Supplementary Material for "On Estimation in Latent Variable Models"

Guanhua Fang, Ping Li
Cognitive Computing Lab
Baidu Research
10900 NE 8th St Bellevue WA 98004 USA
{guanhuafang, liping11}@baidu.com

Summary In this supplementary file, we collect the technical proofs for results stated in the main paper. Throughout the sequel, we will adopt the following notations. We let θ denote the generic model parameter. We also let Y be a random variable representing the observed data and Z be a random variable representing the latent unobserved variable. We use y and z to denote their realizations, respectively. Subscript i is used to indicate the i-th individual. We use $\|x\|$ and $\|x\|_1$ to represent ℓ_2 - and ℓ_1 -norm of vector x. For random sequences a_n and b_n , $a_n = O_p(b_n)$ represents that a_n is stochastically bounded by Kb_n for a sufficiently large constant K; $a_n = o_p(b_n)$ represents a_n/b_n converges to 0 with probability tending to 1. Moreover, a = O(b) means there exists a constant K such that $a \le Kb$; $a = \Omega(b)$ means there exists a sufficiently large constant K such that $a \ge Kb$. We use ∇f ($\nabla^2 f$, $\nabla^3 f$) to represent the first (second, third) derivative of function f with respect to θ . Lastly, constants c, C may be different from the place to place.

1. Proof of Theorem 1

We first define the following additional notations.

- Individualized gradient: $\nabla f_i(\theta) = -\nabla \log L_i(\theta)$, full gradient: $\nabla F_n(\theta) = \frac{1}{n} \sum_i \nabla f_i(\theta)$. (We may write $\nabla F_n(\theta) = \nabla F(\theta)$ for simplicity.)
- Individualized stochastic gradient: $\nabla H_i(\theta, z_i) = -\nabla \log p_{\theta}(y_i|z_i)$, batch stochastic gradient $\nabla H_B(\theta) = \frac{1}{n} \sum_{i \in B} \nabla H_i(\theta, z_i)$.
- We further write $\nabla f_i(\theta, \theta') = \mathbb{E}_{z_i \sim p_{\theta'}(z|y_i)} \nabla H_i(\theta, z_i)$ and $\nabla F_n(\theta, \theta') = \frac{1}{n} \sum_i \nabla f_i(\theta, \theta')$. Then it is easy to see that $\nabla f_i(\theta, \theta') = \nabla f_i(\theta)$ and $\nabla F_n(\theta, \theta') = \nabla F_n(\theta)$.

Bound of v_t^{s+1} : We first consider to give the upper bound of $\mathbb{E}\|v_t^{s+1}\|$. (Here expectation \mathbb{E} is the conditional expectation which is only taken over all i_t^s 's and $z_{i_t^{s+1}}$'s given other variables.) For fixed iteration s and update index t, we further define $\zeta_t^{s+1} = H(\theta_t^{s+1}, z_{i_t^{s+1}}) - H(\tilde{\theta}^s, z_{i_t^s})$. Then, by the definition of v_t^{s+1} , we have $v_t^{s+1} = \xi_t^{s+1} + \tilde{\nabla} f^{s+1} = \xi_t^{s+1} + \nabla H_{B^s}(\tilde{\theta}^s)$ according to the definition of our new notation. By taking expectation with respect to i_t^{s+1} and $z_{i_t^{s+1}}$, we have

$$\mathbb{E}_{i_t^{s+1}, z_{i_t^{s+1}}} v_t^{s+1} = \nabla F_n(\theta_t^{s+1}) - \nabla F_n(\tilde{\theta}^s, \theta_t^{s+1}) + \nabla H_{B^s}(\tilde{\theta}^s) := H_t^{s+1}. \tag{8}$$

Thus, we can compute

$$\begin{split} \mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\|v_t^{s+1}\|^2] &= \mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\|\zeta_t^{s+1} + \tilde{\nabla}f^{s+1}\|^2] \\ &= \mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\|\zeta_t^{s+1} + \tilde{\nabla}f^{s+1} - H_t^{s+1} + H_t^{s+1}\|^2] \\ &\leq 2\mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\|H_t^{s+1}\|^2] + 2\mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\|\zeta_t^{s+1} - \mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\zeta_t^{s+1}]\|^2] \\ &\leq 2\|H_t^{s+1}\|^2 + 2\mathbb{E}_{i_t^{s+1},z_{i_t^{s+1}}}[\|\zeta_t^{s+1}\|^2] \\ &\leq 2[\|H_t^{s+1}\|^2] + 2L^2\|\theta_t^{s+1} - \tilde{\theta}^s\|^2 \\ &\leq 4[\|\nabla F_n(\theta_t^{s+1})\|^2 + \|\eta\|^2] + 2L^2[\|\theta_t^{s+1} - \tilde{\theta}^s\|^2] \\ &\leq 2C\|\nabla F_n(\theta_t^{s+1})\|^2 + 2L^2\|\theta_t^{s+1} - \tilde{\theta}^s\|^2, \end{split} \tag{10}$$

by adjusting constant C and using the fact that $\mathbb{E}[\|\nabla F(\theta_t^{s+1})\|^2] = \Omega(1/n_1 + (m\gamma)^2)$ before the termination of the algorithm and $\|\eta\|^2$ is $O(1/n_1 + (m\gamma)^2)$ (which will be shown in the next paragraph). Here (9) uses the fact that the density function is smooth and hence is L-lipschitz continuous for some positive L. Inequality (10) holds due to the fact that $\|a+b\|^2 \le \|a\|^2 + \|b\|^2$, where we write $\eta = \nabla F_n(\theta_t^{s+1}) - H_t^{s+1}$. Therefore, we obtain

$$\mathbb{E}[\|v_t^{s+1}\|^2] = 2C\mathbb{E}\|\nabla F_n(\theta_t^{s+1})\|^2 + 2L^2\mathbb{E}\|\theta_t^{s+1} - \tilde{\theta}^s\|^2.$$
(12)

Difference between $\nabla F_n(\theta_t^{s+1})$ and H_t^{s+1} : By straightforward calculation, we can find that

$$\|\nabla F_{n}(\theta_{t}^{s+1}) - H_{t}^{s+1}\| = \|\nabla F_{n}(\tilde{\theta}^{s}, \theta_{t}^{s+1}) - \nabla H_{B^{s}}(\tilde{\theta}^{s})\|$$

$$= \|\nabla F_{n}(\tilde{\theta}^{s}, \theta_{t}^{s+1}) - \nabla F_{n}(\tilde{\theta}^{s}, \tilde{\theta}^{s}) + \nabla F_{n}(\tilde{\theta}^{s}) - \nabla H_{B^{s}}(\tilde{\theta}^{s})\|$$

$$= \|\nabla F_{n}(\tilde{\theta}^{s}, \theta_{t}^{s+1}) - \nabla F_{n}(\tilde{\theta}^{s}, \tilde{\theta}^{s})\| + \|\nabla F_{n}(\tilde{\theta}^{s}) - \nabla H_{B^{s}}(\tilde{\theta}^{s})\|$$

$$\leq C\|\tilde{\theta}^{s} - \theta_{t}^{s+1}\| + \|\nabla F_{n}(\tilde{\theta}^{s}) - \nabla H_{B^{s}}(\tilde{\theta}^{s})\|. \tag{13}$$

