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In this supplementary, we provide the proofs for Theorems 1-11 stated in the main paper. We first recall the following
notation. Letter 6 denotes the generic model parameter; 71, o are latent class probabilities and ¢1;, ¢2;’s are variational
parameters. J; is the number of latent classes for the first mode and J5 is the number of latent classes for the second mode.
For positive integer m, we use [m] to denote set {1,...,m} and [m1] x [mz] to denote set {(7,7) : i € [m1],5 € [m2]}.
For two positive sequences {a, }, {b,}, a, < b, means that a,, < Cb,, for some large constant C' independent of n, and
a, = b, means that a,, < b, and b,, < a,. The symbols E and P(-) denote generic expectation and probability whose
distribution may be determined from the context. Additionally, ||z|| / ||z||1 is used to denote ¢5- / ¢1- norm of vector  and
I X || £ is used to denote Frobenius norm of matrix X. We use z[i] to represent the i-th entry of vector x and use X[, j]
to represent the entry of matrix X on ¢-th row and j-th column. We use V f to represent the derivative of function f with
respect to §. For random sequences a,, and b,,, a,, = Oy (b,,) represents that a,, is stochastically bounded by Kb, for a
sufficiently large constant K; a,, = o,(b,,) represents a,,/b,, converges to 0 with probability tending to 1. Constants ¢, C
may vary from the place to place.

1. Comment on Algorithm 1

We recall that the evidence lower bound has the following form,

ELBO = ZZ% [2; (1] log fo(yi;|k.1)

(4,9)

+2 Z é13 (k] log (m K] /61, k)
+ 375" ou;l1) log(mall) /251)),
7 l

where ¢1’s and ¢’s are variational parameters in multinomial distributions. Then update rule can be obtained as follows.

Update ¢: by the conjugacy property, we easily know

dulk] o exp{ Y Egy, log fo,., (vi;) +logmi[k]}
j:(¢,7)€Q
= oxp{ > Y oo;llllog fo,,(yi;) + log m[k]}

j‘(i,j)EQ !

= eXp{Z Z Z¢2j J1og fo,, (yij) + log w1 [k]}.

J'=15:(i,5)€Q25,=5"
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and similarly
J1
doill] o exp{d Y oulkllog fa (yiy) +logmall]}.
J'=1a(g) ez, =5 k
Update 6: for k € [J1] and | € [J2], we have

O = argmax{ Y éulklgs;[l]log fo(yi;)}-

(2,7)€Q

Here we suppress superscript index ¢ here for simplicity.
Some Special Families

* Homogeneous Poisson Process Case: the likelihood is

fo(y) = exp{nlogl — t0},

with 6 being the intensity parameter and y = (y1,...,%t,-..,Yn). Then update formula for 6;; can be reduced to

_ Zgea Prilklda;lllng . . :
O = S o on P16 s - Its special case, Poisson model, assumes the density,

exp{—6}6Y

fo(y) = "
2 iyea Prilkldoillys;

The update formula for 6; can be reduced to 0y; = S en SulHes T -
i,5)€ v J

* Bernoulli case: the density function is

fo(y) = exp{ylog(0) + (1 — y)log(1 - 0)},

Z(zﬂ,j)eA ¢1i[k]¢72j [l]yij
Z(i,_,’)eA ¢1i[k]¢2j [l] ’

with y € {0, 1}. Then the update formula for 6y; is simplified as 0x; =

* Multi-categorical case: the density function becomes

C
fo(y) = exp{>_ 1{y = c}logb[c]},

withy € {1,...,C} and >_ 6. = 1. Then the update formula for 6; can be written as

> (iyea P1ilkld2;[l]1{yi; = ¢}
Z(iyj)eA ¢1i[k]¢2j [l]

le [C] 0.8

and ) _6ii[c] = 1forall &, 1.
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2. Proof of Results in Section 3

In this section, we prove Theorem! - Theorem 5 in Section 3 of the main paper. We first study the consistency property of
the variational estimator.

