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Abstract
Latent variable models have been playing a cen-
tral role in statistics, econometrics, machine learn-
ing with applications to repeated observation
study, panel data inference, user behavior analysis,
etc. In many modern applications, the inference
based on latent variable models involves one or
several of the following features: the presence of
complex latent structure, the observed and latent
variables being continuous or discrete, constraints
on parameters, and data size being large. There-
fore, solving an estimation problem for general
latent variable models is highly non-trivial. In
this paper, we consider a gradient based method
via using variance reduction technique to acceler-
ate estimation procedure. Theoretically, we show
the convergence results for the proposed method
under general and mild model assumptions. The
algorithm has better computational complexity
compared with the classical gradient methods and
maintains nice statistical properties. Various nu-
merical results corroborate our theory.

1. Introduction
A latent variable model, as the name suggests, is a statistical
model that contains latent/unobserved variables. Their roots
trace back to Spearman’s 1904 seminal work (Spearman,
1904) on factor analysis, which is arguably the first well-
articulated latent variable model. In past years, latent vari-
able models have been playing an important role in machine
learning, statistics, econometrics, psychometrics, social sci-
ences with applications to repeated observation study, panal
data inference, user behavior analysis, etc (Aigner et al.,
1984; Bishop, 1998; Bartholomew et al., 2011; Ahmed et al.,
2012; Loehlin and Beaujean, 2016). Latent variables serve
to reduce the dimensionality of data. Many observable
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variables can be aggregated in a model to represent an un-
derlying concept, making it easier to do data analysis.

In many applications, the inference based on latent variable
models involves one or several of the following features: 1)
the presence of complex latent structure, 2) the observed
and latent variables being either continuous or discrete, 3)
constraints on parameters, 4) data size being large. Com-
paring with models without latent variables (e.g., linear
regression and generalized linear regression), the estimation
problem of latent variable models is typically more involved.
In general, the estimation problem can have the following
three perspectives: both latent variables and parameters are
viewed as fixed quantities, both latent variables and param-
eters are viewed as random quantities, and latent variables
are random while parameters are fixed.

The first perspective (i.e., fixed latent variables and parame-
ters) leads to the joint maximum likelihood estimator. This
estimator can usually be efficiently computed by alternat-
ing minimization-type algorithm (Birnbaum, 1968; Chen
et al., 2020). However such estimator could be statistically
inconsistent and may lead to biased statistical inference.
The second perspective (i.e., random latent variables and pa-
rameters) leads to Markov Chain Monte Carlo (MCMC)
methods (Metropolis et al., 1953). Metropolis-Hasting
method (Hastings, 1970), Gibbs sampler methods (Gilks
and Wild, 1992; Gilks et al., 1995) and other Bayesian
methods (Gelman et al., 2013) are developed to solve the
estimation problem. However, as data size increases, those
methods can be computationally inefficient and need long
time for Markov chain to be stable.

In this paper, we adopt the third perspective (i.e., fixed
parameters and random latent variables) and develop a
gradient-based computational method where we incorporate
variance-reduced technique to accelerate the estimation pro-
cedure. Due to the existence of latent structure, we need
to estimate the gradient via sampling the latent variables
according to posterior distributions. When the analytical for-
mula of posterior distribution is not obtainable, Q-function1

1Q-function is usually referred to as the objective in the M-step.
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in expectation-maximization (EM) method is hard to com-
pute while our method allows latent variables being sampled
from some approximate distributions (which can be easily
constructed by using quasi Monte-Carlo methods or MCMC
methods). On the theoretical side, we provide convergence
analysis of the proposed method and show that it has bet-
ter computational complexity. Especially, our results are
established under very general statistical model assump-
tions including both independent and identically distributed
(i.i.d.) cases and network (non-i.i.d.) cases. Moreover,
we also consider the optimization settings with regulariza-
tion terms. For both smooth and non-smooth cases, our
estimator is shown to have nice statistical properties and
achieves the efficiency.

The rest of paper is organized as follows. In Section 2, we
give an introduction of latent variable models. In Section 3,
we propose a variance-reduced method for parameter esti-
mation in latent variable models. In Section 4, we provide
theoretical analysis of proposed method under both smooth
and non-smooth cases. We further extend our results into
network setting in Section 5. Numerical results are pre-
sented in Section 6 and validate our theory. The concluding
remarks are given in Section 7.

2. Preliminaries
2.1. Notation and Setting

We consider the estimation of a parametric latent variable
model. Let Y be a random response representing the ob-
served data and Z be a random variable representing the
latent unobserved trait. We use y and z to denote their
realizations, respectively. Let θ represent the generic vec-
tor of parameter which needs to be estimated. We assume
θ ∈ B ⊂ Rp where p is the dimension of the parameter
and B is the domain. We assume latent variable Z follows
a prior p(z) (the prior may depend on some nuisance pa-
rameters which we are not interested in). Given Z = z,
we assume Y follows certain distribution function param-
eterized by θ with density fθ(y|Z = z). We may write
fθ(y|Z = z) = fθ(y|z) for notational simplicity. There-
fore, the joint density is fθ(y, z) = fθ(y|z)p(z) and the
marginal density is fθ(y) =

∫
fθ(y, z)dz. Throughout the

paper, we use subscript i to indicate each individual sample.