Note that $\mathbb{E}\nabla F_n(\tilde{\theta}^s) = \mathbb{E}\nabla H_{B^s}(\tilde{\theta}^s) = \mathbb{E}_y\nabla \log L(\theta)$. Therefore, by Hoeffding's concentration inequality, we have that

$$P(\|\nabla F_n(\tilde{\theta}^s) - \mathbb{E}_y \nabla \log L(\theta)\| \ge \frac{C_1}{\sqrt{n}}) \le \exp\{-2C_1^2/m_1\}$$

and

$$P(\|\nabla H_{B^s}(\tilde{\theta}^s) - \mathbb{E}_y \nabla \log L(\theta)\| \ge \frac{C_2}{\sqrt{n_1}}) \le \exp\{-2C_2^2/m_2\}$$

where m_1 and m_2 are the upper bounds for $|\nabla \log L(\theta)|$ and $|\nabla \log p_{\theta}(y|z)|$. Such constants exist by the compactness assumption. Therefore, with high probability, we have that

$$\|\eta\| = \|\nabla F_n(\theta_t^{s+1}) - H_t^{s+1}\| \le C\|\tilde{\theta}^s - \theta_t^{s+1}\| + \frac{C_1}{\sqrt{n}} + \frac{C_2}{\sqrt{n_1}}$$

$$\le C'(m\gamma + \frac{1}{\sqrt{n_1}}),$$
(14)

where the last inequality uses the fact that $\|\tilde{\theta}^s - \theta_t^{s+1}\|$ is at most of order $m\gamma$.

By this, we can further obtain that

$$\langle \nabla F_{n}(\theta_{t}^{s+1}), H_{t}^{s+1} \rangle = \langle \nabla F_{n}(\theta_{t}^{s+1}), \nabla F_{n}(\theta_{t}^{s+1}) \rangle - \langle \nabla F_{n}(\theta_{t}^{s+1}), \nabla F_{n}(\theta_{t}^{s+1}) - H_{t}^{s+1} \rangle$$

$$\geq \|\nabla f(\theta_{t}^{s+1})\|^{2} - \|\nabla F_{n}(\theta_{t}^{s+1})\| \|\nabla F_{n}(\theta_{t}^{s+1}) - H_{t}^{s+1}\|$$

$$\geq c \|\nabla F_{n}(\theta_{t}^{s+1})\|^{2}$$
(15)

by adjusting constant c and using the fact that $\mathbb{E}[\|\nabla F_n(\theta_t^{s+1})\|^2] = \Omega(\|\eta\|)$ before the termination of the algorithm.

Descent Inequality: By smoothness of $F(\theta)$, we then have

$$\mathbb{E}[F(\theta_{t+1}^{s+1})] \leq \mathbb{E}[F(\theta_{t}^{s+1}) + \langle \nabla F(\theta_{t}^{s+1}), \theta_{t+1}^{s+1} - \theta_{t}^{s+1} \rangle + \frac{L}{2} \|\theta_{t+1}^{s+1} - \theta_{t}^{s+1}\|^{2}]
= \mathbb{E}[F(\theta_{t}^{s+1}) - \gamma \langle \nabla F(\theta_{t}^{s+1}), v_{t}^{s+1} \rangle + \frac{L\gamma^{2}}{2} \|v_{t}^{s+1}\|^{2}]
= \mathbb{E}[F(\theta_{t}^{s+1}) - \gamma \langle \nabla F(\theta_{t}^{s+1}), H_{t}^{s+1} \rangle + \frac{L\gamma^{2}}{2} \|v_{t}^{s+1}\|^{2}],$$
(16)

for some constant L.

Consider the following Lyapunov function (Reddi et al., 2016)

$$R_t^{s+1} := \mathbb{E}[F(\theta_t^{s+1}) + c_t \|\theta_t^{s+1} - \tilde{\theta}^s\|^2],$$

where c_t is defined recursively in (19). We can compute that

$$\mathbb{E}[\|\theta_{t+1}^{s+1} - \tilde{\theta}^{s}\|^{2}] \\
= \mathbb{E}[\|\theta_{t+1}^{s+1} - \theta_{t}^{s+1}\|^{2} + \|\theta_{t}^{s+1} - \tilde{\theta}^{s}\|^{2} + 2\langle\theta_{t+1}^{s+1} - \theta_{t}^{s+1}, \theta_{t}^{s+1} - \tilde{\theta}^{s}\rangle] \\
= \mathbb{E}[\gamma^{2}\|v_{t}^{s+1}\|^{2} + \|\theta_{t}^{s+1} - \tilde{\theta}^{s}\|^{2}] + 2\gamma\mathbb{E}[\langle H_{t}^{s+1}, \theta_{t}^{s+1} - \tilde{\theta}^{s}\rangle] \\
\leq \mathbb{E}[\gamma^{2}\|v_{t}^{s+1}\|^{2} + \|\theta_{t}^{s+1} - \tilde{\theta}^{s}\|^{2}] + 2\gamma\mathbb{E}[\frac{1}{2\beta_{t}}\|H_{t}^{s+1}\|^{2} + \frac{\beta_{t}}{2}\|\theta_{t}^{s+1} - \tilde{\theta}^{s}\|^{2}] \\
\leq \mathbb{E}[\gamma^{2}\|v_{t}^{s+1}\|^{2} + \|\theta_{t}^{s+1} - \tilde{\theta}^{s}\|^{2}] + 2\gamma\mathbb{E}[\frac{c_{2}}{2\beta_{t}}\|\nabla f(\theta_{t}^{s+1})\|^{2} + \frac{\beta_{t}}{2}\|\theta_{t}^{s+1} - \tilde{\theta}^{s}\|^{2}], \tag{17}$$

where β_t will be determined later. Combining (16) and (17), we then have

$$R_{t+1}^{s+1} = \mathbb{E}[F(\theta_{t+1}^{s+1}) + c_{t+1} \| \theta_{t+1}^{s+1} - \tilde{\theta}^{s} \|^{2}]$$

$$\leq \mathbb{E}[F(\theta_{t}^{s+1}) - \gamma \langle \nabla F(\theta_{t}^{s+1}), H_{t}^{s+1} \rangle + \frac{L\gamma^{2}}{2} \| v_{t}^{s+1} \|^{2}]$$

$$+ c_{t+1} (\mathbb{E}[\gamma^{2} \| v_{t}^{s+1} \|^{2} + \| \theta_{t}^{s+1} - \tilde{\theta}^{s} \|^{2}] + 2\gamma \mathbb{E}[\frac{1}{2\beta_{t}} \| H_{t}^{s+1} \|^{2} + \frac{\beta_{t}}{2} \| \theta_{t}^{s+1} - \tilde{\theta}^{s} \|^{2}])$$

$$= \mathbb{E}[F(\theta_{t}^{s+1}) - (c\gamma - c_{2} \frac{c_{t+1}\gamma}{\beta_{t}}) \| \nabla F(\theta_{t}^{s+1}) \|^{2}$$

$$+ (\frac{L\gamma^{2}}{2} + c_{t+1}\gamma^{2}) \mathbb{E}[\| v_{t}^{s+1} \|^{2}] + (c_{t+1} + c_{t+1}\gamma\beta_{t}) \mathbb{E}[\| \theta_{t}^{s+1} - \tilde{\theta}^{s} \|^{2}].$$
(18)