Consistency Let é, 7 be the estimated model parameter and (Z) be the estimated variational parameter. For any fixed a € [.J;]
and b € [J2] and any fixed ¢, we first compare the difference between

Qi(a,b) = > > dulklga;(l]log for, (yij) (15)
i,j:zfi:aﬁzgj:b k,l

and

Qa(0,0,0) = Y > dulk]esll)10g fo,, (yig)- (16)

ijiag,=a,25,=b k
We are going to show that there exist constant ¢(d) and J such that
Q1(a,b) — Q2(0,a,b) > c(§)mims (17
for any 0 satisfying miny, ; |6k — 0%, || > 0 with high probability.
Proof of (17): For any sequences {11, } and {12, } satisfying that

Cy: Z” 14925 > no and each element is bounded by 1,

we can show that
nit?/2

— 18
n0V+nOMt/3}’ (18)

7' Z"blﬂp% 10gf0 yz; Zwlzw%EIngG(ym)l ) < exp{—
iJ
where M is the upper bound of | log fy(y;;)| and V is the upper bound of E(log fy(y;;))?. Inequality (18) holds since that

[15102; 108 fo(yij) — Y12 E1og fo(ysj)| is bounded by | log fo(yi;) — Elog fo(yi;)| and Bernstein inequality. By union
bound, we can further have the following uniform concentration inequality,

P(weC 7| § 1/1121/)21 IOg f0 yw E w11¢2JE10gf0(yzg)‘ > t)
>0 i
nit?/2
< NN O)expl— " B, (19)

where N (1) is the covering number of ¢/4-ball for 1) and N'(6) is the covering number of ¢/4-ball for 6. By straightforward
calculation, \V(¢)) is bounded by C™1 108 Ji+m21o8 J2 and A/(6) is bounded by C'/172 for some sufficiently large constant C.

Note that } -, ; >, 5 @15[k]¢2:[l] = mamy, where mg := [{i : 27; = a}| and my, := |[{i : 23; = b}|. We consider those
pairs (k, [)’s such that 3, . ¢1;[k]¢2:[l] = ©(mamy). We then call these pairs (k,1)’s satisfy relation R,,.

By (19), we know that
S oulkleg[llog for, (vi)) = > bulklée;l1log far, (vig) + Op(v/mamsN (V)N (6))

N L — A L —
1,]‘z1i_a,22j_b z,g.zli_a,ZQj_b

and

S ulkleo i og fo,, (vis) = > builkldos[10g fo (4i5) + Op(v/mamuN (9)N(6)).

ig‘:zfi:mz;j:b i,j:zi‘i:a,z;j:b
By the optimality of 67, we have that

S bulkleg[Rlog for, (i) — Y. ¢uilklda;[lIElog fo,, (vis) > cmamid,

Sk o ok Sk o ok
z,].zlifa,z%.fb z,]Azlifa,szfb
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for any ||0y; — 6%,|| > d. Therefore, if there is no 6, such that |0, — 0%,| < 4,

> oulkleaylllog for, (vis) — Y. dulklds[l]1og fo, (4is)

i,j:z;‘i:a,z;j:b i,j:z{i:a,z;j:b
> emampd — Op(V/mampN (V)N () (20)
> mgampd.

Thus, it holds that

Ql(a, b) — QQ(G, a, b)
S D oulkleslog for, i) — YD ulklea;lllog fa, (vis)

i,j:zfi:a,z;j:b k,l i,j:zfi:a,z;j:b k,l
= > { S bulkleg[llog for, (i) — Y. éuilkle;[l]log fo,, (yij)}
k,l satisfy R, i,j:zfi:a,z;j:b i,j:z{i:a,z;j:b
+ Z { Z P1i[k]po; (1] log for, (yij) — Z b1:lk]d2; (1] log fo,, (yis) }
k,l not satisty Ry, ™ i,j:27;=a,z5;=b i,j:2);=a,z5;=b
> mgmpd — op(memp2M) = c(8)mgmy, 21)

by adjusting the constant. This completes the proof of (17). This also implies that Q2 (6, a, b) achieves its maximum at the
local neighborhood of ¢7,.

By these, we can claim that max, , miny ; ||6%, — Ol || < 4. If not, there must exist ag, by such that miny, ; ||9:;ObO — O || > 4.
It gives us that

> Qi(a,0) =Y Qa(0,a,b)
a,b a,b
= > {Qi(a,b) — Qa(,a,b)} + Q1 (a0, by) — Q2(B, ag, bo)

(a,b)#(ao,bo)
> —J120,(mameN ()N () + c(8)mamy
> 0.

This contradicts with the definition that (é, qg) is the maximizer. Therefore, we conclude that max, , miny ; ||6%, — O | <d
holds with high probability. By the Assumption Al that rows/columns of 6* are different from each other, we then can
permute rows/columns of  so that |0}, — 0 || < 8. Thus we conclude that ||6* — 0]|3. < J;.Jo62. This gives the estimation

consistency of the model parameter §. Next, we are able to show Theorem 1 and give the characterization of .