In the sequel, we further adopt following notations. We
use ‖x‖ and ‖x‖1 to represent `2- and `1-norm of vector
x. B(θ, δ) is used to denote an `2 ball centered at θ with
radius δ. We use [n] to denote set {1, . . . , n} and [n]× [n]
to denote set {(i, j) : i ∈ [n], j ∈ [n]}. We use θ∗ to denote
the true model parameter and θ̄ to denote the optimizer of (4).
Moreover, a = O(b) means there exists a constant K such
that a ≤ Kb; a = Ω(b) means there exists a sufficiently
large constant K such that a ≥ Kb. We use ∇f (∇2f ) to

represent the first (second) derivative of f with respect to θ.

2.2. Examples

The latent variable models can be mainly divided into two
categories, factor analysis (latent variables are continuous)
and latent class analysis (latent variables are discrete). In
this section we provide several illustrative examples to let
readers have better understandings on the structures of latent
variable models.

Latent Factor Models. In latent factor analysis (LFA), the
latent variable Z := (ξ1, ξ2, . . . , ξK) is assumed to follow
a multivariate Gaussian distribution, e.g., N(0,Σ) with Σ
being the covariance matrix. Response Y is also assumed
to be multivariate, that is, Y = (Y1, . . . , YJ).

In the linear bifactor model, response Y assumes the follow-
ing form,

Yj = aj0 + aTj Z + εj , (1)

with εj’s are i.i.d. N(0, σ2). In the item response cases,
response Y takes discrete value and is usually binary.

P (Yj = 1|Z) = Φ(aj0 + aTj Z),

P (Yj = 0|Z) = 1− P (Yj = 1|Z),

with Φ(·) being certain link function. For example, Φ(x) =
exp{x}/(1 + exp{x}) when Φ(·) is the logit link and Φ(x)
is the cumulative function of standard normal distribution
when Φ(·) is the probit link. Here, aj0’s are intercept pa-
rameters and aj’s are loading vectors. Suppose there are n
individuals, then the likelihood function can be written as

L(θ) =

n∏
i=1

Li(θ) =

n∏
i=1

∫
{
J∏
j=1

fθ(yij |zi)}p(zi)dzi

where θ = {(aj0,aj)}Jj=1 and p(z) is the density function
of N(0,Σ).

Latent Class Models. In statistics, a latent class model
(LCM) relates a set of observed (usually discrete) to a set
of latent variables. A class is characterized by a pattern of
conditional probabilities that indicate the chance that the
latent variables take on certain values. One of the most
typical examples is the mixture Gaussian model that the re-
sponse Y follows

∑C
c=1 pcf(y|µc, σ2

c ) with pc be the latent
class probability and f(y|µc, σ2

c ) is the density function of
normal distribution with mean µc and variance σ2

c .

Furthermore, restricted latent class models are also widely
used in social and behavioral sciences. For example, they are
commonly used in education for cognitive diagnosis (von
Davier and Lee, 2019). These models give the latent vari-
able specific meanings and hence are easier to make di-
agnosis of the individuals. Here, we consider a setting
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where both response and latent variables are binary. Let
Z = (α1, . . . , αK) ∈ {0, 1}K with αk ∈ {0, 1} indicat-
ing the mastery of k-th latent trait/attribute. The response
Y = (Y1, . . . , YJ) with Yj follows a Bernoulli distribution
which satisfies

P (Yj = 1|Z = z) =
exp{θjz}

1 + exp{θjz}
. (2)

Furthermore, for each fixed j, θj,Z’s satisfy partial order
relationship. That is, θjz1 ≤ θjz2 if z1 � z2, representing
that an examinee is more likely to answer the j-th item
correctly if he is more capable (i.e., z2 has more 1’s). Under
the restricted LCM setting with n individuals, the likelihood
function can be written as

L(θ) =

n∏
i=1

Li(θ) =

n∏
i=1

∑
zi∈{0,1}K

pzi

J∏
j=1

fθ(y|zi)

with θ = (θjz; j = 1 . . . , J, z ∈ {0, 1}K).

Latent Network Model Latent network model is a gener-
ative model which is often used for characterizing the block
structure in social networks. Assume there exist n nodes
and an edge list A ⊂ [n] × [n]. Each node i is assigned
with a latent membership zi ∈ [K]. For each pair of nodes
(i, j) ∈ A, we can observe data Yij ∼ fθ(y|zi, zj) which
are conditionally independent given zi’s.

For example, in stochastic block model (SBM), A ≡ [n]×
[n] and zi belongs to K different communities. In addition,
yij ∼ Bernoulli(θzizj ) indicating whether there exists an
observed link between node i and j. Usually, θzizj may take
larger value if zi = zj belong to the same community. Thus
parameter θ = (θkl, k, l ∈ [K]) can be viewed as K by K
symmetric edge probability matrix.

In online social platform, different users are observed to
have interactions over a period of time. Then A can be
viewed as a friendship list. Only friends can send messages
to each other. For each pair (i, j), the observed data yij is a
sequence of events that happen between these pair of users.
A continuous time counting process is usually well suited
to capture the event sequence yij . In the literature, Poisson
process model or Hawkes process model are widely used to
capture such event dynamics. By assuming the conditional
independence between different node pairs, we can write
the likelihood function as

L(θ) =
∑
z

n∏
i=1

p(zi){
∏

(i,j)∈A

fθ(yij |zi, zj)}, (3)

where z = (z1, . . . , zn), p(z) is the prior probability of
latent class z and the formula of fθ(yij |zi, zj) depends on
the model specification (e.g., Poisson or Hawkes Process).