Together with the bound on $\mathbb{E}||v_t^{s+1}||^2$, we then have

$$\begin{split} R_{t+1}^{s+1} & \leq & \mathbb{E}[F(\theta_t^{s+1})] \\ & - (c\gamma - \frac{c_2c_{t+1}\gamma}{\beta_t} - C\gamma^2L - 2Cc_{t+1}\gamma^2)\mathbb{E}[\|\nabla F(\theta_t^{s+1})\|^2] \\ & + (c_{t+1}(1 + \gamma\beta_t + 2\gamma^2L^2) + \gamma^2L^3)E[\|\theta_t^{s+1} - \tilde{\theta}^s\|^2] \\ & = & R_t^{s+1} - (c\gamma - \frac{c_2c_{t+1}\gamma}{\beta_t} - C\gamma^2L - 2Cc_{t+1}\gamma^2)\mathbb{E}[\|\nabla F(\theta_t^{s+1})\|^2], \end{split}$$

where we define the recursive relationship between c_t 's, i.e.,

$$c_t = c_{t+1}(1 + \gamma \beta_t + 2\gamma^2 L^2) + \gamma^2 L^3.$$
(19)

For notational simplicity, we define

$$\Gamma_t = c\gamma - \frac{c_2 c_{t+1} \gamma}{\beta_t} - C\gamma^2 L - 2C c_{t+1} \gamma^2$$

and $\gamma_{min} = \min_t \Gamma_t$. We add up (19) over t from 0 to t-1 and get

$$\gamma_{min} \sum_{t=0}^{m-1} \mathbb{E}[\|\nabla F(\theta_t^{s+1})\|^2] \le R_0^{s+1} - R_m^{s+1}.$$

Note that $c_m=0$, then $R_m^{s+1}=\mathbb{E}[F(\theta_m^{s+1})]=\mathbb{E}[F(\tilde{\theta}^{s+1})]$ and that $R_0^{s+1}=\mathbb{E}[F(\theta_0^{s+1})]=\mathbb{E}[F(\tilde{\theta}^{s})]$. Therefore, we have

$$\frac{1}{T} \sum_{s=0}^{S-1} \sum_{t=0}^{m-1} \mathbb{E}[\|\nabla F(\theta_t^{s+1})\|^2] \le (F(\theta^0) - F(\bar{\theta}))/(T\gamma_{min}). \tag{20}$$

Recall that $T_{min}(\epsilon)$ is $\arg\min_t \min_s \{\mathbb{E}\|\nabla F(\theta_t^s)\|^2 \le \epsilon\}$. Then (20) gives us that $T_{min}(\epsilon) \le \frac{F(\theta^0) - F(\bar{\theta})}{m\gamma_{min}\epsilon}$ with high probability. This completes the proof of Theorem 1.

Choice of n_1 , m and γ : We take β_t as the constant β (i.e., free of t and s) and let $r=2\gamma^2L^2+\gamma\beta$, $\gamma=\frac{1}{Ln^{\alpha}}$, $m=n^{\alpha_1}$, $n_1=n^{2(\alpha-\alpha_1)}$, $\beta=Ln^{-\alpha/2}$. Then r is bounded by $\gamma\beta+L^2\gamma^2=O(\gamma\beta)$. We can compute c_0 which is bounded by

$$c_0 = L^3 \gamma^2 \frac{(1+r)^m - 1}{r}$$

$$\leq L^3 \gamma^2 \frac{(1+\gamma\beta)^m - 1}{\gamma\beta}$$

$$= Ln^{-\alpha/2} ((1+\gamma\beta)^m - 1)$$

$$\leq \mu Ln^{-\alpha/2}, \tag{21}$$

where $\mu = O(\gamma \beta m)$ which goes to 0 as $n \to \infty$. By the definition of γ_{min} , we can compute

$$\gamma_{min} = \min_{t} \{ c\gamma - \frac{c_2 c_{t+1} \gamma}{\beta_t} - C\gamma^2 L - 2C c_{t+1} \gamma^2 \}
\geq c\gamma - \frac{c_0 \gamma}{\beta} - \gamma^2 L - 2c_0 \gamma^2
\geq \frac{c'}{Ln^{\alpha}}$$
(22)

holds for some constant c'. Here the last inequality holds since that c_0/β is upper bounded by some constant times $(1+\gamma\beta)^m-1$ which is o(1), $\gamma^2L\ll\gamma$ and $\gamma^2\ll\gamma$.

Therefore, it gives $T(\epsilon) \leq C \frac{n^{\alpha}(F(\theta^0) - F(\bar{\theta}))}{m\epsilon}$. This concludes the proof of Theorem 1. Taking $n_1 = n^{\alpha_1}$, then the computational complexity will be $(n_1 + m) \frac{n^{\alpha}}{m}$, which is n^{α} if $\alpha_1 \geq 2\alpha/3$ and $n^{2(\alpha - \alpha_1)} n^{\alpha}/n^{\alpha_1} = n^{3\alpha - 3\alpha_1}$ if $\alpha_1 < 2\alpha/3$. Thus the total computational complexity is simplified as $C \frac{n^{\alpha}(F(\theta^0) - F(\bar{\theta}))}{\epsilon}$ by taking $m = n^{2\alpha/3}$ and $n_1 = n^{2\alpha/3}$. This gives Corollary 1.

2. Proof of Theorem 2

By Corollary 1, we know that $\|\nabla F(\hat{\theta})\|^2 = O_p(n^{-2\alpha/3})$. By Taylor expansion, we have that

$$\nabla F(\hat{\theta}) = \nabla F(\bar{\theta}) + \nabla^2 F(\check{\theta})(\hat{\theta} - \bar{\theta}) = \nabla^2 F(\check{\theta})(\hat{\theta} - \bar{\theta}), \tag{23}$$

where $\bar{\theta}$ is $\arg\min_{\theta} F(\theta)$ (also known as the maximal likelihood estimator) and $\check{\theta}$ is a point between $\hat{\theta}$ and $\bar{\theta}$. Since both $\hat{\theta}$ and $\check{\theta}$ are consistent estimator for θ^* , thus $\nabla^2 F(\check{\theta}) = I(\theta^*) + o_p(1)$ where $I(\theta^*)$ is the information matrix. Thus, $\|\hat{\theta} - \bar{\theta}\|^2 = O_p(n^{-2\alpha/3})$ as well.

