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Summary In this supplementary file, we collect the technical proofs for results stated in the main paper. Throughout the
sequel, we will adopt the following notations. We let 6 denote the generic model parameter. We also let Y be a random
variable representing the observed data and Z be a random variable representing the latent unobserved variable. We use y
and z to denote their realizations, respectively. Subscript i is used to indicate the é-th individual. We use ||z|| and ||z||; to
represent (- and ¢1-norm of vector . For random sequences a,, and b,,, a,, = O,(b,,) represents that a,, is stochastically
bounded by K'b,, for a sufficiently large constant K; a,, = o0,(by,) represents a,,/b,, converges to 0 with probability tending
to 1. Moreover, a = O(b) means there exists a constant K such that a < Kb; a = Q(b) means there exists a sufficiently
large constant K such that ¢ > Kb; a > b means that there exists a sufficiently K such that ¢ > Kb. We use V f
(V2 f,V3f) to represent the first (second, third) derivative of function f with respect to 6. Lastly, constants ¢, C' may be
different from the place to place.

1. Proof of Theorem 1

We first define the following additional notations.

* Individualized gradient: V f;(6) = —V log L;(6), full gradient: VF,(0) = = >, V f;(6). (We may write VF,,(0) =
V F(9) for simplicity.)

e Individualized stochastic gradient: VH;(0,z;) = —Vlogpg(yi|zi), batch stochastic gradient VHp(f) =
% >iep VHi(0, %).

* We further write V f;(60,6") = E., ., (sys) VHi(0,2) and VF,(0,6') = L 3"V f;(6,6'). Then it is easy to see that
V£i(0,0") =V fi(0)and VF,(0,0") = VF,(6).

Bound of v;T':  We first consider to give the upper bound of E|v; || (Here expectation IE is the conditional expectation

which is only taken over all 7§’s and z,s+1°s given other variables. ) For fixed iteration s and update index ¢, we further define
t
St = g5t 2js+1) = H (6%, z;; ). Then, by the definition of i ™', we have v ! = & 4 Vst = T+ VHE: (6°)
according to the definition of our new notation. By taking expectation with respect to iy +1and Zz,s+1, wWe have
t

Eis+1

t % s+l
't

it = VF,(0:TY) — VF,(6°,0:TY) + VHp: (6°) := H L. (8)
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Thus, we can compute

oo, 0572 = B, IGH + V42
¢

z
s if+1

Eif+17z.s+1 [||<t5+1 + @fs"'l — Ht8+1 n HtSJrl”Q]

< B, TP+ 2B, G =B, (G

< QHP A 2B (IGT)

< 2[|HTY A+ 2L 05 - 60| )
< AIVEL(6:HIP + lInll?] + 2L2[||€f*1 —0°)1?] (10)
< 2C|VE, (071 + 207|071 — %)%, (11)

by adjusting constant C' and using the fact that E[|VF(6;1)||?] = Q(1/n1 + (m~)?) before the termination of the
algorithm and ||n]|? is O(1/n1 + (m~)?) (which will be shown in the next paragraph). Here (9) uses the fact that the
density function is smooth and hence is L-lipschitz continuous for some positive L. Inequality (10) holds due to the fact that
lla+b||? < |lal|? + ||b]|?, where we write n = VF,,(0;11) — H ™. Therefore, we obtain

Elllvi*|°] = 2CE|VF(6; 1)1 + 2L°E |6+ — 6%, (12)

Difference between VF,, (/') and H;™': By straightforward calculation, we can find that

IVE(0;T) — HFTY = ||[VF.(6°,6;%") — VHp.(6°)]

[VE,(0%,0:TY) — VE,(0%,0°) + VF,(0°) — VHpg: (6°)||

IVEL(6°,0;7) — VE,(6°,6°)| + | VF.(6°) — VHp:(6°)]

C||6° — ;|| + IV, (6°) — VHp=(6°)]]. (13)

IN

Note that EV F,,(6°) = EV Hpg: (0°) = E,V log L(6). Therefore, by Hoeffding’s concentration inequality, we have that
ns Cl 2
P(IVE.(0") ~ B, log L) = ) < exp{~207/mi}

and

PUIYHi: (7) ~ B, log L(O)| > L) < exp(~20}/ma)

where m; and mg are the upper bounds for |V log L(6)| and |V log pp(y|z)|. Such constants exist by the compactness
assumption. Therefore, with high probability, we have that

~ Ch Co
VFE, 95-"-1 Hs+1 < O6° 05_;,_1
||77|| || L( t ) t || — H t || \/ﬁ /fnl

, 1
< C (m7+ﬁ), (14)

where the last inequality uses the fact that |5 — 671 || is at most of order m-y.