In modern applications, the statistical model may admit
certain structure (e.g., sparseness or monotonicity) some

regularization terms can be imposed on the parameter θ. We
use R(θ) to represent a general regularization term. Then
the regularized maximal likelihood estimator is defined as

θ̄ = arg min
θ
{− logL(θ) +R(θ)}. (4)

When R(θ) ≡ 0, θ̄ becomes the maximal likelihood esti-
mator (MLE). For simplicity, we may also write F (θ) :=
− logL(θ) and P (θ) := − logL(θ) + R(θ) in the rest of
paper. Then θ̄ is the minimizer of P (θ).

3. Algorithms
We consider a gradient-based method to estimate the param-
eters in the latent variable model setting when individuals
are assumed to be mutually independent. To compute the
gradient, we consider a variation-reduction technique to
accelerate the optimization procedure. We first recall the
Fisher’s identity,

∇ logLi(θ) =

∫
{∇ log fθ(yi, zi)}pθ(zi|yi)dzi,

which is a useful tool in maximum-likelihood parame-
ter estimation problems. In other words, ∇Hi(θ, zi) :=
−∇ log fθ(yi, zi) with zi ∼ pθ(z|yi) will be an unbi-
ased estimator of −∇ logLi(θ). Thus, negative gradient
−∇ logL(θ) can be approximated by

∇H(θ) :=
1

n

∑
i

∇Hi(θ, zi).

As data sample goes large, it could be time-consuming to
compute the ∇H(θ). A naive acceleration technique is
using stochastic gradient method (SGD) by using∇Hi(θ)
as the approximate gradient in each iteration. However, the
variance of ∇Hi(θ) does not vanish when we increase the
sample size n. Here, we consider an alternative variance-
reduced gradient to avoid this issue.

The main procedure is described as follows. We first ran-
domly choose an initial point θ0 and set the snapshot param-
eter θ̃0 = θ0. In iteration s, we first sample a batch set of
data Bs with size n1 < n. For each data i ∈ Bs, we sample
its corresponding latent variable z according to posterior
distribution pθ(zi|yi) (or any approximate distribution). We
then compute a snapshot of stochastic gradient, that is,

∇̃fs+1 =
1

n1

∑
i∈Bs

∇Hi(θ̃
s, zi).

For each iteration s, we further sequentially update the
parameter by m times. For each t ∈ [m], we denote the
current parameter value as θs+1

t . We randomly pick a data
sample is+1

t from {1, . . . , n} and sample the corresponding
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latent variable zis+1
t

according to posterior pθs+1
t

(z|yi). We
then define the variance-reduced gradient as

vs+1
t = ∇Hit(θ

s+1
t , zit)−∇Hit(θ̃

s, zit) + ∇̃fs+1.

Scalar γ represents the step size/learning rate. See Algo-
rithm 1 for the complete procedure.

Algorithm 1 Latent Stochastic Gradient Algorithm
1: Input: Observations: (yi, i ∈ [n]).
2: Output: Estimated parameter θ̂.
3: Set initial parameter θ0 and let θ00 = θ̃0 = θ0.
4: for s = 0 to S - 1 do
5: θs+1

0 = θsm
6: Sample a subset Bs ⊂ {1, . . . , n} with size n1
7: Sample zi according to posterior/approximate distri-

bution for i ∈ Bs.
8: Compute ∇̃fs+1 = 1

n1

∑
i∈Bs ∇Hi(θ̃

s, zi).
9: for t = 0 to m− 1 do

10: Uniformly randomly pick is+1
t from {1, . . . , n}.

11: Sample zis+1
t

according to posterior distribution
pθs+1
t

(z|yi) or approximate distribution.
12: Compute vs+1

t = ∇Hit(θ
s+1
t , zis+1

t
) −

∇Hit(θ̃
s, zis+1

t
) + ∇̃fs+1.

13: Smooth case: update

θs+1
t+1 = θs+1

t − γvs+1
t .

Non-smooth case: update

θs+1
t+1 = proximalγR(θs+1

t − γvs+1
t ).

14: end for
15: Set θ̃s+1 = θs+1

m .
16: end for

Different from the classical stochastic variance-reduced al-
gorithm (SVRG), some important features of Algorithm 1
are discussed as follows.

1. Algorithm 1 is constructed under the assumption that
data are independent and identically distributed and follow
a parameterized statistical model, while the usual SVRG
does not require any model assumption. This is due to the
existence of latent structure and the construction of snapshot
gradient that f̃s+1 depends on batch set Bs (instead of [n]).

2. In variance-reduction step, index is+1
t is sampled from

{1, . . . , n} instead of Bs (The latter one also works). This
is helpful since it allows the algorithm to explore the whole
data structure faster.

3. Note that zis+1
t

is plugged into both ∇Hit(θ
s+1
t , z) and

∇Hit(θ̃
s, z) in the variance-reduced gradient. This is also

crucial since that ∇Hit(θ
s+1
t , zis+1

t
) − ∇Hit(θ̃

s, zis+1
t

)
has smaller variance compared with that of

∇Hit(θ
s+1
t , zis+1

t
) − ∇Hit(θ̃

s, z̃sit) where z̃sit is the
latent variable used in the previous iteration.

