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Abstract

Balancing exploration and exploitation is crucial
in reinforcement learning (RL). In this paper, we
study model-based posterior sampling for rein-
forcement learning (PSRL) in continuous state-
action spaces theoretically and empirically. First,
we show the first regret bound of PSRL in contin-
uous spaces which is polynomial in the episode
length to the best of our knowledge. With the
assumption that reward and transition functions
can be modeled by Bayesian linear regression, we
develop a regret bound of O(H?3/2d\/T), where
H is the episode length, d is the dimension of
the state-action space, and 7" indicates the total
time steps. This result matches the best-known re-
gret bound of non-PSRL methods in linear MDPs.
Our bound can be extended to nonlinear cases
as well with feature embedding: using linear ker-
nels on the feature representation ¢, the regret
bound becomes O(H?/2d,\/T), where d, is the
dimension of the representation space. Moreover,
we present MPC-PSRL, a model-based posterior
sampling algorithm with model predictive control
for action selection. To capture the uncertainty
in models, we use Bayesian linear regression on
the penultimate layer (the feature representation
layer ¢) of neural networks. Empirical results
show that our algorithm achieves the state-of-the-
art sample efficiency in benchmark continuous
control tasks compared to prior model-based algo-
rithms, and matches the asymptotic performance
of model-free algorithms.

1. Introduction

In reinforcement learning (RL), an agent interacts with
an unknown environment which is typically modeled as
a Markov Decision Process (MDP). Efficient exploration
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in RL has been one of the main challenges: the agent is
expected to balance between exploring unseen state-action
pairs to gain more knowledge about the environment, and
exploiting existing knowledge to optimize rewards in the
presence of known data. Specifically, when the state-action
spaces are continuous, function approximation is necessary
to approximate the value function (in model-free settings)
or the reward and transition functions (in model-based set-
tings), which raises extra challenges for both computational

and statistical efficiency compared to finite tabular cases'.

Frequentist Regrets with Upper Confidence Bound
Most existing works, which focus on using function ap-
proximations to achieve efficient exploration with perfor-
mance guarantees, use algorithms based on Upper Confi-
dence Bound (UCB) to develop frequentist regret bounds.
In the model-based settings, the state-of-the-art frequentist
bound is given by UC-MatrixRL (Yang & Wang, 2019),
which achieves a regret bound of O(H?2d+/T), where H is
the episode length, d is the dimension of the state-action
space, and 7" indicates the total time steps. In model-free set-
tings, Jin et al. (2020) proposed LSVI-UCB and developed a
bound of O(H?3/2d3/2\/T). This bound is further improved
to O(H3/2d\/T) by (Zanette et al., 2020) and (Ayoub et al.,
2020), which achieve the best-known frequentist bound
among model-free and model-based algorithms. All above
bounds are achieved in linear MDPs where both reward and
transition functions are modeled as linear functions. Those
results can be extended to non-linear cases using kernel
functions, replacing d with d where dy is the dimension of
the feature space. However, there are two main drawbacks
of UCB-based methods. First, UCB requires optimizing
over a confidence set, which is likely to be computationally
prohibitive. Second, the lack of statistical efficiency can
emerge from the sub-optimal construction of the confidence
set (Osband & Van Roy, 2017). Accordingly, this line of
works mostly focuses on theoretical analysis rather than
empirical applications.

!Tabular RL has been extensively studied with a regret bound
of O(H\/SAT), where S and A denote the number of states and
actions respectively. However, in continuous state-action spaces
S and A can be infinite, hence the above results do not apply to
continuous spaces.
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Bayesian Regrets with Posterior Sampling Another
line of works in Bayesian reinforcement learning treats
MDP as a random variable with a prior distribution. This
prior distribution of the MDP provides an initial uncertainty
estimate of the environment, which generally contains dis-
tributions of transition dynamics and reward functions. The
epistemic uncertainty (subjective uncertainty due to limited
data) in reinforcement learning can be captured by pos-
terior distributions given the data collected by the agent.
Bayesian regrets naturally provide performance guarantees
in this setting. Posterior sampling for reinforcement learn-
ing (PSRL), motivated by Thompson sampling in bandit
problems (Thompson, 1933), serves as a provably efficient
algorithm under Bayesian settings. In PSRL, the agent fol-
lows an optimal policy for a single MDP sampled from
the posterior distribution for interaction in each episode, in-
stead of optimizing over a confidence set, so PSRL is more
computationally tractable than UCB-based methods.