By this, we can further obtain that

(VE(0;41), Hy ) (VE(0;11), VEL(071)) = (VF,(071), VE,(0;7) — Hi ™)
IVFOHI? = IV O DIV E(037) — B

| VE.(6;T)]1? (15)

v v

by adjusting constant ¢ and using the fact that E[||V F,, (0511)[|?] = Q(||n]|) before the termination of the algorithm.
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Descent Inequality: By smoothness of F'(#), we then have
s 5 s s s L
E[F(0;11)] < E[F@O;) +(VFO;r), 0 -0 “>+*Il9fifl1 = 0]
= E[F(0;") = v(VF0;"), v ™) + || el
L
= E[F(0;7) = (VFO;), H ™) + == Iloi 7], (16)

for some constant L.
Consider the following Lyapunov function (Reddi et al., 2016)
Ry = B[F(6) + a6 — 871,

where c; is defined recursively in (19). We can compute that

E[l67f1 - 0°)1]
= B[z — 071 + 107 — 0°17 + 2005y — 07, 05 — 6°)

= E2Jo P+ 1057 = 0°17) + 29B[CH L 07— 6%)]

s s 0 1 s 6 s 0
ER2 o P + 1165+ — 6°)1%] + QVE[*HHﬁIHE + ill@“ —0°|I°]

<
s s ns s 5 s s
< ERZo P+ 0t - 60 ]+271E[7|\Vf(9 I+ tHG 6|7,
17)
where [3; will be determined later. Combining (16) and (17), we then have
RiIT = E[FO7) + e 07 - 6°)7]
L~?
< E[F(0;) = (VFO;), Hy ™) + IIvs“II ]
s ns ¢ Bt s ns
Feern (B2 oy T2 + (105 —6°)1%) + 2VE[7&IIHE+1H2 + 5H9t+1 —6°1I°])
= E[FO) ~ (ey = e ) IVEETI?
t
Ly? . =
(0 + ey P + (e + o BI85 - 8°)2) (18)
Together with the bound on E||v; ! |2, we then have
Rl < E[F(6;™)
CoCt417Y s
—(ey = =5 = C"L = 2Ceen ) EIVE O
H(ers1(L+ 78 +29°L%) + 2L Ef|6; ! — 6°)%)
cac
= R (o - 2 - 0L 2 PEIIVF
where we define the recursive relationship between ¢;’s, i.e.,
et = cop1 (148 + 292 L2) + 42 L3. (19)

For notational simplicity, we define

Iy =cy— CZC;rl’V — Cy?L — 2C¢i17?
t
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and v, = ming I'y. We add up (19) over ¢ from 0 to ¢t — 1 and get

m—1
Ymin Y EIIVE@O;)|°] < BT - R
t=0

Note that ¢,,, = 0, then RS = E[F(65+1)] = E[F(6511)] and that R5™! = E[F(05+")] = E[F(#*)]. Therefore, we have

S—1m—1
1 . _
T SN ENVEO; I < (F(6°) = F(6)/(Tmin)- (20)
s=0 t=0
R . . . S\[[12 . F(O°)-F(@®) _ . .
ecall that T}y, (€) is arg min; ming {E||VF(0;)||* < €}. Then (20) gives us that Ty, (€) < BT T—— with high

probability. This completes the proof of Theorem 1.

Choice of n;, m and y: We take f3; as the constant 3 (i.e., free of ¢ and s) and let r = 2¢2L2% +~3, v = #, m = n"1,

ny = n*@=) 3 = Ln~=/2_ Then r is bounded by v + L*y? = O(yf). We can compute ¢y which is bounded by

1 m_1
CO = L3727( +T2
< L372(1+7ﬁ)’m_1
- VB
= Lo (1498)™ 1)
< pLn=o/?, 1)

where p = O(y8m) which goes to 0 as n — co. By the definition of 7,,;,,, we can compute

. C2Ct41
TYmin = mtln{cv - %’Y — 0’72[1 — 2001&-{-172}
t
> C’y—@— 2L — 2co7?
B

¢
> 22
> (22)

holds for some constant ¢’. Here the last inequality holds since that ¢y/8 is upper bounded by some constant times
(14 ~8)™ — 1 whichis o(1), ¥*L < v and 4 < .