Expand $\nabla F(\theta)$ at $\hat{\theta}$, we have

$$0 = \nabla F(\bar{\theta}) = \nabla F(\hat{\theta}) + \nabla^2 F(\hat{\theta})(\bar{\theta} - \hat{\theta}) + \frac{1}{2} \nabla^3 F(\xi)(\bar{\theta} - \hat{\theta})^2. \tag{24}$$

Since we have already know that $|\nabla H(\hat{\theta}) - \nabla f(\hat{\theta})| = O_p(\frac{1}{\sqrt{n}})$ and $|\nabla^2 H(\hat{\theta}) - \nabla^2 f(\hat{\theta})| = O_p(\frac{1}{\sqrt{n}})$. Plugging the formula of θ^{r_1} into (24), we get

$$0 = O_{p}(\frac{1}{\sqrt{n}}) + \nabla H(\hat{\theta}) + \nabla^{2} F(\hat{\theta})(\bar{\theta} - \hat{\theta}) + \frac{1}{2} \nabla^{3} F(\xi)(\bar{\theta} - \hat{\theta})^{2}$$

$$= O_{p}(\frac{1}{\sqrt{n}}) + \nabla^{2} H(\hat{\theta})(\hat{\theta} - \theta^{r_{1}}) + \nabla^{2} f(\hat{\theta})(\bar{\theta} - \hat{\theta}) + \frac{1}{2} \nabla^{3} f(\xi)(\bar{\theta} - \hat{\theta})^{2}$$

$$= O_{p}(\frac{1}{\sqrt{n}}) + \nabla^{2} H(\hat{\theta})(\bar{\theta} - \theta^{r_{1}}) + \frac{1}{2} \nabla^{3} f(\xi)(\bar{\theta} - \hat{\theta})^{2}$$
(25)

Then we arrive at

$$\|\bar{\theta} - \theta^{r_1}\| = (\sigma_{min}(\nabla^2 H(\hat{\theta})))^{-1} (O_p(\frac{1}{\sqrt{n}}) + \frac{1}{2} |\nabla^3 f(\xi)| \|\bar{\theta} - \hat{\theta}\|^2).$$

We know that the algorithm returns $\hat{\theta}$ satisfy that $\|\hat{\theta} - \theta^*\| = O_p(\frac{1}{n^{1/3\alpha}})$. Therefore, we arrive at

$$\|\bar{\theta} - \theta^{r_1}\| = O_p(\frac{1}{\sqrt{n}} + n^{-2\alpha/3}).$$

Thus, when $3/4 < \alpha < 1$, we get $\|\bar{\theta} - \theta^{r_1}\| = O_p(\frac{1}{\sqrt{n}})$. It is known that MLE is root n-consistent. Thus we finally get

$$\|\theta^{r_1} - \theta^*\| = O_p(\frac{1}{\sqrt{n}}).$$

By two-step refinement, we recall the formula

$$\theta^{r_2} = \theta^{r_1} - \frac{\nabla H(\theta^{r_1})}{\nabla^2 H(\theta^{r_1})}.$$
 (26)

Next we can show the normality of θ^{r_2} . By Taylor expansion, we know

$$\nabla H(\theta^{r_1}) = \nabla H(\theta^*) + (\theta^{r_1} - \theta^*) \nabla H^2(\theta^*) + \frac{1}{2} (\theta^{r_1} - \theta^*) \nabla^3 H(\xi), \tag{27}$$

where ξ lies between θ^* and θ^{r_1} . Put (26) into the above equation, we can get

$$\sqrt{n}(\theta^{r_2} - \theta^*) = \frac{(1/\sqrt{n})\nabla H(\theta^*)}{-(1/n)\nabla^2 H(\theta^{r_1})} + \sqrt{n}(\theta^{r_1} - \theta^*)
\cdot \left[1 - \frac{\nabla^2 H(\theta^*)}{\nabla^2 H(\theta^{r_1})} - \frac{1}{2}(\theta^{r_1} - \theta^*) \frac{\nabla^3 H(\xi)}{\nabla^2 H(\theta^{r_1})}\right]$$
(28)

after simplification. Then, we can see that the first term of (28) converges to $N(0, I^{-1}(\theta^*)V(\theta^*)I^{-1}(\theta^*))$. The second term of (28) is $o_p(1)$ since that $\sqrt{n}(\theta^{r_1}-\theta^*)$ is $O_p(1)$, $1-\frac{\nabla^2 H(\theta^*)}{\nabla^2 H(\theta^{r_1})}=o_P(1)$ and $(\theta^{r_1}-\theta^*)\frac{\nabla^3 H(\xi)}{\nabla^2 H(\hat{\theta}^{r_1})}$ is $o_p(1)$. Lastly, by Slutsky Theorem, we get

$$\sqrt{n}(\theta^{r_2} - \theta^*) \to N(0, I^{-1}(\theta^*)V(\theta^*)I^{-1}(\theta^*)).$$

3. Proof of Theorem 3

We require the following lemmas for convergence analysis under non-smooth setting.

Lemma 1 Let R be a closed convex function and $x, y \in dom(R)$. Then it holds

$$||prox_R(x) - prox_R(y)|| \le ||x - y||.$$

Lemma 2 Let $P(\theta) = F(\theta) + R(\theta)$, where $\nabla F(\theta)$ is L-Lipschitz continuous, and $F(\theta)$ and $R(\theta)$ are strongly convex with parameter μ_F and μ_R . For any θ in domain and vector v, define

$$\theta^+ = prox_{\gamma R}(\theta - \gamma v), \ g = \frac{1}{\gamma}(\theta - \theta^+), \ \Delta = v - \nabla F(\theta),$$

then it holds that

$$P(y) \ge P(\theta^+) + g^T(y - \theta) + \frac{\eta}{2} \|g\|^2 + \frac{\mu_F}{2} \|y - \theta\|^2 + \frac{\mu_R}{2} \|y - \theta^+\|^2 + \Delta^T(\theta^+ - y)$$
(29)

for any y in the domain and $0 < \gamma < 1/L$.

The proofs of above Lemmas are omitted here. Their proofs can be found in Rockafellar (1970); Xiao and Zhang (2014).