Although PSRL with function approximation in continuous
MDPs has been studied, to the best of our knowledge, there
is no existing work that develops a regret bound which is
clearly dependent in episode length H with a polynomial
order while simultaneously sub-linear in 7" as bounds de-
veloped via UCB. Existing results either provide no clear
dependency on H or suffer from an exponential order of H.

Limitations on the Order of H in PSRL with Function
Approximation In model-based RL, (Osband & Van Roy,
2014) derive a regret bound of O(cg\/dx (R)dg(R)T +
E[L*]op+/dk (P)dg(P)) in their Corollary 1, where L* is
a global Lipschitz constant for the future value function (see
Section 3.2), dx and dg are Kolmogorov and eluder dimen-
sions, and R and P refers to function classes of rewards and
transitions. However, L* is actually dependent on H (see
our remark in Section 3.2). Such dependency is not explored
in their paper, and they didn’t provide a clear dependency
on H in their Corollary 1. Moreover, they give a very loose
bound (exponential in H) in their Corollary 2 for LQR,
which we will discuss in detail in Section 3.4. Chowdhury
& Gopalan (2019) considers the regret bound for kernelized
MDP which is sub-linear in 7. However, they only mention
that L* basically measure the connectedness of the MDP
without discussing the dependency of H in L* in continuous
state-action spaces, and they followed (Osband & Van Roy,
2014) in their Corollary 2 for LQR with an exponential order
of H. In model-free settings, (Azizzadenesheli et al., 2018)
develops a regret bound of O(d¢, /T using a linear function
approximator in the Q-network, where d, is the dimension
of the feature representation vector of the state-action space,
but their bound is exponential in H as mentioned in their
paper.

Motivated by the drawbacks of previously discussed UCB-
based and PSRL works, we are interested in the following

question: in continuous MDPs, can PSRL achieve provably
efficient exploration with polynomial orders of d and H in
regret bounds, while still enjoy computational tractability
of solving a single known MDP?

Our Results In this paper, we study model-based PSRL in
continuous state-action spaces. We assume that rewards and
transitions can be modeled by Bayesian Linear regression
(Rasmussen, 2003), and extend the assumption to non-linear
settings using feature representation.

The key differences of our analysis compared to previous
work in PSRL with function approximation are as follows:
First, we show the order of H can be polynomial in PSRL
with continuous state-action spaces: in Section 3.2, we use
the property derived from any noise with a symmetric prob-
ability distribution, which includes many common noise
assumptions, to derive a closed-form solution of the Lips-
chitz constant L* mentioned in (Osband & Van Roy, 2014).
As a result, in Section 3.4 we can develop a regret bound
with polynomial dependency on H. Second, our analysis re-
quires less assumptions (especially compared to Chowdhury
& Gopalan (2019)): we omit their Lipschitz assumption (dis-
cussed in Section 3.2) and regularity assumption (discussed
in Section 3.3). Third, our bound enjoys lower dimension-
ality (especially compared to Osband & Van Roy (2014)) as
discussed in Section 3.5.

To the best of our knowledge, we are the first to show that the
regret bound for PSRL in continuous state-action spaces can
be polynomial in the episode length H and simultaneously
sub-linear in T": For the linear case, we develop a Bayesian
regret bound of O(H?3/2d+/T). Using feature embedding,
we derive a bound of O(H?3/2d,+/T). Our regret bound
match the order of best-known regret bound of UCB-based
methods (Zanette et al., 2020; Ayoub et al., 2020), which is
also O(H3/2d\/T).? As far as is known, no previous works
of UCRL have presented empirical results in continuous
control. In contrast, PSRL only requires optimizing a single
MDP, and thus enjoys more computationally tractability
compared to UCB-based methods.

Moreover, we implement PSRL with function approxima-
tion as a computationally tractable method with performance
guarantee: We use Bayesian linear regression (BLR) (Ras-
mussen, 2003) on the penultimate layer (for feature repre-
sentation) of neural networks when fitting transition and
reward models. We use model predictive control (MPC)
(Camacho & Alba, 2013) as an approximate optimization
solution of the sampled MDP, to optimize the policy under

2We can compare them together in the Bayesian framework
as discussed in Osband & Van Roy (2017): A frequentist regret
bound for a confidence set of MDPs implies an identical bound
on the Bayesian regret for any prior distribution of MDPs with
support on the same confidence set.
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the sampled models in each episode as described in Sec-
tion 4. Experiments show that our algorithm achieves more
efficient exploration compared with previous model-based
algorithms in control benchmark tasks (see Section 5).