Therefore, it gives T(e) < C W. This concludes the proof of Theorem 1. Taking n; = n®!, then the
computational complexity will be (r; +m) -, which is n® if a1 > 2a//3 and n?(@=)n® /pe1 = p3a=3e1 if o) < 2a//3.

Thus the total computational complexity is simplified as C M by taking m = n2*/3 and n; = n2*/3. This
gives Corollary 1.
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2. Proof of Theorem 2
By Corollary 1, we know that | VF(6)]|2 = O, (n=2%/3). By Taylor expansion, we have that

VFE(0) = VF(0) + V2F(0)(0 — ) = V2F(6)(6 - 0), (23)

where 6 is arg ming F(6) (also known as the maximal likelihood estimator) and fisa point between 6 and 0. Since
both 6 and 6 are consistent estimator for §*, thus V2F () = I(6*) + 0,(1) where I(9*) is the information matrix. Thus,
0 — 6|2 = O,(n=2%/3) as well.

Expand VF(6) at 0, we have

0=VF() = VF(0)+V*F(6)(0 —0) + %VgF(f)(é —6)2. (24)

Since we have already know that |V H () — V f(0)| = Op(ﬁ) and [V2H(0) — V2f()| = Op(ﬁ). Plugging the formula
of 8™ into (24), we get

0 = Ou(—=)+VH(O) + V2 F(6)( —0) + %VBF(@(@ —0)?

n

= Oy~ £ VEHO)(6— 67 ) + V2F(0)(6— 0) + %v%(g)(é — gy

- <l- 5

= O)()+ VEHO@ - 07) + 5V ()0 - 0)? @s)

B

Then we arrive at ) )
16— 67 = (Umm(VQH(é)))_l(Op(ﬁ) + §|V3f(§)ll\§ —91%).

We know that the algorithm returns 0 satisfy that ||§ — 6*|| = Oy (=173 ). Therefore, we arrive at

_ 1 3
16— 0™ = Op(% + 2R,
Thus, when 3/4 < a < 1, we get || — 0™ || = O,(—=). It is known that MLE is root n-consistent. Thus we finally get
o7~ 6°]) = Op( =)
=07
By two-step refinement, we recall the formula
, VH(O™)
=" — ————. 2
0 0 VIH () (26)
Next we can show the normality of §"2. By Taylor expansion, we know
: . 1,
VH(O™) =VH(0*) + (0™ — 0" )VH?*(0*) + §(971 — 0" )VPH (), (27)
where £ lies between 6* and 6. Put (26) into the above equation, we can get
(1/y/n)VH(60")
0" — 6* 0" — 0"
Vn( ) —(mveEE) Vn( )
VZH(@O*) 1 V3H (&)
MN= == — (0" —0") =—~ 2
[ V2H(0r1) 2(9 0 )V2H(07’1)] ( 8)

after simplification. Then, we can see that the first term of (28) converges to N (0,1~1(0*)V (6*)I~1(6*)). The second

term of (28) is 0, (1) since that \/a(9" — 6%) is O, (1), 1 — eprorl = op(1) and (67 — 6) VZ;%EE) is 0,(1). Lastly,

by Slutsky Theorem, we get
V(0™ — %) — N(0, 170"V (0*)T~(0%)).
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3. Proof of Theorem 3

We require the following lemmas for convergence analysis under non-smooth setting.
Lemma 1 Let R be a closed convex function and x,y € dom(R). Then it holds
lproxr(z) — proxr(y)ll < ||z —yl|
Lemma 2 Let P(0) = F(0) + R(0), where VF(0) is L-Lipschitz continuous, and F'(0) and R(0) are strongly convex with
parameter g and pg. For any 0 in domain and vector v, define

0" = prozyr(0 —yv), g = %(9 —07), A=v—VF(0),
then it holds that
P(y) = P(O%) +"(y = ) + Jlgl* + E-ly — 01 + 5t lly = 677 + AT (6% — ) 29)
Sor any y in the domain and 0 < v < 1/L.

The proofs of above Lemmas are omitted here. Their proofs can be found in Rockafellar (1970); Xiao and Zhang (2014).