Proof of Main Results Using the update rule, we know

$$\|\theta_{t+1}^{s+1} - \theta_*\|^2 = \|\|\theta_t^{s+1} - \gamma g_t^{s+1} - \theta_*\|^2 \|$$

$$= \|\theta_t^{s+1} - \theta_*\|^2 - 2\gamma (g_t^{s+1})^T (\theta_t - \theta_*) + \gamma^2 \|g_t^{s+1}\|^2.$$
(30)

By applying Lemma 2 with $\theta=\theta_t^{s+1}, v=v_t^{s+1}, \theta^+=\theta_{t+1}^{s+1}, g=g_t^{s+1}$ and $y=\theta_*$, we get

$$-(g_t^{s+1})^T(\theta_t^{s+1}-\theta_*) + \frac{\gamma}{2}\|g_t^{s+1}\|^2 \le P(\theta_*) - P(\theta_{t+1}^{s+1}) - \frac{\mu_F}{2}\|\theta_t^{s+1}-\theta_*\|^2 - \frac{\mu_R}{2}\|\theta_{t+1}^{s+1}-\theta_*^{s+1}\|^2 - \Delta_t^T(\theta_{t+1}^{s+1}-\theta_*),$$

where $\Delta_t^{s+1} = v_t^{s+1} - \nabla F(\theta_t^{s+1})$. Therefore,

$$\|\theta_{t+1}^{s+1} - \theta_{*}^{s+1}\|^{2} \leq \|\theta_{t}^{s+1} - \theta_{*}^{s+1}\|^{2} - \gamma\mu_{F}\|\theta_{t}^{s+1} - \theta_{*}\|^{2} - \gamma\mu_{R}\|\theta_{t+1}^{s+1} - \theta_{*}\|^{2} - 2\gamma(P(\theta_{t+1}^{s+1}) - P(\theta_{*})) - 2\gamma\Delta_{t}^{T}(\theta_{t+1}^{s+1} - \theta_{*}) \leq \|\theta_{t}^{s+1} - \theta_{*}\|^{2} - 2\gamma(P(\theta_{t+1}^{s+1}) - P(\theta_{*})) - 2\gamma\Delta_{t}^{T}(\theta_{t+1}^{s+1} - \theta_{*}).$$
(31)

We next bound the quantity $-2\gamma(\Delta_t^{s+1})^T(\theta_{t+1}^{s+1}-\theta_*)$. We define the full proximal gradient update as

$$\bar{\theta}_{t+1}^{s+1} = prox_{\gamma R}(\theta_t^{s+1} - \gamma \nabla F(\theta_t^{s+1})),$$

though it is not used in algorithm. Then,

$$-2\gamma(\Delta_{t}^{s+1})^{T}(\theta_{t+1}^{s+1} - \theta_{*}) = -2\gamma(\Delta_{t}^{s+1})^{T}(\theta_{t+1}^{s+1} - \bar{\theta}_{t+1}^{s+1}) - 2\gamma(\Delta_{t}^{s+1})^{T}(\bar{\theta}_{t+1}^{s+1} - \theta_{*}^{s+1})$$

$$\leq 2\gamma\|\Delta_{t}^{s+1}\|\|\theta_{t+1}^{s+1} - \bar{\theta}_{t+1}^{s+1}\| - 2\gamma(\Delta_{t}^{s+1})^{T}(\bar{\theta}_{t+1}^{s+1} - \theta_{*})$$

$$\leq 2\gamma\|\Delta_{t}^{s+1}\|\|(\theta_{t}^{s+1} - \gamma v_{t}^{s+1}) - (\theta_{t}^{s+1} - \gamma \nabla F(\theta_{t}^{s+1}))\|$$

$$-2\gamma(\Delta_{t}^{s+1})^{T}(\bar{\theta}_{t+1}^{s+1} - \theta_{*})$$

$$= 2\gamma^{2}\|\Delta_{t}^{s+1}\|^{2} - 2\gamma(\Delta_{t}^{s+1})^{T}(\bar{\theta}_{t+1}^{s+1} - \theta_{*}), \tag{32}$$

Thus (31) becomes

$$\|\theta_{t+1}^{s+1} - \theta_*\|^2 \leq \|\theta_t^{s+1} - \theta_*\|^2 - 2\gamma (P(\theta_{t+1}^{s+1}) - P(\theta_*)) + 2\gamma^2 \|\Delta_t^{s+1}\|^2 - 2\gamma (\Delta_t^{s+1})^T (\bar{\theta}_{t+1}^{s+1} - \theta_*).$$

We take expectation on both sides with respect to i_t^{s+1} and $z_{i_t^{s+1}}$ to get

$$\mathbb{E}\|\theta_{t+1}^{s+1} - \theta_*\|^2 \leq \|\theta_t^{s+1} - \theta_*\|^2 - 2\gamma \mathbb{E}(P(\theta_{t+1}^{s+1}) - P(\theta_*)) + \gamma\eta,$$

where we use the boundness of $\mathbb{E}\|\Delta_t^{s+1}\|$ and $\|\theta_{t+1}^{s+1}-\theta_*\|\leq \eta$. Before the termination of Algorithm 1, we know that $E(P(\theta_{t+1}^{s+1})-P(\theta_*))=\Omega(\eta)$. Therefore, we have

$$\mathbb{E}\|\theta_{t+1}^{s+1} - \theta_*\|^2 \le \|\theta_t^{s+1} - \theta_*\|^2 - 2c\gamma \mathbb{E}(P(\theta_{t+1}^{s+1}) - P(\theta_*)). \tag{33}$$

By summing the above inequality over all s and t, then we get

$$2cmT\epsilon \le \sum_{s=1}^{T} \sum_{t=1}^{m} 2c\gamma \mathbb{E}(P(\theta_{t+1}^{s+1}) - P(\theta_{*})) \le \|\theta^{0} - \theta_{*}\|^{2}.$$
(34)

We get $T(\epsilon) \leq \frac{\|\theta^0 - \theta^*\|^2}{2cm\epsilon}$. This concludes the proof of Theorem 2.

Then the total computational complexity is

$$O(\frac{\|\theta_0 - \theta_*\|^2}{m\gamma\epsilon} \max\{m, n_1\})$$

for any $\epsilon = \Omega(\frac{1}{\sqrt{n_1}} + m\gamma)$. When $m = n^{\alpha_1}$, $n_1 = m^{2(\alpha - \alpha_1)}$ and $\gamma = n^{-\alpha}$ with $\alpha_1 = 2/3\alpha$, the computational complexity is $O(n^{\alpha} \|\theta_0 - \theta_*\|^2/\epsilon)$.