2. Preliminaries
2.1. Problem Formulation

We model an episodic finite-horizon Markov Decision
Process (MDP) M as {S, A, RM, PM H,0,,0f, Ruax, p}
where S C R% and A C R denote state and action
spaces, respectively.

Each episode with length H has an initial state distri-
bution p. At time step ¢ € [1, H| within an episode,
the agent observes s; € S, selects a; € A, receives
a noised reward r; ~ RM(s;,a;) and transitions to a
noised new state s;11 ~ P™(-|s;,a;). More specifically,
r(siya;) = ™ (s;,a;) + € and s;01 = fM(s4,a;) + €y,
where ¢, ~ N(0,07), ¢; ~ N(0,0%14,). Variances o7
and UJ% are fixed to control the noise level. Without loss
of generality, we assume the expected reward an agent
receives at a single step is bounded |7 (s,a)| < Rpax.
Vs € S,a € A. Let u: S — A be a deterministic policy.
Define the value function for state s at time step ¢ with
policy pu as VM (s) = E[SIL, [ (s;,a;5)]s; = s], where
sj+1 ~ PM(-]sj,a;) and a; = p(s;). With the bounded
expected reward, we have that |V (s)| < H Rpyax, Vs.

We use M* to indicate the real unknown MDP which in-
cludes R* and P*, and M * itself is treated as a random vari-
able. Thus, we can treat the real noiseless reward function 7*
and transition function f* as random processes as well. In
the posterior sampling algorithm 77, M* is a random sam-
ple from the posterior distribution of the real unknown MDP
M* in the kth episode, which includes the posterior sam-
ples of R* and P* , given history prior to the kth episode:
He = {s11,01,1,71,1, " ,Sk—1,H,Qk—1,H,Tk—1,H}»
where sj, ;,ay; and 7y ; indicate the state, action, and re-
ward at time step ¢ in episode k. We define the the optimal
policy under M as M (s;) € argmax,,, V.M (s;). In par-
ticular, ;* indicates the optimal policy under M* and p*
represents the optimal policy under M*. Define future value
function: UM (P) = ES"“P(S')[V;L%,PA(S/)]' Let Ay, de-
note the regret over the kth episode:

Be= [0V (o) = Vs )
Then we can express the regret of 7P° up to time step T as:
Regret(T,wP°, M*) := Z,Ei] Ay, 2)

Let BayesRegret(T, nP%, ¢) denote the Beyesian regret of
7P as defined in Osband & Van Roy (2017), where ¢ is the

prior distribution of M *:

BayesRegret(T, n7°, ¢) = E[Regret(T,nP°, M™* ~ ¢)].
3)

2.2. Gaussian Process Assumption

Generally, we consider modeling an unknown target func-
tion g : R? — R. We are given a set of noisy samples
y = [y1....,yr]T at points X = [z1,...,27]T, X C D,
where D is compact and convex, y; = g(z;) + ¢; with
€; ~ N(0,0?) i.i.d. Gaussian noise Vi € {1,--- ,T}.

We model g as a sample from a Gaussian Process
GP(u(x),K(z,2")), specified by the mean function
u(x) = Elg(z)] and the covariance (kernel) function
Kz, 2") = El(9(x) = p(x)(g(z") — p(z")].

Let the prior distribution without any data as
GP(0,K(x,2")). Then the posterior distribution over g

given X and y is also a GP with mean pr(x), covariance
Kr(z,2"), and variance o2 (z) (Rasmussen, 2003):

pr(z) = Kz, X)(K(X, X) + 0°1) "'y,
Kr(x,2') = K(z,2")
—K(X,2)T(K(X,X) + 1) K(X, x),
U%(m) = ’CT(JJ,.T),

where K(X, z) = [K(21,2), ..., K(zr, 2)]T, K(X, X) =
(K(zi, m)h<i<T1<i<T-

M

We model our reward function 7 as a Gaussian Process

with noise o2

2.
For transition models, we treat each dimension indepen-
dently: each f;(s,a),i =1, ..,dg is modeled independently
as above, and with the same noise level UJ% in each dimen-
sion. Thus it corresponds to our formulation in the RL
setting. Since the posterior covariance matrix is only depen-
dent on the input rather than the target value, the distribution
of each f;(s, a) shares the same covariance matrice and only
differs in the mean function.