4. In fact, we do not require to compute the exact pos-
terior distribution pθs+1

t
(z|yi). It is sufficient to find an

approximate distribution p̃s+1
t (z) such that ‖p̃s+1

t (z) −
pθs+1
t

(z|yi)‖TV = O( 1√
n1

). This largely reduces
the computational burden when the explicit form of
pθs+1
t

(z|yi) is not easily obtained. Under such case, we
can either use quasi-Monte Carlo (Caflisch et al., 1998;
Owen and Glynn, 2016) or Markov Chain Monte Carlo
method (Andrieu et al., 2003; Liu, 2008; Robert and Casella,
2013) with ergodicity property to construct the approximate
distribution.

Connections to stochastic variance-reduced method

Variance reduction technique (Owen and Zhou, 2000) is
proved to be useful in integration approximation. In op-
timization, this technique is also widely adopted. John-
son and Zhang, 2013 proposed stochastic variance reduc-
tion gradient methods (SVRG). It shows empirically better
than SGD methods and batch methods. Later on, a group
of researchers (Reddi et al., 2016; Allen-Zhu and Hazan,
2016) established new theory for SVRG and showed that the
varianced-reduced method converges faster than SGD and
full gradient method. In recent years, stochastic variance-
reduced gradient Hamiltonian Monte Carlo method and
Langevin dynamic method (Dubey et al., 2016; Zou et al.,
2018; Xie et al., 2021; Zhao et al., 2021) are proposed
to solve the optimization method from a Bayesian view.
Stochastic Variance-Reduced Expectation and Maximiza-
tion methods are (Zhu et al., 2017; Karimi et al., 2019;
Karimi and Li, 2021) also developed for solving an opti-
mization problem under exponential family. Our methods
can be viewed as the extended version of SVRG methods
in the setting with the existence of latent structure. It is
designed for solving general latent variable models that
both observed responses or latent variables could be either
discrete or continuous. Additionally, we do not require com-
puting the exact posterior distributions. Hence it is more
widely applicable.

Connections to stochastic approximation

The proposed method is also closely related to the stochastic
approximation approach which was first proposed in Rob-
bins and Monro (1951) and Kiefer and Wolfowitz (1952),
and its variants given in Gu and Kong (1998); Cai (2010)
that are specially designed for latent variable model esti-
mation. Both methods (Gu and Kong, 1998; Cai, 2010)
approximate the original Robbins-Monro method by using
MCMC sampling to generate an approximate stochastic
gradient in each iteration, when an unbiased stochastic gra-
dient is difficult to obtain. However these methods do not
handle with non-smooth objective functions. In addition,
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the computational cost is high if we compute the posterior
distribution based on entire dataset and the convergence rate
becomes slow.

Connections to perturbed gradient algorithm

Our method is also related to perturbed gradient algo-
rithms since we do not require to compute the posterior
distribution exactly. The perturbed proximal gradient algo-
rithm (Atchadé et al., 2017; Zhang and Chen, 2020) solves
a similar optimization problem when the gradient is in-
tractable and is approximated by Monte Carlo methods.
Their method combines stochastic approximation, proxi-
mal gradient decent and Polyak-Ruppert averaging (Polyak,
1990; Ruppert, 1988). The theoretical analysis of Atchade
et al.’s work focuses on convex optimization, while we con-
sider a more general setting of non-convex optimization that
includes a wide range of latent variable model estimation
problems as special cases.

Comparison with Classical Methods

The gradients computed by different methods are summa-
rized as follows.

• Proposed method:

∇Hit(θ
s+1
t , zis+1

t
)−∇Hit(θ̃

s, zis+1
t

) + ∇̃fs+1.

• Stochastic gradient descent: ∇Hit(θ
s+1
t , zis+1

t
).

• Stochastic batch method: ∇̃fs+1.

When θst becomes stable (i.e., ‖θs+1
t − θst ‖ = o(1)), the

gradient of SGD may not be necessarily close to zero due
to the randomness of is+1

t . While the proposed method and
batch method is guaranteed to be o(1) under the mild statis-
tical assumptions. On the other hand, the batch method may
fail for convergence when the step size γ is set to be large
value in practice. While the proposed method can still main-
tain a relatively good performance. For methods of other
types, it is not straightforward to compare here. For exam-
ple, expectation-maximization (EM) requires to compute
the exact posterior distribution. Variational inference-based
methods (Attias, 1999) gives a biased estimator if an unfa-
vorable variational family is adopted.

4. Theoretical Analysis
In this section, we provide theoretical analysis for the pro-
posed algorithm. Before introducing the main results, we
first present several assumptions.

A1 Variables (yi, zi)’s are independently identically dis-
tributed with density fθ(y, z) = fθ(y|z)p(z).

A2 The parameter θ lies in a bounded compact set B ⊂ Rp.

A3 Density fθ(y|z) is a smooth function 2 of θ for all z.

A4 Ey∼fθ∗ [log fθ(y)] is a strictly concave function of θ
over set B.

