ2
i (hi)). Thus we can use the upper bound of the information gain of

linear kernels, which is O((ds + da) log(n)) as presented in Theorem 5 in (Srinivas et al., 2012), to upper bound the sum of
posterior variances.

D. Handling E[Σ
[ T
H
]

k=1∆̃k(r)|Hk] in Section 3.4

Recall that ∆̃k(r) = ΣHi=1(r̄k(hi)− r̄∗(hi)), so we can omit section 3.2 and directly follow steps in section 3.3 to derive

another upper bound which is similar to Lemma 3: [Σ
[ TH ]

k=1∆̃k(r)|Hk] ≤ Σ
[ TH ]

k=12
√
σk(hkmax) log(4T

δ ) with probability at
least 1− δ.

Then we can follow similar steps in section 3.4 to develop that E[Σ
[ TH ]

k=1∆̃k(r)|Hk] = Õ(
√
dHT ).

E. Experimental details
For model-based baselines, the average number of episodes required for convergence is presented below (convergence
results for Cartpole and Pendulum can be found in Figure 1 and Figure 2 in the main paper): For model-free methods, we

Method Reacher(r) Pusher(r) Reacher Pusher

Ours 20.2 146.6 29.8 151.6
MBPO 34.6 209.4 54.2 225.0
PETS 26.2 193.4 - -

have provided the convergence results in Figure 2 for SAC (blue dots). Model-free methods generally converge after 100
episodes for Cartpole and Pendulum, and around 1000 episodes for Pusher and Reacher.

Hyperparameters for MBPO:



Model-based Reinforcement Learning for Continuous Control with Posterior Sampling

env cartpole pendulum pusher reacher
env steps
per episode 200 200 150 150

model rollouts
per env step 400

ensemble size 5

network
architecture

MLP with
2 hidden layers
of size 200

MLP with
2 hidden layers
of size 200

MLP with
4 hidden layers
of size 200

MLP with
4 hidden layers
of size 200

policy updates
per env step 40

model horizon
1->15 from
episode 1->30

1->15 from
episode 1->30 1

1->15 from
episode 1->30

Table 1. Hyperparamters for MBPO

And we provide hyperparamters for MPC and neural networks in PETS:

env pusher reacher
env steps
per episode 150 150

popsize 500 400
number
of elites 50 40

network
architecture

MLP with
4 hidden layers
of size 200

planning
horizon 25 25

max iter 5
ensemble size 5

Table 2. Hyperparamters for PETS

Below are hyperparameters of our planning algorithm, which is the same with PETS, except for ensemble size (since we do
not need ensembled models, hence our ensemble size is actually 1):

env cartpole pendulum pusher reacher
env steps
per episode 200 200 150 150

popsize 500 100 500 400
number
of elites 50 5 50 40

network
architecture

MLP with
2 hidden layers
of size 200

MLP with
2 hidden layers
of size 200

MLP with
4 hidden layers
of size 200

MLP with
4 hidden layers
of size 200

planning
horizon 30 20 25 25

max iter 5

Table 3. Hyperparamters for our method

For SAC and DDPG, we use the open-source code ( https://github.com/dongminlee94/deep_rl) for imple-

https://github.com/dongminlee94/deep_rl


Model-based Reinforcement Learning for Continuous Control with Posterior Sampling

mentation without changing their hyperparameters. Here we thank the authors for sharing the code!

We run all the experiments on a single NVIDIA GeForce RTX-2080Ti GPU. For smaller environments like Cartpole and
Pendulum, all experiments are done within an hour to run 150k steps. For Reacher and Pusher, our algorithm takes about
four hours to run 150k steps, while PETS and MBPO take about three hours to run 150k steps (our extra computation cost
comes from Bayesian update, and we plan to explore acceleration for that as future work). SAC and DDPG take about one
hour for training 150k steps which is much faster than other baselines since they are model-free algorithms and no need to
train models.