3. Bayesian Regret Analysis
3.1. Regret Decomposition

In this section, we briefly describe the regret decomposi-
tion as presented in Osband & Van Roy (2014) to facilitate
further analysis.

The regret in episode k can be rearranged as: Ay =
* k ~ ~
Jo(s)(VX (1) = VI (s1)) + Ag)dsi, where Ay =
k T* * k . .
V/%l(sl) — Vﬂ{l(sl). In PSRL, Vul‘i{ — Vu]\’“il is zero in
expectation, and thus we only need to bound Ay when de-
riving the Bayesian regret of PSRL.? For clarity, the value

31t suffices to derive bounds for any initial state s; as the
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function VA" is simplified to Vi, and VA" to V;',. Let h;
indicate the state-action pair s;, a;, and h; is the state-action
pair that the agent encounters in the kth episode while using
Jux as policy in the real MDP M* #. Consider the regret
from concentration via the Bellman operator (details of the
derivation can be found in (Osband & Van Roy, 2014)):

E[AxHi] = E[AR(r) + Ax(f)|[Ha],

where Ay (r) = SE (7% (k) — 7 (h)), and AL(f) =
S (UF(P*(hi)) — UF (P*(hs))).-

3.2. Dependency on H in the Lipschitz Constant of
Future Value Functions

First, we present a lemma on the property derived from
noises with a symmetric probability distribution.

Lemma 1 (Property derived from noises with symmetric
probability distribution) Consider two zero-mean noises
€1,€3 € R, and the noise in each dimension of €1, €2
is i.i.d. drawn from the same symmetric probability dis-
tribution. Let Py, Py be the probability distribution of the
random variables py + €1 and o + €3 respectively, where

p1, pe € RY
Then we have
[[P1 — Ps| < Cllp1 — pall2,
where C'is a constant that is only dependent on the variance

of the noise.

The proof of Lemma 1 is in Appendix. Using this Lemma,
we can develop a closed-form upper bound of the Lipschitz
constant of the future value function.

Lemma 2 (The dependency of H in the future value func-
tion) We have

U (P () — UF(P* (hi))

S CHRmafok(hi) - f*(hl)HQ’

where C' is the constant mentioned in Lemma 1.

“4)

Proof.  For all 7, we have
UF (P*(hi)) = UF (P*(hi))
< max |V ()[[IPF([hs) = PE(IRa)ll - (5)
< HRmaX||Pk('|hi) - P*(|hZ)H
Recall that P*(s'|h;) = N'(f*(hi), 031) and P*(s'|h;) =
N(f*(hi),0%I). By Lemma 1 we have
|P(-1hi) = P*(ha)|l < Ol f*(hi) = f*(h)ll2,  (6)

regret bound will still hold through the integration of the initial
distribution p(s1).
4where a; = uk(si), Si4+1 ~ P*(-|Si, ai).

And the proof will be complete by combining (4) and (6).
]

Remark Lemma 1 is crucial for developing a bound
which is polynomially dependent on H in Section 3.4. Here
C H R, serves as the Lipschitz constant in the Lipschitz as-
sumption of the future value function in Osband & Van Roy
(2014) . In fact, the Lipschitz constant here is naturally
dependent on H: when ¢ = 1, the future value function
includes the cumulative rewards within H steps. As the dis-
tance between two initial states propagates in H steps (and
result in differences in the rewards), the resulting difference
in the future value function is naturally dependent on H.
However, Osband & Van Roy (2014) did not explore such
dependency and directly assume the Lipschitz continuity
of the future value function their Corollary 1 (presented in
Section 1). In contrast, we present the Lipschitz continuity
of the future value function as a result of the property of
noises and provide its dependency on H.

3.3. Connecting Regret with Posterior Variances

Ty .
In this section, we show the upper bound of EL’; 148%(f)
conditioned on any given history H;, with high probability.