Proof of Theorem 1 By above displays, we have that \/ﬁ 16* —0]| p is o0p(1). Indeed, (21) actually gives more information.

That is, for any fixed pair of @ and b, we can find k(a) € [Ji],1(b) € [Jo] such that 3=, ;. _, .. _, dus[k]do,[l] >

mamy(1 — 0,(1)). This gives us that ¢1;[k] = 1 — 0,(1) for any 4 with 2}, = a and ¢;[I] = 1 — 0,(1) for any j with
z5; = b. This gives the consistency of latent membership estimation.

Moreover, given fixed i, for any k' # k(= z7,), it holds that,

Zlog fe;z; (yi5) — Z log for, . (yij) > cma (22)
J ’ i

k, *
#2j

for some constant ¢ by law of large number with probability at least 1 — exp{—Cmsz}. By the optimality conditions for qAbli,
we can compute that

Silk] oc exp{y Y~ do;ll]og £, (4is)}-
7 l



On Variational Inference in Biclustering Models

Thus,

log Gu[k] — log i, [k'] = ZZ%] log f4,, (yij) ZZQAM[Z] log f5 , (4ij)
7 l

> Zlog for., (is) Zlog for,.; (Wi3) = op(ma)
> c'mg.
It gives us that
Prilz}] = duilk] = 1 — Jy exp{—c'ma}. (23)

Therefore, by the definition of total variation distance, we get

dTV q1z7 zl Z (blz - qigh[zfz]) <2J; GXp{—C/mQ}.
k/;ézlz
Similarly, we have that
drv(Gaj, 6 22 Z ¢2J - (Z)zj[zgj]) < 2Jyexp{—c'mq}.
l’;ézQ

By union bound, we know that drv (g4, 5%) < 2J7 exp{—c'mz} and drv (G, 5Z;j) < 2Jp exp{—c'm1} hold for
i € [mq] and j € [m2] with probability at least 1 — (my + mg) max{Jy, Jo} exp{—C min{my, ma}}. This completes the
proof.

Proof of Theorem 2 By the optimality condition for 7; and 72, we can find that

, bk
k] = Wforke[h],
1
. bl
woll] = ZJE[T;;MforZE[JQ].
2

Thus, we have

Zie[ml] lez[k] Zie[ml] 1{z];, = k} Zie[ml] 1{z}; = k} "

bl - wi| = (SO e LT el SR g
. {z];, =k
< 2Jiexp{—cma} + \Zze[ml] 16 J — 7y [K]|
mi
< a
= \/7,71

held with probability at least 1 — exp{—Cm1} — (m1 + mz) max{Jy, Ja} exp{—C min{m;, ms}} for some constants ¢
and C' by Hoeffding’s inequality. By repeating the same procedure, we can obtain that

|72[l] — w3 [l]] <

C2
V12
holds with probability at least 1 — exp{—C'ma} — (m1 + mg) max{Jy, J2} exp{—C min{m,m2}}. This leads to the

desired result.

Proof of Theorem 3 Furthermore, we can reduce our problem to the usual maximum likelihood estimation problem. This is
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because we have that
ELBO(O, 7y, 2, $)

= D> bulklde;lllog £, (uij) ZZ% Jlog(¢uilk]) = > > da;lil) log(o; 1))
7 l

1,7 k,l

+ZZ¢1Z log ’/T1 +ZZ¢2] log 7T2 ])
= Zlog féém.Qj (yij) + Zlog (F1[214]) + ZIOg (T2[22;])
ij i j

+0,(mims max{Jy, Jo }(exp{—c'm1} + exp{—c'm2})),

where Z1; = arg maxy, qASU [k] and Z9; = arg max; ¢32j [1]. Since the variational estimator is shown to be consistent, we only
need to consider the local neighborhood of 6%, B(6*, dy) with some sufficiently small radius §y. For any 6 € B(6*,d), we
can find

|[ELBO(0,¢(0)) — Z log fo(yij)| < Op(mimomax{Jy, Jo}(exp{—c'm1} + exp{—c'm2})),
ij
by continuity of ELBO function and likelihood function. Here ¢(6) := arg maxy ~, », ELBO given fixed §. Notice the
fact that the EBLO is always upper bounded by the log-likelihood function. By Assumption A4 that the expectation of

likelihood function is strictly concave, then there exist p such that for any Elog F(©) < Elog F(0*) — 2p[|© — ©*||2.
Here we write ), log fo(yij) as log F'(©) for notational simplicity.