Proof of Main Results Using the update rule, we know

0350 = 0.1 = I — g™ — 0.l
= 107 = 0u)” = 29(g8 )T (0 — 02) + 471l I (30)

By applying Lemma 2 with 6 = 6; 7!, v = vj !, 0% = 0511, g = g™ and y = 0., we get

s s Yis s HE | s KR s s
—(gt O — 0.) + §||9t+1\|2 < P(0.) - P(6;17) - 7||9frl —0.]” ~ 7\\9153 — 07T = AT (07 - 6.),

where At = o Tt — VF(6: ). Therefore,

e R AR &

i1 Cran

—yur| = 0.2 = yurllO3f; — 6.

~2y(P(0; 1) = P(6.)) — 29AL (071 — 6.)
1037 = 0,17 = 2y(P(O; 1) — P(0.)) — 20AL (07 — 6.). (1)

IN

We next bound the quantity —27(A§+1)T(9,fill — 6.,). We define the full proximal gradient update as
Orf = prozyr (0, — A VE(0;),

though it is not used in algorithm. Then,

=29(AFHT (07 - 0.) =29(AFTO5 - 0 — 29(ATTHT (05 - 0

t+1 t+1
< AT - Ol = 29(AFTH T O - 6.)
< AT = o) = (07 — A VE@O; )]
=29(AFHT (07 - 0.)
= 27AT? = 29(ATTH (O3 — 00, (32)

Thus (31) becomes

0317 = 012 < 10:7F = 0,117 = 29(P(07L1) — P(6.)) + 29| AF 1 = 29(AFH) T (071 — 0.

We take expectation on both sides with respect to if“ and z;s+1 to get
t

|07 — 0] < 1054 = 01> — 20 E(P(0357) — P(6:)) + v,
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where we use the boundness of E||A{*!|| and |6 — .|| < n. Before the termination of Algorithm 1, we know that

E(P(0;H) — P(6.)) = Q(n). Therefore, we have
B0 — 0.0 < 107! = 60.]1> = 24E(P(077) — P(6.)). (33)

By summing the above inequality over all s and ¢, then we get

T m
2emTe < Y 2e/E(P(6;]]) — P(6.)) < [|6° — 6.]°. (34)
s=1t=1

0_g* |2

We get T'(e) < 16 . This concludes the proof of Theorem 2.

2cme

Then the total computational complexity is

160 — 0.
mye

o(

max{m,ni })

for any € = Q(\/% +my). When m = n®t, n; = m2(@=1)

is O(n®|6o — 0.2 /e).

and v = n~“ with ay = 2/3a, the computational complexity

4. Proof of Theorem 4

Let ST be the set of indices corresponding to position of §* where true value is non-zero and S; be the set of indices
corresponding to position of §* where true value is zero. For notational simplicity, we define 61y = [S7] and 6oy = 0[S5].

Next, we show that the solution § with é[SS‘} = 0 satisfies Karush-Kuhn-Tucker (KKT) condition. We then can write

vr0) = (o)

and write ) )
Vi F(0) V F(9)>
V2F(0) = ( 11 10 7
O =2, r0) ViF0)

where V' F'() is the subvector of gradient corresponding to 61y and V32, F(0) is the block of Hessian matrix corresponding
to 6(1). Rest quantities are defined in the same fashion.

We then recall the irrepresentable condition.
* Assume there exists a positive constant ) such that
Vo1 F(6*)VT F(6%)) tsign(67,)| < 1 —n. (35)
Here the “<"” means that the inequality holds element-wisely.
We expand VF (é) at 0* by Taylor expansion. Then we get
VF() = VE(*) 4+ V2F(0*)(0 — 0°) + O((6 — 6*)?). (36)
For subvector é(l) and 9{1), we can get the similar equation, that is,
ViF(0) = ViF(0") + V3 F(O") 0 — 071)) + O((0n) — 071))%). (37)
This implies

01y — 671y = —(VEF(67) " (V1F(6) + Op(—=)) (38)

1
NG
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For those positions in S, we can compute

VOF(é) = —v01F(9*)(V§1F(9*))—1(VIF(é)_i_Op(%))_i_O((é_e*)Q)
= —V01F(9*)(V%IF(Q*))—lvlF(é)+Op(%)+Op(n—a/3) (39)

Note that V; F/(0) = Tsign(0f;)) + 0, (n=%/%), we have

1
N

when 7 > n~%/%. Thus, we know that é(o) = 0. This completes the proof.