Lemma 3 (Upper bound by the sum of posterior variances)
With probability at least 1 — 6,

S AL (F)[HA]

ard, @
=,

<sllacH 2R,W\/ 2d07 (himax)l0g

Proof.  Given history Hy, let f¥(h) indicate the pos-
terior mean of f¥(h) in episode k, and oZ(h) denotes
the posterior variance of f* in each dimension. Note
that f* and f* share the same variance in each dimen-
sion given history Hy, as described in Section 3. Con-
sider all dimensions of the state space, We have that for N
sub-Gaussian random variables: X1, ..., Xy with variance
o? (not required to be independent), and for any ¢t > 0,
2
P(maxi<;<n | X;| > t) < ONe 2.7, (Rigollet & Hiitter,
2015). So with probability at least 1 — ¢, for any state-action
pair h, maxi<i<a, [fF(h) — fF(R)] < \/207%(h) log 25
Also, we can derive an upper bound for the norm of the state
difference || f*(h) — f*(h)||2 < V/ds maxi<;<a, |fF(h) —
fE(h)|, and so does ||f*(h) — f¥(h)||2 since f* and
f* share the same posterior distribution. By the union
bound, we have that with probability at least 1 — 24,

17 (R) = £ ()2 < 21/2d.02 (1) log 2.

Then we look at the sum of the differences over horizon H,
without requiring each variable in the sum to be independent:
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2d
— [*(hi)]2 > E£12\/2dsai(hi)log 5

H
P ) -

< BL (5 () —

P(S{Ly 1" (hs)

2d

)

2d
*(hl)HQ > 2\/2d80%(hi)10g 5 )

®)

Thus, we have that with probability 1 — 4,
S (Re) = £ (ha)lla

12\/2dsoﬁ(hi) log

4Hd,

9

4Hd,
5 )

< 2H\/2d O'k (hkmax) log

where we define the index: kmax := argmax; o (h;),i =

., H in episode k. Here, since the posterior distribution
is only updated every H steps, we have to use data points
with the max variance in each episode to bound the result.
Similarly, using the union bound for [ ] episodes, we have
that with probability at least 1 — 6,

S [Ag(f)[H]
< E[H]ZH12CHRmax||f ( ) f*(hl)HQ
ATd,

< a7 scn? mdx\/ 2,02 (himax) 10g

O

Remark Here we bound Ay (f) using point-wise concen-
tration properties of rewards and transitions that applies to
any state-action pair. Then we use the union bound on each
state-action pair that the agent encounters in every episode.
In contrast, Chowdhury & Gopalan (2019) use the uniform
concentration on the reward and transition functions, which
requires an extra assumption (their regularity assumption of
the RKHS norm) compared to our analysis.

3.4. Regret with Linear Kernels

Theorem 1 In the RL problem formulated in Section 2.1,
under the assumption of Section 2.2 with linear kernels >, we
have BayesRegret(T, %, ) = O(H3/2d\/T), where d
is the dimension of the state-action space, H is the episode
length, and T is the time elapsed.

SGP w1th linear kernel correspond to Bayesian linear regression
f(z) = wTz, where the prior distribution of the weight is w ~
N(0,%,) (Rasmussen, 2003) .

=)

Proof. In each episode k, let o,2(h) denote the
posterior variance given only a subset of data points
{P1max; ---s Pk-1max }» Where each element has the max vari-
ance in the corresponding episode. By Eq.(6) in Williams
& Vivarelli (2000), we know that the posterior variance
reduces as the number of data points grows. Hence
Vh,o2(h) < o,2(h). By Theorem 5 in Srinivas et al.
(2012) which provides a bound on the information gain,
and Lemma 2 in Russo & Van Roy (2014) that bounds the
sum of variances by the information gain, we have that
22%2]1 0,2 (hkmax) = O((ds + d,) log[£]) for linear kernels
with bounded variances (See Appendix for details).

Thus with probability 1 — 4, and let § = T

S AL (F) )

4Td,
0

S 02 (i) ,/ 1V/ds log(2T'd,)
< 8CH? Ruax VT/d log (2T, \/o dq)log(T))
= O((ds + do)H?VT)

< sl 4CH? Ry \/ 2d507 (hxmax) log

< 8CH?R

(10)

where O ignores logarithmic factors of 7.