4.1. Smooth case

We consider the situation that there is no regularization
term, that is R(θ) ≡ 0. We define the stopping time
T (ε) := arg mins mint E‖∇F (θst )‖2 ≤ ε, where E is the
conditional expectation given data and {Bs}. (Note that
lines 9 - 10 in Algorithm 1 contain random index it and
latent variable zis+1

t
. We take expectation with respect to

these random variables.) In other words, T (ε) indicates the
first time that E‖∇F (θst )‖2 is below certain threshold ε.

Theorem 1 Under Assumptions A1−A4, then

T (ε) ≤ C1
F (θ0)− F (θ̄)

εmγ

holds for any ε ≥ Ω(max{ 1
n1
, (mγ)2}), with probability

going to 1 as n→∞. Here, C1 is a universal constant.

Theorem 1 gives the theoretical guarantee for the conver-
gence of Algorithm 1. Quantity E‖∇F (θst )‖2 will finally
drop below the threshold ε when ε is at least of order 1

n1

and (mγ)2. One thing should be noticed that the estimator
does not necessarily converge to the global optimal solution.
It may converge to any stationary point instead. The first
term 1

n1
comes from the sampling noises from batchBs and

the second term (mγ)2 appears since there exist gaps by
computing the posterior distributions under different θst ’s in
each iteration. In each iteration, we need to compute n1 gra-
dients for constructing the snapshots and compute m times
for variance-reduced gradient. Therefore, the total compu-
tational complexity is O((n1 + m)T (ε)). By the special
choice of n1,m and γ, we have the following corollary.

Corollary 1 We let n1 = n
2
3α, m = n

2
3α, γ = n−α, then

the total computational complexity is O(nα/ε) for any ε =
Ω(n−2α/3).

From corollary 1, we know that the total computational cost
decreases as α decreases while the error term ε becomes
larger. Hence, we should avoid choosing too small α to
prevent large bias.

Refinement of Estimator

Note that the proposed algorithm has better computational
complexity, however it could lead to larger estimation error
when α is small. In this section, we make a refinement to

2Here smooth function means that the function can be differen-
tiated for arbitrary number of times. This assumption is satisfied
by most statistical model.
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the estimator returned by Algorithm 1 such that the refined
estimator is root-n consistent. Specifically, we consider to
use the second order information to make the correction for
θ̂. Recall Louis’s Identity (Louis, 1982),

∂2f(θ)

∂θ∂θT
= E[

∂2 log fθ(y, z)

∂θ∂θT
+
∂ log fθ(y, z)

∂θ

(
∂ log fθ(y, z)

∂θ
)T |y, θ]

−E[
∂ log fθ(y, z)

∂θ
|y, θ]E[

∂ log fθ(y, z)

∂θ
|y, θ]T .

It implies that we can compute the Hessian matrix via using
posterior approximation. Therefore,

∇2H(θ) := − 1

n

∑
i

[
∂2 log fθ(yi, zi)

∂θ∂θT
+
∂ log fθ(yi, zi)

∂θ

(
∂ log fθ(yi, zi)

∂θ
)T ]−

[
1

n

∑
i

∂ log fθ(yi, zi)

∂θ
][

1

n

∑
i

∂ log fθ(yi, zi)

∂θ
]T

is a Monte Carlo approximation of −∂
2f(θ)
∂θ∂θT

.

Our two-step refinement is specified as follows. Let θr1 be

θr1 := θ̂ − ∇H(θ̂)

∇2H(θ̂)
,

where θ̂ is the estimator obtained from Algorithm 1 and is
in the n−α/3-neighborhood of θ∗. We further define θr2 as

θr2 := θr1 − ∇H(θr1)

∇2H(θr1)
.

By such construction, we can show that θr2 is a root-n
consistent and has asymptotic normal distribution when
3/4 < α ≤ 3/2.

Theorem 2 When 3/4 < α ≤ 3/2, θr1 is
√
n-consistent

estimator and
√
n(θr2 − θ∗)→ N(0, I−1(θ∗)V (θ∗)I−1(θ∗)),

where I(θ∗) is the fisher information matrix and V (θ∗) is
E∇H(θ∗)∇H(θ∗)T .

Here, variance I−1(θ∗)V (θ∗)I−1(θ∗) is larger than
Cramer–Rao lower bound since we need sampling for latent
variable zi’s.

4.2. Non-smooth Case

Next we consider situation when R(θ) 6= 0. We define the
stopping time T (ε) := arg mins mint EP (θst )− P (θ̄) ≤ ε,
where E is still the conditional expectation given data and

{Bs}. Quantity T (ε) is the first time that EP (θst ) drops
below the P (θ̄) plus the threshold ε.

A5 Assume that P (θ) is strongly-convex in B1 = {β ∈
B : ‖θ − θ∗‖ ≤ δ0}, where δ0 := ‖θ∗ − θ0‖.

Theorem 3 Under Assumptions A1 - A5, then

T (ε) ≤ C2
P (θ0)− P (θ̄)

εmγ

holds for any ε ≥ Ω(max{ 1√
n1
,mγ}), with probability

going to 1 as n→∞. Here, C1 is a universal constant.

Theorem 3 gives the convergence guarantee when the ini-
tial point lies in the region where the objective has strong
convexity. By special choice of m,n1 and γ, we have the
following corollary.

Corollary 2 Especially, we let n1 = n2/3α, m = n2/3α,
γ = n−α. Then the total computational complexity is
O(nα/ε).