4. Proof of Theorem 4

Let S_1^* be the set of indices corresponding to position of θ^* where true value is non-zero and S_0^* be the set of indices corresponding to position of θ^* where true value is zero. For notational simplicity, we define $\theta_{(1)} = \theta[S_1^*]$ and $\theta_{(0)} = \theta[S_0^*]$. Next, we show that the solution $\hat{\theta}$ with $\hat{\theta}[S_0^*] = 0$ satisfies Karush-Kuhn-Tucker (KKT) condition. We then can write

$$\nabla F(\theta) = \begin{pmatrix} \nabla_1 F(\theta) \\ \nabla_0 F(\theta) \end{pmatrix},$$

and write

$$\nabla^2 F(\theta) = \begin{pmatrix} \nabla_{11}^2 F(\theta) & \nabla_{10}^2 F(\theta) \\ \nabla_{01}^2 F(\theta) & \nabla_{00}^2 F(\theta) \end{pmatrix},$$

where $\nabla_1 F(\theta)$ is the subvector of gradient corresponding to $\theta_{(1)}$ and $\nabla^2_{11} F(\theta)$ is the block of Hessian matrix corresponding to $\theta_{(1)}$. Rest quantities are defined in the same fashion.

We then recall the irrepresentable condition.

• Assume there exists a positive constant η such that

$$|\nabla_{01} F(\theta^*) \nabla_{11}^2 F(\theta^*)|^{-1} \operatorname{sign}(\theta_{(1)}^*)| \le 1 - \eta.$$
(35)

Here the "\(\preceq\)" means that the inequality holds element-wisely.

We expand $\nabla F(\hat{\theta})$ at θ^* by Taylor expansion. Then we get

$$\nabla F(\hat{\theta}) = \nabla F(\theta^*) + \nabla^2 F(\theta^*)(\hat{\theta} - \theta^*) + O((\hat{\theta} - \theta^*)^2). \tag{36}$$

For subvector $\hat{\theta}_{(1)}$ and $\theta_{(1)}^*$, we can get the similar equation, that is,

$$\nabla_1 F(\hat{\theta}) = \nabla_1 F(\theta^*) + \nabla_{11}^2 F(\theta^*) (\hat{\theta}_{(1)} - \theta_{(1)}^*) + O((\hat{\theta}_{(1)} - \theta_{(1)}^*)^2). \tag{37}$$

This implies

$$\hat{\theta}_{(1)} - \theta_{(1)}^* = -(\nabla_{11}^2 F(\theta^*))^{-1} (\nabla_1 F(\hat{\theta}) + O_p(\frac{1}{\sqrt{n}}))$$
(38)

For those positions in S_0^* , we can compute

$$\nabla_{0}F(\hat{\theta}) = -\nabla_{01}F(\theta^{*})(\nabla_{11}^{2}F(\theta^{*}))^{-1}(\nabla_{1}F(\hat{\theta}) + O_{p}(\frac{1}{\sqrt{n}})) + O((\hat{\theta} - \theta^{*})^{2})$$

$$= -\nabla_{01}F(\theta^{*})(\nabla_{11}^{2}F(\theta^{*}))^{-1}\nabla_{1}F(\hat{\theta}) + O_{p}(\frac{1}{\sqrt{n}}) + O_{p}(n^{-\alpha/3})$$
(39)

Note that $\nabla_1 F(\hat{\theta}) = \tau \operatorname{sign}(\theta_{(1)}^*) + O_p(n^{-\alpha/6})$, we have

$$|\nabla_0 F(\hat{\theta})| \le \xi_c(\tau(1-\eta) + O_p(n^{-\alpha/6})) + O_p(\frac{1}{\sqrt{n}}) + O_p(n^{-\alpha/3}) < \tau \tag{40}$$

when $\tau \geq n^{-\alpha/6}$. Thus, we know that $\hat{\theta}_{(0)} = \mathbf{0}$. This completes the proof.

5. Proof of Results in Network Case

Let d_i be the number of nodes that the *i*-th node connects to and A be the edge list. Let |A| be the cardinality of A and we know $2|A| = \sum d_i$. The objective function is

$$L(\theta) = \sum_{\mathbf{z}} p(\mathbf{z}) \prod_{(i,j) \in A} f(\theta|z_i, z_j). \tag{41}$$

Thus

$$\nabla \log L(\theta) = \nabla \log \{ \sum_{\mathbf{z}} p(\mathbf{z}) \prod_{(i,j) \in A} f_{\theta}(y_{ij}|z_{i}, z_{j}) \}$$

$$= \sum_{\mathbf{z}} \{ \nabla \log \left(p(\mathbf{z}) \prod_{(i,j) \in A} f_{\theta}(y_{ij}|z_{i}, z_{j}) \right) \} p(\mathbf{z}|\theta)$$

$$= \sum_{\mathbf{z}} \{ \nabla \log \prod_{(i,j) \in A} f_{\theta}(y_{ij}|z_{i}, z_{j}) \} p(\mathbf{z}|\theta)$$
(42)

$$= \sum_{\mathbf{z}} \{ \sum_{(i,j)\in A} \nabla \log f_{\theta}(y_{ij}|z_i, z_j) \} p(\mathbf{z}|\theta)$$
(43)

$$= \mathbb{E}_{\mathbf{z}} \{ \sum_{(i,j)\in A} \nabla \log f_{\theta}(y_{ij}|z_i, z_j) \}. \tag{44}$$

Next we show the local convergence property of Algorithm 2 under the latent network setting. For any $\theta \in B(\theta^*, \delta)$ with some small radius δ , we can show that $p(\mathbf{z}|\theta) \to \mathbf{1}_{\mathbf{z}=\mathbf{z}^*}$ (i.e., a probability mass function which puts total point probability on true latent memberships). More specifically, according to Lemma 3, it gives $d_{TV}(p(\mathbf{z}|\theta), \mathbf{1}_{\mathbf{z}=\mathbf{z}^*}) \leq \exp\{-cd_{min}\}$ for some positive constant c and d_{min} is the minimum of d_i 's.

We first prove several useful lemmas.

Lemma 3 For any $\theta \in B(\theta^*, \delta)$, there exists a constant c such that

$$||p(\mathbf{z}|\theta) - \mathbf{1}_{\mathbf{z}=\mathbf{z}^*}||_{TV} \le \exp\{-cd_{min}\}. \tag{45}$$

Proof of Lemma 3 To prove (3), it is equivalent to prove

$$\sum_{\mathbf{z}\neq\mathbf{z}^*} p_{\theta}(\mathbf{z}) = p_{\theta}(\mathbf{z}^*) \cdot \exp\{-cd_{min}\},\tag{46}$$

where $p_{\theta}(\mathbf{z}) = p_{\theta}(\mathbf{z}, \mathbf{y})$ is the complete likelihood function. We omit script \mathbf{y} for notational simplicity.