Therefore,

B[S AL ()M

T

< (1= 2)O((ds + 5a) HT) + %2HRmax{ﬁ] an

T
= O(H?dVT),

where 2H R is the upper bound on the difference of value

functions, and d = dy + d,. Following similar deriva-

tion, E[TL7! A, (r)|Hi] = O(VIHT) (See Appendix
5 k=1—k k pp

for details). Finally, through the tower property we have

BayesRegret(T, 775, M*) = O(H?d/T). O

Remark Here we compare our result with Corollary 2
in (Osband & Van Roy, 2014). Note that we maintain the
same assumptions of transitions and rewards as (Osband
& Van Roy, 2014). However, in their Corollary 2 which
describes the regret for LQR, they directly use the Lipschitz
constant of the underlying value function, instead of the
future value function. The Lipschitz constant of the under-
lying function in LQR is actually exponential in H; as a
result, even if the reward is linear, their bound would still
be exponential in H (See Appendix for details), while we
present a regret bound polynomial in H. So their Corollary
2 is very loose and can be improved by our analysis.
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3.5. Nonlinear Extension via Feature Representation

We can slightly modify the previous proof to derive the
bound in settings that use feature representations. Consider
the mapping: (s,a) — s in the transition model. We trans-
form the state-action pair (s, a) to ¢7(s,a) € R% as the
input of the transition model, and transform the target s’
to 14 (s") € R4 , then this transition model can be estab-
lished with respect to this feature embedding. We further
assume dy = O(dy) . Besides, we assume dy = O(dy) in
the feature representation ¢, (s, a) € R%’, then the reward
model can also be established with respect to the feature
embedding. In this way, we can handle non-linear rewards
and transitions with only linear kernels in GP. Following
similar steps in previous analysis will lead to a Bayesian
regret of O(H3/2dy\/T).

Empirically, the linearity of rewards and transitions can be
preserved by updating the feature representation. By updat-
ing representations of all state-action pairs in the history and
the covariance correspondingly, the theoretical extension to
nonlinear cases still holds in practice.

Remark The eluder dimension of neural networks in Os-
band & Van Roy (2014) can blow up to infinity, and the
information gain used in Chowdhury & Gopalan (2019)
yields exponential order of dimension d if nonlinear kernels
are used, such as SE and Matérn kernels. But linear ker-
nel can only model linear functions, thus the representation
power is restricted if the polynomial order of d is desired
in their result. We first derive results for linear kernels, and
increase the representation power by extracting the penul-
timate layer of neural networks, and thus we can derive
a bound linear in the dimension of the penultimate layer,
which is generally much less than the exponential order of
the input dimension of neural networks.

4. Algorithm Description

In this section, we elaborate our proposed algorithm, MPC-
PSRL, as shown in Algorithm 1.

4.1. Predictive Model

When modeling the rewards and transitions, we use fea-
tures extracted from the penultimate layer of fitted neural
networks, and perform Bayesian linear regression on the
feature vectors to update posterior distributions.

Feature representation: we first fit neural networks for
transitions and rewards, using the same network architec-
ture as Chua et al. (2018). Let x; denote the state-action
pair (h;) and y; denote the target value. Specifically, we
use reward 7; as y; to fit rewards, and we take the difference
between two consecutive states s; 1 — s; as y; to fit tran-
sitions. The penultimate layer of fitted neural networks is

Algorithm 1 MPC-PSRL
Initialize data D with random actions for one episode
repeat
Sample a transition model and a cost model at the
beginning of each episode
for : = 1 to H steps do
Obtain action using MPC with planning horizon 7:
a; € argmaxg,,, . > o E[r(s;, ar)]
D=DuU {(Si, Ay Ty Si+1)}
end for
Train cost and dynamics representations ¢, and ¢y
using data in D
Update ¢, (s, a), ¢5(s,a) for all (s, a) collected
Perform posterior update of w, and wy in cost and dy-
namics models using updated representations ¢,.(s, a),
¢¢(s,a) for all (s, a) collected
until convergence

extracted as the feature representation, denoted as ¢ and
¢, for transitions and rewards, respectively. Note that in
the transition feature embedding, we only use one neural
network to extract features of state-action pairs from the
penultimate layer to serve as ¢, and leave the target states
without further feature representation (the general setting
is discussed in Section 3.5 where feature representations
are used for both inputs and outputs), so the dimension of
the target in the transition model dy, equals to d,. Thus we
have a modified regret bound of O(H?/?,/dd,T). We do
not find the necessity to further extract feature representa-
tions in the target space, as it might introduce additional
computational overhead. Although higher dimensionality of
the hidden layers might imply better representation, we find
that only modifying the width of the penultimate layer to be
the same order of d = d + s, suffices in our experiments
for both reward and transition models. Note that how to
optimize the dimension of the penultimate layer for more
efficient feature representation deserves further exploration.