Application for Sparse Learning

In particular, we take R(θ) as `1 norm ‖θ‖1 to enforce the
solution to be sparse. That is, we aim to solve

θ̂ = arg min
θ
− logL(θ) + τ‖θ‖1, (5)

where τ is a tuning parameter controlling the penalty level.
Then the proposed algorithm can recover the true support
set of θ∗. We define S∗ := supp(θ∗) as the support of θ∗

and define Ŝ := supp(θ̂) as the estimated support.

We further let S∗1 be the set of indices corresponding to
position of θ∗ where true value is non-zero and S∗0 be the set
of indices corresponding to position of θ∗ where true value
is zero. For notational simplicity, we define θ(1) = θ[S∗1 ]
and θ(0) = θ[S∗0 ]. We then can write gradient and Hessian
matrix in the block format, that is,

∇F (θ) =

(
∇1F (θ)
∇0F (θ)

)
,

and

∇2F (θ) =

(
∇2

11F (θ) ∇2
10F (θ)

∇2
01F (θ) ∇2

00F (θ)

)
,

where∇1F (θ) is the subvector of gradient corresponding to
θ(1) and∇2

11F (θ) is the block of Hessian matrix correspond-
ing to θ(1). ∇1F (θ),∇2

10F (θ),∇2
01F (θ) and∇2

00F (θ) are
defined in the same fashion.

We then introduce the following irrepresentable condi-
tion (Zhao and Yu, 2006).

A6 Assume there exists a positive constant η such that

|∇01F (θ∗)∇2
11F (θ∗))−1sign(θ∗(1))| � 1− η.
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Here the “�” means that the inequality holds element-
wisely.

Given such irrepresentable condition, we then have the fol-
lowing result.

Theorem 4 Under Assumptions A1 - A6 with θ(0) in the
neighbor of θ∗, then Ŝ = S∗ holds with probability tending
to 1 as n→∞, if we set τ = nκ with −α6 < κ < 0.

5. Analysis in Network Case
The analysis and algorithm in the previous section depend
on the assumption that individuals are independent and iden-
tically distributed. However, in the latent network models,
the individuals are no longer assumed to be mutually inde-
pendent. In this section, we aim to solve the optimization
problem under network setting.

5.1. Algorithm

Similar to Algorithm 1, we still consider a gradient-based
method via variance-reduction technique. The main proce-
dure is summarized as follows. We first randomly choose
an initial point θ0 and sample an initial latent vector z0. In
iteration s, we first randomly sample a batch set of data
Bs with size n1 < n. For each data i ∈ Bs, we sample
its corresponding latent variable zi according to posterior
distribution pθ(zi|yi, z−i) and update latent vector to get zs.
We then compute a snapshot of stochastic gradient, that is,

∇̃Hs+1 =
1∑

i∈Bs di

∑
i∈Bs

∇Hi(θ̃
s, zs),

where Hi(θ, z) := −
∑
j:(i,j)∈A log fθ(yij |zi, zj). For

each iteration s, we further sequentially update the parame-
ter by m times. For each t ∈ [m], we use similar procedure
to compute the variance-reduced gradient as that in Algo-
rithm 1. Again scalar γ represents the step size/learning rate.
See Algorithm 2 for the complete procedure.

Several distinct features are described here. 1) We need to
maintain the vector of latent membership, since the individu-
als are no longer independent of each other. The conditional
posterior distribution of zi’s depends on the node(s) that i
connects to. 2) In outer loop s, each node has equal proba-
bility to be included in batch set such that every node has
chance to get its latent membership updated even if it has
small number of degree. 3) In the inner loop, the node is
sampled according to its degree. Therefore, a node with
larger degree is more likely to impact the gradient.

5.2. Analysis

We establish the convergence property for Algorithm 2 in
this section. We first introduce several assumptions.

Algorithm 2 Latent Network Stochastic Gradient Algo-
rithm.

1: Input: Observations
2: Output: Estimated parameter
3: Initialization: Set initial parameter θ0 and let θ00 =
θ̃0 = θ0. For i ∈ 1, . . . , n, sample z0i according to
initial prior distribution. Denote z0 = (z01 , . . . , z

0
n).

4: for s = 0 to S - 1 do
5: θs+1

0 = θsm
6: Sample a subset Bs ⊂ {1, . . . , n} with size n1
7: Sample new zi according to approximate posterior

distribution for i ∈ Bs and replace the old value to
get zs.

8: Compute ∇̃Hs+1 = 1∑
i∈Bs di

∑
i∈Bs ∇Hi(θ̃

s, zs).
9: for t = 0 to m− 1 do

10: Randomly pick is+1
t from {1, . . . , n} according to

distribution pi ∝ di.
11: Sample latent variable zis+1

t
according to current

posterior distribution to replace its old value and
get zs+1

t .
12: Compute vs+1

t = 1
d
i
s+1
t

{∇His+1
t

(θs+1
t , zs+1

t ) −

∇His+1
t

(θ̃s, zs+1
t )}+ ∇̃Hs+1.

13: Update θs+1
t+1 = θs+1

t − γvs+1
t .

14: end for
15: Set θ̃s+1 = θs+1

m .
16: end for

B1 The parameter θ lies in a bounded compact set B ⊂ Rp.