Then the maximal likelihood estimator should be a consistent estimator as well. Otherwise the log-likelihood achieves larger
value at 6, this contradicts the definition of MLE. Furthermore, we can obtain the relationship between variational estimator
and MLE, that is,

pl© — OMEE|E < log F(OM!F) —log F(O)
= log F(OMLE) _log F(©) + ELBO(OMLE ¢(@MLEY)
—ELBO(OMEE ¢(@MLEY) L ELBO(O, ¢) — ELBO(O, ¢)
< 20(mymgmax{Jy, Jo}(exp{—c'm1} + exp{—c'ma})) (24)

Here, we write © = (;;) with ©,; = 03,,,2,,- In other words,
16 — OMLE |12 < O, (mima max{Jy, Jo}exp{—c min{my,ma}})

by adjusting the constant ¢”’. In the following, we only need to compute the upper bound of MLE in parameter space Bg.

Work on MLE. In the following, for the sake of notational simplicity, we abuse notation 016 by treating /6 as MLE
(OMEE | @MLEY in the rest of this section. By the definition of MLE, we have that

Z log fy (yi;) > D108 fo,; (yis) (29)
j

for any 6. Since — log F' is strongly convex function with respect to ©, we then have
—log F(©*) — (V1og F(6%),0 — 0*) + ul|® — ©*||]> < —log F(O) < —log F(©*)
for some constant y. Therefore,
p©|© - 0%|? < (Vg F(6%),6 — ©7). (26)

Elog F(yij,0) and let ©,; = 0;,.:,.. We consider to bound the difference between

Z1i%22j5°

Define 0, = argmax

21i=a,22;=b

éab and 0, By the definition of é,

fap = arg max Z log fo(vij)-

éli:a,ézj =b



On Variational Inference in Biclustering Models

Let ni(a) = |{i : 21; = a}| and na(b) = |{j : Z2; = b}|. We then know that Ay, := /11 (@)na(0)(ap — Oap) is 0,(1),
that is,

Eexp{A%} <exp{C1}

for some constant C; and any fixed latent assignment z. This is because that

0= m ili_gzj_bw()g fo., Wiz) = m ili_gzj_bv1og fa.. (i)
er 21i_§2j_b V21og f3,, (Wij) (Oab — Oab)
by Taylor expansion at f,;. Therefore, we have
@m0~ ) = (s X esda, )
Mzwg o @)

Define an event 2, = {|m D ri—ayia;=b V2log f4., (i) — WE D rimayia=b V2log f5,, (Wij)| > €}, we
know that
1/2n,npe?

P(Q.) < exp{— 2

}

by Bernstein inequality, where v? := max;; maxg EV?log fp(yi;).

Let € be x/2 with x := min;; ming E) 7 __ 29y =b V?log f3,, (yi5), which is a positive constant. Take small ¢ such that
t < k%/(8M?v?) we have

Eexp{tAZ,} = Bexp{tA2,Ho, } +E{exp{tAZ, o}
2
< exp{~ LYy o {imam M2) + Efexp{tAZ, o)

< 1+ E{exp{tAZ,}1q.}

2 1
< 1+E ey QR Viog f5  (yii))? 28
S el Y ) -
< 14 exp{C} <expCh, (29)

by adjusting the constant C; and noticing that V' log fj  (y:;)’s are conditionally independent for different i and j given
latent memberships. Here (28) uses tower property and the fact that there exist ¢ and C' such that

1 m
Eexp{ta(z X;)?} <expC,
I=1

where X;’s are m independent random variables with mean 0 and bounded variance. Therefore,
O—-06IP=>" > AL =) m(anad)Al,
a,b i,j:21,=a,22;=b a,b
Thus,
P(|© — ©|F| > C(J1J2 + m1log Ji +m2log J2))

exp{—tC(J1J2 + my log J; + m2log Jo)} exp{Cy J1 Jo } J|"* JJ**
exp{—(tC — C1)(J1J2 + mylog J; + m2log J2)}, (30)

IAINA
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which goes to zero by choosing sufficiently large C'

Next, we consider to bound [(© — ©, V log F(0%))],
(&~ 6, Vlog F(67)]
= D (O —0a)( >, Vlog for. .. (iz))l-
a,b ¢

-
PN ~ 27
1,j:21i=a,22;=b

Similarly, we know that Hyp := (0o — 6as) (>, Jiiri=a,e;=b Viog fo=, . (yi;))is Op(1), that s,
sJ 214 1225 23,2

*
23

=)

Eexp{|Hau|} < exp{C->}. (31

This is because Hop = /11 (a)n2(b)(Gap _é“b)(m D trimaay—b V 108 fe:;z; (yij)), which is upper bounded
25
by 2{(v/n1(a)n2(b)(6ap — ap))* + (m D g trimaay=b ¥ 108 f@:f‘z (yij))?}. Then (31) holds by using the

25
same technique in proving A ;.