Bayesian update and posterior sampling: here we de-
scribe the Bayesian update of transition and reward models
using extracted features. Recall that Gaussian process with
linear kernels is equivalent to Bayesian linear regression.
By extracting the penultimate layer as feature representation
¢, the target value y and the representation ¢ () could be
seen as linearly related: y = wT¢(x) + €, where € is a
zero-mean Gaussian noise with variance o2 (which is U]2c for
the transition model and o2 for the reward model as defined
in Section 2.1). We choose the prior distribution of weights
w as zero-mean Gaussian with covariance matrix X, then
the posterior distribution of w is also multivariate Gaussian
(Rasmussen (2003)):

p(w|D) ~ N (c72A7 @Y, A1)
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Figure 1. Training curves of MPC-PSRL (shown in red), and other model-based baseline algorithms in stochastic tasks. Solid curves are
the mean of five trials, shaded areas correspond to the standard deviation among trials. (r) means with oracle rewards provided.

where A = 02037 + oL e e R *N is the concate-
nation of feature representations {¢(x;)},,and Y € RN
is the concatenation of target values. At the beginning of
each episode, we sample w from the posterior distribution to
build the model, collect new data during the whole episode,
and update the posterior distribution of w at the end of the
episode using all the data collected. Here we present the
complexity for posterior sampling: The matrix multiplica-
tion for covariance matrix A is O(diN ); The inverse of A
is O(d3).

Besides the posterior distribution of w, the feature repre-
sentation ¢ is also updated in each episode with new data
collected. We adopt a similar dual-update procedure as
Riquelme et al. (2018): after representations for rewards
and transitions are updated, feature vectors of all state-action
pairs collected are re-computed. Then we apply Bayesian
update on these feature vectors. See the description of Al-
gorithm 1 for details.

4.2. Planning

During interaction with the environment, we use a MPC con-
troller (Camacho & Alba (2013)) for planning. At each time
step 4, the controller takes state s; and an action sequence
@iitr = {Qi, @it1, G4} as the input, where 7 is the
planning horizon. We use transition and reward models to
produce the first action a; of the sequence of optimized ac-

tions arg max,, T R[r(s¢, ar)], where the expected

vidr t=1

return of a series of actions can be approximated using the
mean return of several particles propagated with noises of
our sampled reward and transition models. To compute the
optimal action sequence, we use CEM (Botev et al. (2013)),
which samples actions from a distribution closer to previous
action samples with high rewards.

5. Experiments
5.1. Baselines

We compare our method with the following state-of-the-
art model-based and model-free algorithms on benchmark
control tasks.

Model-free: Soft Actor-Critic (SAC) from Haarnoja et al.
(2018) is an off-policy deep actor-critic algorithm that uti-
lizes entropy maximization to guide exploration. Deep De-
terministic Policy Gradient (DDPG) from Barth-Maron et al.
(2018) is an off-policy algorithm that concurrently learns
a Q-function and a policy, with a discount factor to guide
exploration.

Model-based: Probabilistic Ensembles with Trajectory
Sampling (PETS) from Chua et al. (2018) models the dy-
namics via an ensemble of probabilistic neural networks
to capture epistemic uncertainty for exploration, and uses
MPC for action selection, with a requirement to have ac-
cess to oracle rewards for planning. Model-Based Policy
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Figure 2. Training curves of MPC-PSRL (shown in red), and other baseline algorithms in different tasks. Solid curves are the mean of five
trials, shaded areas correspond to the standard deviation among trials, and the dotted line shows the rewards at convergence.

Optimization (MBPO) from Janner et al. (2019) uses the
same bootstrap ensemble techniques as PETS in modeling,
but differs from PETS in policy optimization with a large
amount of short model-generated rollouts, and can cope
with environments with no oracle rewards provided. We do
not compare with Gal et al. (2016), which adopts a single
Bayesian neural network (BNN) with moment matching,
as it is outperformed by PETS that uses an ensemble of
BNNs with trajectory sampling. And we don’t compare
with GP-based trajectory optimization methods with real re-
wards provided (Deisenroth & Rasmussen (2011), Kamthe
& Deisenroth (2018)), which are not only outperformed
by PETS, but also computationally expensive and thus are
limited to very small state-action spaces.