VoF(0)] % €c(r(1 = 1) + Op(n=/%)) + Op(—=) + Op(n=*"%) < 7 (40)

5. Proof of Results in Network Case

Let d; be the number of nodes that the i-th node connects to and A be the edge list. Let | A| be the cardinality of A and we
know 2| A| = " d;. The objective function is

LO)=> p(z) [[ £z, 2) 1)
z (1,j)EA
Thus
ViegL(0) = Vlog{> p(z) [[ fowijlzi z)}
z (i,j)€A
= > {Viog(p(z) [[ folwijlzi2))}p(zl6)
z (i,5)€A
= > {Viog [[ folwijlzi 2)}p(zl0) (42)
z (i.j)€A
= Y A D Viog fo(yislzi, 2)}p(z]6) (43)
z  (i,j)€A
= E.{ Z Vlog fo(yijlzi ) }- (44)
(i,4)€A

Next we show the local convergence property of Algorithm 2 under the latent network setting. For any 6 € B(0*, ) with
some small radius 0, we can show that p(z|0) — 1,—,- (i.e., a probability mass function which puts total point probability
on true latent memberships). More specifically, according to Lemma 3, it gives dry (p(z]0), 1o—z-) < exp{—cdmin } for
some positive constant ¢ and d,;,, is the minimum of d;’s.

We first prove several useful lemmas.
Lemma 3 For any 0 € B(0*,0), there exists a constant ¢ such that

HP(Z|9) —la—zr|Tv < eXp{—cdmm}. (45)

Proof of Lemma 3 To prove (3), it is equivalent to prove
> po(z) = po(z") - exp{—cdmin}, (46)
zH£z*

where py(z) = pg(z,y) is the complete likelihood function. We omit script y for notational simplicity.

The main step of the proof is to show that

log pe(z) < logpg(z*) — cdmin|z — 2" |o 47)
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holds for all z # z* with high probability. According to concentration lemma 5, we have

P(|logpg(z) — logpe(z*) — E[log pg(z) — log pe(z*)]| > |z — 2" |odmin®)
< exp{—-|z— z*|0dmmx2} (48)

by taking gg(z) = log pg(z) — log pe(z*). By model identifiability, we know that there exists constant ¢g such that
E[logpg(z)] — E[log pe(z*)] < co|z — z*|odmin- 49)
By taking = ¢(/2 in (48), we have
log po(2) < log pu(z") = 5 dminlz — 270 (50)
with probability at least 1 — exp{—|z — z*|odminci/4}. Therefore, we have

P(logpe(z) < logpy(z*) — %Odmmlz —z"|o, forany z)

> I—Zexp{—\z—z*hdvcg/él}
= l—z Z exp{—|z — ddvc/4}
d=1z:|z—z*|g
1 z": n! exp{—ddvc? /4}
= _— — X —_
2 —d)(a) P 0
> 1- Z n% exp{—ddinci/4} (51
d=1
> 1 — (1 —exp{—dminci/4+logn}) ' exp{—dminci/4 +logn}
> 1 —exp{—dmin} (52)

by adjusting the constant ¢’ and the fact that d,,;, > log n. This establishes (46) and the lemma follows as well.
Lemma 4 For any 0 € B(0*,6), there exist constants ¢, ¢ such that

IVL(0) — VL(0|z")|| < exp{—c'dmin}- (53)
and

IVLi(0) — VLi(0]2")|| < exp{—c'dpmin} (54)
hold with probability at least 1 — exp{—c”dmm}.
The proof of Lemma 4 is similar to that of Lemma 3. Hence, we omit here.

Lemma 5 Suppose go(z) is any function of form 3, s > :c 4,108 fo(yij|zi, zj), where A is arbitrary subset of
{1,...,n}. Then it holds that

P(lge(2) —Ega(2)| > |Aslz) < exp{—C|As|dmina?}, (55)
for some constant C. Here As = {(i,j) 11 € As,j € A;}.

Proof of Lemma 5 By boundness assumption, we know there exist constant M such that |log fo(vij|%,2;) —
Elog fo(yi;lzi, zj)| < M. Then, by Hoeffding’s inequality, we have

- | 4,222
Plloo(:) ~Ean(2)] > |Ae) < expl-2/70),
|A,|x?
< exp{-2 e }
< exp{—C|A5|dmma:2} (56)
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by adjusting the constant C'. This concludes the lemma.