B2 The density fθ(yij |zi, zj) is a smooth function of θ for
all zi, zj’s.

B3 Ey∼fθ∗ [log fθ(y)] is a strictly concave function of θ
over set B.

B4 Let dmin := mini∈[n] di be the minimal degree. As-
sume dmin = nα0 (α0 > 0).

We define T (ε) := arg mins mint E‖∇F (θst )‖2 ≤ ε. We
then have the following local convergence results.

Theorem 5 Under Assumption B1 - B4, there exists δ such
that,

T (ε) ≤ CF (θ0)− F (θ̄)

εmγ

holds for any ε = Ω(max{ 1
n1nα0

, (mγ)2}) and θ0 ∈
B(θ∗, δ), with probability tending to 1 as n→∞.

Since the optimization problem over a graph is NP-hard
problem, Theorem 5 only guarantees that the estimator will
converge to the global optimal solution when the initial
point is not far from true one. Given special choice of m,n1
and γ, we have the following corollary.
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Corollary 3 Additionally, we assume dmin � dmax =
nα0 , where dmax := maxi∈[n] di. Let m = nα1 , γ = n−α,
n1 = n2(α−α1)/d0 and α1 = 2

3 (α−α0), then the total com-
putational complexity is O(nα+α0/ε) for α0/2 < α < 1.

To end this section, we provide a brief discussion on the
stability of gradient. It is known that the nodes with larger
degrees will impact the gradient more. For networks with
a few high degree nodes and more low degree nodes will
this make the gradient calculation unstable. Let Nsmall be
the set of nodes whose degree is no(1). If we additionally
assume that (

∑
i∈Nsmall di)/|A| → 0, then the gradient

will not be affected by low degree nodes too much and thus
becomes stable. It remains an open question that how un-
stable the gradient is when the graph becomes super sparse,
i.e., lim infn(

∑
i∈Nsmall di)/|A| > 0.

6. Numerical Experiments
DINA Model We consider the deterministic-input, noisy-
and-gate (DINA; Rupp and Templin, 2008) model which is
a special restricted latent class model. It is widely applied
in psychometric and educational testing to make diagnosis
of examinees. Suppose there are J items and let Yj be the
response to j-th item. Yj takes value in {0, 1}; “1” means
correct and “0” means incorrect. The model adopts the fol-
lowing formulation. For each examinee, he/she is associated
with a latent vector Z = (α1, . . . , αK) ∈ {0, 1}K , where
αk is interpreted as k-th skill/attribute and K is the total
number of attributes.

P (Yj = 1|Z) = (1− sj)ξ(Z,Q)g
1−ξ(Z,Q)
j , (6)

where Q is a binary matrix specifying the relationship be-
tween item and attribute and ξ(Z,Q) =

∏
k 1{Zk ≥ Qjk}.

In other words, if the examinee has all attributes required
by j-th item, he/she will have higher probability (1− sj) to
answer the j-th item correctly. Otherwise, he/she will only
have probability (gj) to answer correctly. Thus sj and gj
can be interpreted as slipping and guessing parameters.

We generate the data based on DINA model with n = 2000
individuals and J = 30 items. We generate true sj’s and
gj’s within [0, 0.2]. We compare the proposed method with
“batch method” (gradient is computed based on the batch
set instead of using VR-gradient) and ”full batch method”
(gradient is computed based on full data set). We set m =
n1 = n2α/3 and γ = n−α (α = 1.2). For batch and
full batch methods, we scale the step sizes such that they
roughly have the same magnitude per sample. The results
are reported in Figure 1. We can see that the proposed
method converges faster compared with other two methods.
We can also see that the proposed method achieves faster
convergence rate when α decreases, while the error becomes
larger. This is consistent with our theoretical results.
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Figure 1. The simulation results for DINA, bifactor and latent
network model. The plots on left column are the comparisons
between three different methods. The plots on right column
show the solution paths under different α’s which take values
in {0.7, 0.8, 0.9, 1.0}. Here “# Data Passes” is the cumulative
number of samples divided by n.

Bifactor Model Bifactor model (Reise, 2012) is a latent
factor model where the loading matrix admits a special
structure. The first column of loading matrix is known as
the main factor/dimension. Rest of columns are known as
the sub-domain factor/dimension. Different from the DINA
model, latent variable Z is continuous instead of discrete.
Bifactor model postulates the following formulation

P (Yj = 1|Z) =
exp{aj0 + aTj Z}

1 + exp{aj0 + aTj Z}
, (7)

where Z ∈ RG+1 follows N(0, I(G+1)×(G+1)). For each
j, loading aj has only one non-zero entries excluding the
main dimension. Thus, the model parameter is identifiable
and does not have rotational indeterminacy issue.

With knowing positions of non-zero entries of loading
matrix, we generate the data from bifactor model with
n = 2000 and J = 15. Main factor loading aj0’s are
sampled from N(0, 2) and non-zero entries of testlet factor
loading aj are set to be 0.5. We use the similar strategy
to choose m,n1 and γ as that in DINA model setting with
α = 0.9. Note that it is prohibitively hard to compute the ex-
act posterior distribution. We instead use MCMC to sample
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latent variables. From Figure 1, we observe that the pro-
posed model again converges faster than other two methods.