Therefore we have

P(|(6 — 0,Viog F(0"))| > C(J1Jy + my log Jy +malogJy))
exp{—C(J1J2 + my log J1+ mo log Jz)}eXp{Ogjljg}thJémz

<
< exp{—(C — C3)(J1J2 + mqlog J; + malog J2)}

which goes to zero for large C.

In addition, we consider to bound the quantity ((©—©*)/[|©—©%||, Vlog F(©*)) in the case when |0 —6*||> > C(J,J5+
my log J; 4+ ma log Jo). Then, each entry of (© — ©*)/||© — ©*|| is bounded by M /+/C(J1J2 + my log J; + malog Ja).
By the fact that

12 t

P} il > ) < Cexp{=min{ -, g
[o.¢]

1

for any sequence {c;} with >, ¢? = 1, we arrive at

P({(6 — ©%)/||© — ©*[|,Viog F(y,0%))| > C(J1Jo + my log Ji + malog J2)'/?)

C2 7 m
S eXp{—m(;}1JQ + my 10gJ1 “+ meo 10gJ2)}J1L1J2L2
< exp{—é’(Jng + my log J1 + malog Ja)},

by adjusting constant C. The right hand side of above inequality goes to zero for large constant C.

Combining all above facts, from inequality (26), we know

H|OMEE _ @2 < (Vieg F(67), 0MEF _ %)
< (Vleg F(6%),0MEE — @) 4 (Viog F(0%),0 — 0%)
< (Vleg F(©%),0MLE _ @) 4+ |(|oMEE — o*| + |6 — @MLE|)
(Vlog F(67), (6 — 7)/6 — &)
< Gi(J1d2 +malogJi +mglog Jz) + %H@MLE —O"* + %(Cl(JlJQ +mj log Ji +mglog J2))

when ||© — ©*|| > C\/J1J2 + mq log J; + my log Jo. Additionally,

|OMLE _@*|| < [|@MLE — Q|| 4 ||© — 0% < 20/ J1Js 4+ my log J; + malog Jo (32)

when ||© — ©*|| < C\/J1J3 + mylog Jy + ms log Js.

Finally, we arrive at

H@MLE — 0|2 < O'(J1Jy +my log Ji + msy log Jo) (33)
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for some constant C’. Combining (24) and (33), we then have
16 — OMLE |2, < Cmymg max{Jy, Jo}(exp{—c'm;} 4+ exp{—c'ma}) + C'(J1J2 + my log J; + mglog Jo).

This completes the proof.

Proof of Theorem 5 In the partial observation case, we let Qy; = {j : (4,7) € Q} and Qo = {i : (¢, j) € Q}. Therefore,
by Hoeffding’s inequality, we know that

3pm2 pmy
2 2

3pm;y

m
p22 < Q| < < | < (34)

hold for all ¢ € [m], j € [m2] with probability at least 1 — my exp{—p(1 — p)ma/2} — mo exp{—p(1 — p)m1/2}. Then
the proofs for classification consistency, population consistency and variational estimator consistency are all the same.

For the upper bound of variational parameter, we only need to derive the parallel formula for (27) in estimating the upper
bound of MLE. By calculation, we have

@@ O —0y) = (——— S Vg fy ()"

na(a)nz(b) 21i=a,%2;=b,(1,j)€Q

1
———— Vlog fg,, (vif)
Vni(a)na(b) 21,-=a,22j2=:b,(i,j)eg o

_ ni(a)nz(b) 1 ) o -1
- n(a’ b’ Q) (n(av bv Q) Z v IOg feab (yl])>

21i=a,22;=b,(4,7)€EQ

Viog f5.. (vij),

\/ (a, b Q) Zb
le—a 227— 7J)EQ
where n(a, b, Q) :=|(i,7) € Q: 21; = a, 22; = b|. Define events

1 1
Q. = {Im > V21og f5,. (vij) — RO 3 V2log f5,, (yij)| > €}

21i=a,22;=b,(1,7)€EQ 21i=a,22;=b,(1,7)EQ

and €, = {|n(a, b, Q) —ni(a)nz(b)p| > 1/2n1(a)na(b)p}. We then know that

1 na(a)na(b)p?