5.2. Environments and Results

We use environments with various complexity and dimen-
sionality for evaluation:

Low-dimensional stochastic environments: continuous Cart-
pole (ds = 4, d, = 1, H = 200, with a continuous ac-
tion space compared to the classic Cartpole, which makes
it harder to learn) and Pendulum Swing Up (ds = 3,
d, = 1, H = 200, a modified version of Pendulum where
we limit the start state to make it harder for exploration). The
transitions and rewards are originally deterministic in these
environments, so we first modify the physics in Cartpole and
Pendulum so that the transitions are stochastic with indepen-

dent Gaussian noises (N(0,0.01)). We also use noises in
the same form for stochastic rewards. The learning curves
of model-based algorithms are shown in Figure 1, which
shows our algorithm significantly outperforms model-based
baselines in these stochastic environments.

Higher-dimensional environments: 7-DOF Reacher (ds =
17,d, = 7, H = 150) and 7-DOF pusher (ds = 20,d, =
7, H = 150) are two more challenging tasks as provided
in (Chua et al., 2018), where we conduct experiments both
with and without true rewards, to compare with all baseline
algorithms mentioned.

The learning curves of all compared algorithms are shown
in Figure 2, and the hyperparameters and other experimental
settings in our experiments are provided in Appendix. Here
we also included results from deterministic Cartpole and
Pendulum without oracle rewards. When their trajectories
are deterministic, optimization with oracle rewards in these
two environments becomes very easy and there is no sig-
nificant difference in the performances for all model-based
algorithms we compare, so we omit those learning curves
in Figure 2. However, when we add noise to the trajectory,
these environments become harder to learn even when the
rewards are provided, and we can observe the difference in
the performance of different algorithms as in Figure 1.

When the oracle rewards are provided in Pusher and Reacher,
our method outperforms PETS and MBPO: it converges
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more quickly with similar performance at convergence in
Pusher, while in Reacher, not only does it learn faster but
also performs better at convergence. As we use the same
planning method (MPC) as PETS, results indicate that our
model better captures the uncertainty, which is beneficial
to improving sample efficiency. When exploring in envi-
ronments where both rewards and transition are unknown,
our method significantly outperforms previous model-based
and model-free methods which do no require oracle rewards.
Meanwhile, it matches the performance of SAC at conver-
gence. Convergence results are provided in Appendix.

5.3. Discussion

In our experiment, we have shown that our model-based
algorithm outperforms Chua et al. (2018) and Janner et al.
(2019) in given environments. Notice that Chua et al. (2018),
Janner et al. (2019) have already greatly outperformed state-
of-the-art model-free methods in sample efficiency as shown
in their papers. Generally, model-based methods enjoy a
significant advantage in sample efficiency over model-free
methods. So we can safely expect that our algorithm can
also outperform other model-free methods with exploration
trick like Tang et al. (2017), Kamyar Azizzadenesheli (2018)
and Bellemare et al. (2016).

From the experimental results, it can be verified that our
algorithm better captures the model uncertainty, and makes
better use of uncertainty using posterior sampling. In our
methods, by sampling from a Bayesian linear regression on
a fitted feature space, and optimizing under the same sam-
pled MDP in the whole episode instead of re-sampling at
every step, the performance of our algorithm is guaranteed
from a Bayesian view as analyzed in Section 3. While PETS
and MBPO use bootstrapped ensembles of models with a
limited ensemble size to "simulate" a Bayesian model, in
which the convergence of the uncertainty is not guaranteed
and is highly dependent on the training of the neural net-
work. However, in our method, there is a limitation of using
MPC, which might fail in even higher-dimensional tasks as
shown in Janner et al. (2019). Incorporating policy gradient
techniques for action-selection might further improve the
performance and we leave it for future work.

6. Conclusion

In our paper, we show that the regret for PSRL algorithm
with function approximation can be polynomial in d, H with
the assumption that true rewards and transitions (with or
without feature embedding) can be modeled by GP with
linear kernels. While matching the order of best-known
bounds in UCB-based works, PSRL also enjoys computa-
tional tractability compared to UCB methods. Moreover, we
propose MPC-PSRL in continuous environments, and ex-
periments show that our algorithm exceeds existing model-

based and model-free methods with more efficient explo-
ration.
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