Latent Network Model We consider a latent network
model with n = 400 nodes and set the number of latent
classes K = 3. The edge list A is constructed by randomly
generating a subset of [n]× [n]. For each pair (i, j) ∈ A, yij
is a homogeneous Poisson process over time period [0, T ]
(T = 10) with intensity parameter θzizj . Here θkl = θlk,
and their true values are generated from the interval [1, 5].
We again compare three methods and set m = n1 = n2α/3

and γ = n−α (α = 0.9). The result is shown in Figure 1.
From solution path, we can see that the numerical results
match our theoretical findings that smaller α can leader to
faster convergence and a little bit larger bias.

Refinement and Support Recovery The performance of
refined estimator under DINA model is shown in Figure 2.
Here, the sample size varies from n = 500 to n = 8000.
Based on the curve, we can see that the decay rate of es-
timation error is almost n−1/2, which is consistent with
our theory. For bifactor model, we further consider the
situations without knowing the positions of non-zero en-
tries. That is, we need to impose a regularization term to
make the loading matrix sparse. A minimax concave penalty
(MCP; Zhang, 2010) is considered.

R(θ) =

{
λ|θ| − θ2

2a if |θ| ≤ aλ
aλ2/2 if |θ| > aλ.

By this choice, the formula of proximal operator can be
simplified as

proximalγR(θ) = sgn(θ)
a

a− 1
max{|θ| − λγ, 0},

where sgn(x) represents the sign of scalar x and tuning
parameter a is larger than 1. The recovery results for sup-
port of loading matrix is shown in Figure 2. The proposed
method can identify the non-zero positions well when we
choose suitable penalty level.
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Figure 2. The left plot shows the estimation error of refined es-
timator under different sample sizes. The right plot shows the
support recovery of loading matrix under different sample sizes.
(λ = logn/(n1/2γ), a = 3.)

NESARC Data The data extracted from National Epidemi-
ological Survey on Alcohol and Related Conditions (NE-
SARC) concerning social phobia contains the responses of

728 respondents to 13 questions. We apply DINA model
to fit this data set. We compare the proposed method with
stochastic gradient method (SGD) and the result in shown
in Figure 3. Here we set m = n

2
3α and γ = n−

2
3α with

α = 1.4 for both methods. We can see that the solution of
SGD has a larger variance while the proposed method is
more stable.

PISA Data The data was collected in the collaborative prob-
lem solving (CPS) test from 2015 Programme for Interna-
tional Student Assessment (PISA). Students were chosen
from all the OECD countries and regions where the English
version of exam was administrated. The dataset contains
8856 students in total. Each student has responses to 29
questions. We use bifactor model to fit the data set. The
solution paths of proposed method and SGD are given in
Figure 3. In particular, we set m = n

2
3α and γ = n−0.3α

with α = 1.0 for both methods. We can see that SGD has a
relatively larger bias compared with the proposed method.
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Figure 3. The right plot is for NESARC data and the left plot is
for PISA data. The ”Error” represents the difference between the
current estimate and the optimal parameter (optimal parameter is
computed via using full batch method).

7. Conclusion
In this paper, we consider an optimization problem for gen-
eral latent variable models. Our proposed algorithm is a
gradient-based method by adopting variation reduction tech-
nique. Our method does not require to compute the exact
posterior distribution, which increases computational effi-
ciency. The theoretical analysis is established and accom-
modates for both smooth and non-smooth settings. The
theory also considers different types of statistical assump-
tions (i.e., data is independent and identically distributed
or follows a network model). The numerical results match
our theoretical findings. In future work, it is of interest to
study model-specific algorithm. The structures of differ-
ent latent variable models/simple neural networks may vary
from one to another. In addition, one may also consider
Adam (Kingma and Ba, 2015) or Nesterov’s accelerated
method (Nesterov, 1983) for computing the gradient. Then
the variance-reduced step might be further improved to ac-
celerate the algorithm.
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Yves F Atchadé, Gersende Fort, and Eric Moulines. On
perturbed proximal gradient algorithms. The Journal of
Machine Learning Research, 18(1):310–342, 2017.

Hagai Attias. Inferring parameters and structure of latent
variable models by variational bayes. In Proceedings
of the Fifteenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 21–30, Stockholm, Sweden,
1999.

David J Bartholomew, Martin Knott, and Irini Moustaki.
Latent variable models and factor analysis: A unified
approach, volume 904. John Wiley & Sons, 2011.

Zygmund William Birnbaum. On the importance of differ-
ent components in a multicomponent system. Technical
report, Washington Univ Seattle Lab of Statistical Re-
search, 1968.

Christopher M. Bishop. Latent variable models. In Learning
in Graphical Models, pages 371–403. 1998.

Russel E Caflisch et al. Monte carlo and quasi-monte carlo
methods. Acta numerica, 1998:1–49, 1998.

Li Cai. High-dimensional exploratory item factor analy-
sis by a metropolis–hastings robbins–monro algorithm.
Psychometrika, 75(1):33–57, 2010.

Yunxiao Chen, Xiaoou Li, and Siliang Zhang. Structured
latent factor analysis for large-scale data: Identifiabil-
ity, estimability, and their implications. Journal of the
American Statistical Association, 115(532):1756–1770,
2020.

Kumar Avinava Dubey, Sashank J. Reddi, Sinead A.
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