We define the following quantities,

1
VH(0,z) = Tl > Viog folyislzi %),
(i,j)€A

1
VH;(0,z) ::J Z Viog fo(yijlzis z),

' jiig)eA
and
1
VHg(0,z) := 3 7 Z Vlog fo(yijlzis 2j)-
t€B T (j j)eA,ieB
We also define
VH(G | ‘ Z Vlog fo y1j|zzu g)
(i,j)EA
VH;) : Z V1ng9(ym|zz> ])
J:(i,5)€EA
and
1
VHB(G) = Z - Z Vlogf9<ylj|zz7 ])
1€B ™ (j i)eAieB
Therefore, we can compute
1 n
s+1 _ s+1 s+1
Eif+1’zq,§'+1vt B M ;Ez'wpegﬂ(d)’)v]{i(et 'z )
1 n ~ ~
_M Z Ezwpgfﬂ (ZIy)VHi(QS’ Zf—H) +VHp(6°,2°)
i=1
= VH(@;™) — VH(0°) + VHg(6°) + O(exp{—c dmin}),
— Hts+1 67

according to Lemma 3. We next consider to compute the upper bound of E[||v; (2]

i

E[” s+1 Hs+1 H5+1||2]
IE[IIHSHII ]+ 2E[[lg* — E[g )]
2B[|| Hy ] + 2E[]|g %],
4E[||Vlog L(0;)|1*] + 4n” + 2E[||& 1],
4CE[||Vlog L(0;H)11%] + 2E[|I&; 7], (58)

E[[[v

VAN VAN VAN VAN

where &1 = d%{VH,-t (057, 2;,) — VH;, (0, 2;,)} and p = VH; ™! — Vlog L(0; ') is the step error which is order
of (mvy + \/7171) The last inequality above uses the fact that ||V log L(6; )| = Q(||n||) before the termination of the
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algorithm. Since, ||n|| can be bounded by

Inl = IIVH*' - Vlog L(?i“)ll i
= |[VH(;Y) = VH(0%) + VHp:(6°) — Viog L(6; || + O(exp{—c'dpmin})
< IVH(6;'Y) — VH(0%)|| + | VHp: (%) — Viog L(6°|z")|
+[|V log L(6%|z") — Vlog L(6; " |z")||
+[|Vlog L(6; 71 z*) — V1og L(6;11)|| + O(exp{—c'dmin})
~ 1
< L|est — 6°|| + O(———
+L|16;1 — 6% + O(exp{—C¢'dmin}) + O(exp{—c'dmin}) (59)
1
= O(my+ —). (60)

ni dnLin

Here, (59) uses the fact that VH (¢) and V log L(0|z*) are L-Lipschitz continuous for some L and ||V log H s (6%|z%) —
Vlog L(0°|z*)|| is Op(1/+/dmin|B?|) by using concentration inequality 5.

As a result, we can obtain

(Vlog L(6; ), H; ™) (Vlog L(6; ), Viog L(0;*")) — (Vlog L(6;7"), Vieg L(6; ") — H*')
IV 1og L(6;H)II* = IV log L(6;*)|[[IV log L(6; ) — H ™|

c|Viog L(6; )%, 61)

AVARAVARLV]

when ||V log L(6; ™) || = Q(m~y + \/711}17) before the termination of the algorithm.

Under the network setting, we can similarly construct the Lyapunov function as

RV =E[F(6;) + el —6°)°],

with ¢;’s satisfying recursive relationship ¢; = cyy1(1 + 8 + 2y2L?) + +2L3 (t = 0,...,m — 1) and ¢,, = 0. By the
same procedure, we then arrive at

T—1m—1

1 RY — RY F(8°) — F(6%)

= E[|VF@; /)P <Cc—2—2<C 62

7 2 D ElIVRO I < o= < 0= (62
holds for some constant C'. This leads to the desire result and concludes the proof of Theorem 5.
Finally, we set n; = p2(a—a1) /dmin, m = n®, v = n~% Then the total computational complexity will be

C
(mdmaa: + nldmax)7~ (63)
yme

Suppose dmin; dmaz = n*°, then we can choose a; = 2"‘%&0 Then n; = n(22=20)/3 and computational complexity
becomes no“"o“’%, where « should satisfy o < 1 and 2(av — ) > ag (i.e., & > ag/2).
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