The main step of the proof is to show that

$$\log p_{\theta}(\mathbf{z}) \le \log p_{\theta}(\mathbf{z}^*) - cd_{min}|\mathbf{z} - \mathbf{z}^*|_0 \tag{47}$$

holds for all $\mathbf{z} \neq \mathbf{z}^*$ with high probability. According to concentration lemma 5, we have

$$P(|\log p_{\theta}(\mathbf{z}) - \log p_{\theta}(\mathbf{z}^*) - \mathbb{E}[\log p_{\theta}(\mathbf{z}) - \log p_{\theta}(\mathbf{z}^*)]| \ge |\mathbf{z} - \mathbf{z}^*|_0 d_{min} x)$$

$$\le \exp\{-|\mathbf{z} - \mathbf{z}^*|_0 d_{min} x^2\}$$
(48)

by taking $g_{\theta}(z) = \log p_{\theta}(\mathbf{z}) - \log p_{\theta}(\mathbf{z}^*)$. By model identifiability, we know that there exists constant c_0 such that

$$\mathbb{E}[\log p_{\theta}(\mathbf{z})] - \mathbb{E}[\log p_{\theta}(\mathbf{z}^*)] \le c_0 |\mathbf{z} - \mathbf{z}^*|_0 d_{min}. \tag{49}$$

By taking $x = c_0/2$ in (48), we have

$$\log p_{\theta}(\mathbf{z}) \le \log p_{\theta}(\mathbf{z}^*) - \frac{c_0}{2} d_{min} |\mathbf{z} - \mathbf{z}^*|_0$$
(50)

with probability at least $1 - \exp\{-|\mathbf{z} - \mathbf{z}^*|_0 d_{min} c_0^2/4\}$. Therefore, we have

$$P(\log p_{\theta}(\mathbf{z}) \leq \log p_{\theta}(\mathbf{z}^{*}) - \frac{c_{0}}{2} d_{min} | \mathbf{z} - \mathbf{z}^{*}|_{0}, \text{ for any } \mathbf{z})$$

$$\geq 1 - \sum_{\mathbf{z}} \exp\{-|\mathbf{z} - \mathbf{z}^{*}|_{0} dv c_{0}^{2}/4\}$$

$$= 1 - \sum_{d=1}^{n} \sum_{\mathbf{z}: |\mathbf{z} - \mathbf{z}^{*}|_{0}} \exp\{-|\mathbf{z} - ddv c_{0}^{2}/4\}$$

$$= 1 - \sum_{d=1}^{n} \frac{n!}{(n-d)!(d)!} \exp\{-ddv c_{0}^{2}/4\}$$

$$\geq 1 - \sum_{d=1}^{n} n^{d} \exp\{-dd_{min} c_{0}^{2}/4\}$$

$$\geq 1 - (1 - \exp\{-d_{min} c_{0}^{2}/4 + \log n\})^{-1} \exp\{-d_{min} c_{0}^{2}/4 + \log n\}$$

$$\geq 1 - \exp\{-c' d_{min}\}$$
(52)

by adjusting the constant c' and the fact that $d_{min} \gg \log n$. This establishes (46) and the lemma follows as well.

Lemma 4 For any $\theta \in B(\theta^*, \delta)$, there exist constants c', c'' such that

$$\|\nabla L(\theta) - \nabla L(\theta|\mathbf{z}^*)\| \le \exp\{-c'd_{min}\}. \tag{53}$$

and

$$\|\nabla L_i(\theta) - \nabla L_i(\theta|\mathbf{z}^*)\| < \exp\{-c'd_{min}\}\tag{54}$$

hold with probability at least $1 - \exp\{-c''d_{min}\}$.

The proof of Lemma 4 is similar to that of Lemma 3. Hence, we omit here.

Lemma 5 Suppose $g_{\theta}(z)$ is any function of form $\sum_{i \in A_s} \sum_{j \in A_i} \log f_{\theta}(y_{ij}|z_i,z_j)$, where A_s is arbitrary subset of $\{1,\ldots,n\}$. Then it holds that

$$P(|g_{\theta}(z) - \mathbb{E}g_{\theta}(z)| \ge |\bar{A}_s|x) \le \exp\{-C|A_s|d_{min}x^2\},\tag{55}$$

for some constant C. Here $\bar{A}_s := \{(i,j) : i \in A_s, j \in A_i\}.$

Proof of Lemma 5 By boundness assumption, we know there exist constant M such that $|\log f_{\theta}(y_{ij}|z_i,z_j) - \mathbb{E}\log f_{\theta}(y_{ij}|z_i,z_j)| \leq M$. Then, by Hoeffding's inequality, we have

$$P(|g_{\theta}(z) - \mathbb{E}g_{\theta}(z)| \ge |\bar{A}_{s}|x) \le \exp\{-2\frac{|\bar{A}_{s}|^{2}x^{2}}{|\bar{A}_{s}|M^{2}}\},$$

$$\le \exp\{-2\frac{|\bar{A}_{s}|x^{2}}{M^{2}}\}$$

$$\le \exp\{-C|A_{s}|d_{min}x^{2}\}$$
(56)

by adjusting the constant C. This concludes the lemma.

We define the following quantities,

$$\nabla H(\theta, \mathbf{z}) := \frac{1}{|A|} \sum_{(i,j) \in A} \nabla \log f_{\theta}(y_{ij}|z_i, z_j),$$

$$\nabla H_i(\theta, \mathbf{z}) := \frac{1}{d_i} \sum_{j:(i,j) \in A} \nabla \log f_{\theta}(y_{ij}|z_i, z_j),$$

and

$$\nabla H_B(\theta, \mathbf{z}) := \frac{1}{\sum_{i \in B} d_i} \sum_{(i,j) \in A, i \in B} \nabla \log f_{\theta}(y_{ij}|z_i, z_j).$$

We also define

$$\nabla H(\theta) := \frac{1}{|A|} \sum_{(i,j) \in A} \nabla \log f_{\theta}(y_{ij}|z_i^*, z_j^*),$$

$$\nabla H_i(\theta) := \frac{1}{d_i} \sum_{j:(i,j)\in A} \nabla \log f_{\theta}(y_{ij}|z_i^*, z_j^*),$$

and

$$\nabla H_B(\theta) := \frac{1}{\sum_{i \in B} d_i} \sum_{(i,j) \in A, i \in B} \nabla \log f_{\theta}(y_{ij}|z_i^*, z_j^*).$$

Therefore, we can compute

$$\mathbb{E}_{i_t^{s+1}, z_{i_t^{s+1}}} v_t^{s+1} = \frac{1}{2|A|} \sum_{i=1}^n \mathbb{E}_{z_i \sim p_{\theta_t^{s+1}}(z|\mathbf{y})} \nabla H_i(\theta_t^{s+1}, \mathbf{z}_t^{s+1})
- \frac{1}{2|A|} \sum_{i=1}^n \mathbb{E}_{z_i \sim p_{\theta_t^{s+1}}(z|\mathbf{y})} \nabla H_i(\tilde{\theta}^s, \mathbf{z}_t^{s+1}) + \nabla H_B(\tilde{\theta}^s, \mathbf{z}^s)
= \nabla H(\theta_t^{s+1}) - \nabla H(\tilde{\theta}^s) + \nabla H_B(\tilde{\theta}^s) + O(\exp\{-c'd_{min}\}),
:= H_t^{s+1}$$
(57)

according to Lemma 3. We next consider to compute the upper bound of $\mathbb{E}[\|v_t^{s+1}\|^2]$

$$\mathbb{E}[\|v_{t}^{s+1}\|^{2}] = \mathbb{E}[\|v_{t}^{s+1} - H_{t}^{s+1} + H_{t}^{s+1}\|^{2}] \\
\leq 2\mathbb{E}[\|H_{t}^{s+1}\|^{2}] + 2\mathbb{E}[\|\xi_{t}^{s+1} - \mathbb{E}[\xi_{t}^{s+1}]\|^{2}] \\
\leq 2\mathbb{E}[\|H_{t}^{s+1}\|^{2}] + 2\mathbb{E}[\|\xi_{t}^{s+1}\|^{2}], \\
\leq 4\mathbb{E}[\|\nabla \log L(\theta_{t}^{s+1})\|^{2}] + 4\eta^{2} + 2\mathbb{E}[\|\xi_{t}^{s+1}\|^{2}], \\
\leq 4C\mathbb{E}[\|\nabla \log L(\theta_{t}^{s+1})\|^{2}] + 2\mathbb{E}[\|\xi_{t}^{s+1}\|^{2}], \tag{58}$$

where $\xi_t^{s+1} = \frac{1}{d_i} \{ \nabla H_{i_t}(\theta_t^{s+1}, z_{i_t}) - \nabla H_{i_t}(\tilde{\theta}^s, z_{i_t}) \}$ and $\eta = \nabla H_t^{s+1} - \nabla \log L(\theta_t^{s+1})$ is the step error which is order of $(m\gamma + \frac{1}{\sqrt{n_1 n}})$. The last inequality above uses the fact that $\|\nabla \log L(\theta_t^{s+1})\| = \Omega(\|\eta\|)$ before the termination of the

algorithm. Since, $\|\eta\|$ can be bounded by

$$\|\eta\| = \|\nabla H_{t}^{s+1} - \nabla \log L(\theta_{t}^{s+1})\|$$

$$= \|\nabla H(\theta_{t}^{s+1}) - \nabla H(\tilde{\theta}^{s}) + \nabla H_{B^{s}}(\tilde{\theta}^{s}) - \nabla \log L(\theta_{t}^{s+1})\| + O(\exp\{-c'd_{min}\})$$

$$\leq \|\nabla H(\theta_{t}^{s+1}) - \nabla H(\tilde{\theta}^{s})\| + \|\nabla H_{B^{s}}(\tilde{\theta}^{s}) - \nabla \log L(\tilde{\theta}^{s}|\mathbf{z}^{*})\|$$

$$+ \|\nabla \log L(\tilde{\theta}^{s}|\mathbf{z}^{*}) - \nabla \log L(\theta_{t}^{s+1}|\mathbf{z}^{*})\|$$

$$+ \|\nabla \log L(\theta_{t}^{s+1}|\mathbf{z}^{*}) - \nabla \log L(\theta_{t}^{s+1})\| + O(\exp\{-c'd_{min}\})$$

$$\leq L\|\theta_{t}^{s+1} - \tilde{\theta}^{s}\| + O(\frac{1}{\sqrt{d_{min}|B^{s}|}})$$

$$+ L\|\theta_{t}^{s+1} - \tilde{\theta}^{s}\| + O(\exp\{-c'd_{min}\}) + O(\exp\{-c'd_{min}\})$$

$$= O(m\gamma + \frac{1}{\sqrt{n_{1}d_{min}}}).$$
(59)

Here, (59) uses the fact that $\nabla H(\theta)$ and $\nabla \log L(\theta|\mathbf{z}^*)$ are L-Lipschitz continuous for some L and $\|\nabla \log H_{B^s}(\tilde{\theta}^s|\mathbf{z}^*) - \nabla \log L(\tilde{\theta}^s|\mathbf{z}^*)\|$ is $O_p(1/\sqrt{d_{min}|B^s|})$ by using concentration inequality 5.

As a result, we can obtain

$$\begin{split} \langle \nabla \log L(\theta_t^{s+1}), H_t^{s+1} \rangle & \geq \langle \nabla \log L(\theta_t^{s+1}), \nabla \log L(\theta_t^{s+1}) \rangle - \langle \nabla \log L(\theta_t^{s+1}), \nabla \log L(\theta_t^{s+1}) - H_t^{s+1} \rangle \\ & \geq \|\nabla \log L(\theta_t^{s+1})\|^2 - \|\nabla \log L(\theta_t^{s+1})\| \|\nabla \log L(\theta_t^{s+1}) - H_t^{s+1}\| \\ & \geq c \|\nabla \log L(\theta_t^{s+1})\|^2, \end{split} \tag{61}$$

when $\|\nabla \log L(\theta_t^{s+1})\| = \Omega(m\gamma + \frac{1}{\sqrt{n_1 d_{min}}})$ before the termination of the algorithm.

Under the network setting, we can similarly construct the Lyapunov function as

$$R_t^{s+1} := \mathbb{E}[F(\theta_t^{s+1}) + c_t \|\theta_t^{s+1} - \tilde{\theta}^s\|^2]$$

with c_t 's satisfying recursive relationship $c_t = c_{t+1}(1 + \gamma\beta + 2\gamma^2L^2) + \gamma^2L^3$ (t = 0, ..., m-1) and $c_m = 0$. By the same procedure, we then arrive at

$$\frac{1}{T} \sum_{s=0}^{T-1} \sum_{t=0}^{m-1} \mathbb{E}[\|\nabla F(\theta_t^{s+1})\|^2] \le C \frac{R_0^0 - R_m^T}{\gamma m T} \le C \frac{F(\theta^0) - F(\theta^*)}{\gamma m T}$$
(62)

holds for some constant C. This leads to the desire result and concludes the proof of Theorem 5.

Finally, we set $n_1 = n^{2(\alpha - \alpha_1)}/d_{min}$, $m = n^{\alpha_1}$, $\gamma = n^{-\alpha}$. Then the total computational complexity will be

$$(md_{max} + n_1 d_{max}) \frac{C}{\gamma m \epsilon}. (63)$$

Suppose $d_{min}, d_{max} \approx n^{\alpha_0}$, then we can choose $\alpha_1 = \frac{2\alpha - \alpha_0}{3}$. Then $n_1 = n^{(2\alpha - \alpha_0)/3}$ and computational complexity becomes $n^{\alpha + \alpha_0} \frac{C}{\epsilon}$, where α should satisfy $\alpha < 1$ and $2(\alpha - \alpha_1) > \alpha_0$ (i.e., $\alpha > \alpha_0/2$).

References

Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Stochastic variance reduction for nonconvex optimization. In *Proceedings of the 33rd International Conference on Machine Learning (ICML)*, pages 314–323, New York City, NY, 2016.

R Tyrrell Rockafellar. Convex Analysis, volume 36. Princeton university press, 1970.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24(4):2057–2075, 2014.