P et

}< exp{—%nl(a)m(b)p}

and hence get

Eexp{ptA};} = E{exp{ptA;}1q,} + E{exp{ptA};}1a.na: } + +E{exp{ptA?;}1acna: }
< exp{—qgmi(a)naO)p} explptn (@i (5) M)
+ exp{—%nl (a)no(b)p} exp{ptni(a)na(b)M?} + exp{C}
< exp{C}} 35)

by adjusting constant ¢ and C. Then, by repeating the same procedure in (30) - (32), we get
|©* — @MLE |2 < O/ (JyJo 4+ my log Jy + malog Jo)/p (36)
held with probability at least 1 — exp{C’”(Jl Ja + mylog J; + maylog Ja)}. By repeating (22) - (24), we get

16 — ©MEF % < 2C (mams(exp{—c'pm1} + exp{—c'pma})). (37
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Therefore, we have
16— %%
< 2Cmax{Ji, Jo }(mama(exp{—c'pm1} + exp{—c'pms})) + C'(J1J2 + m1log J1 + malog J2)/p

with probability at least 1 — exp{C" (J1Jo + my log J; + my log Jo)} — my exp{—p®mg/2} — my exp{—p>m, /2}.

Proof of Theorem 4 From Yu, 1997 and Guntuboyina, 2011, we have the following generalized Fano’s lemma.

Lemma 1 Lez (©, () be a metric space and {Py : 0 € ®}. For any totally bounded set T C ©, define the Kullback-Leibler
diameter and the chi-squared diameter of T by

dir(T) = sup KL(Py,||Ps,), dy2(T):= sup x*(Po, || Ps,).

01,02€T 01,02€T
Then, it holds
2
: 5 dxr(T) +log?2
fsup P(£2(0.0) > &) >1 - KLV )T 082 38
R PO = D e T o) o
. 2 1 d2(T)

inf sup P(£2(6,0) > <) > 1 — - X . 39
mfeup PG =D 21 50~ \ e 7.0 &9

Here packing number M (e, T, {) is the largest number of points in T such that they are at least € away from each other.
In addition, by Lemma 4.7 in Massart, 2007, we have the following results.

Lemma 2 There exists a subset {wy, ..., wy} C {0, 1} such that

H(w;,w;) = [Jw; — ijQ > T foranyi # j € [N], (40)

for some N > exp{d/8}.

By Assumption A4, we know that K L(Py, || Ps,) < C||#1 — 62]|* holds for certain constant C. For example, we can
compute the KL-divergence explicitly for special cases. For Poisson model, we have that

KL(P@I ||P92) = 91 log(91/92) + (92 - 91
0, )
= @(91 — 02)
Cy
S E(el - 92)25

where £ is between 67 and 5. For Bernoulli distributions,

KL(Py,||Py,) = pllog%ﬂl—pl)logi:i;
- 1/2(%; + & :gz)(pl —p2)?
< 157_26(171 —p2)°
< 15—6]0,(1 — ') (61 — 62)?
< 415—_26(91 — 62)°.

We next consider to construct subspace of Bg as follows.
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Bound 1. Without loss of generality, we assume both m1/J; and mo/Js are integers. Consider the latent configuration,
z1; = [iJ1/ma] and 225 = [jJ2/ms]. For any w € {0,1}71%/2, define parameter 6 by letting

T
=14+ . (41)
mimso

There exists a subset 7~ € {0, 1}71%/2 such that | T| > exp{J;Jo/8} and H (w1, ws) > JyJo/4 for any wy # wy € T. We
then construct

@(T) = {@ | @ij =¥ NONS T}

21i22j
Therefore, for any two different © and ©’ (associated with w and w’) in @(T), we have
© — @2 > H(w,w') > J1Jy /4.

Then, M (e, 0(T), || - ||r) > exp{J1J2/8} with e = \/J1J2/4. By using Lemma 1, we then have the minimax rate is at
least cJ; J2 by adjusting constant c.

Bound 2. We can pick wi,...,wy, € {0,1}7* such that H(w,,wp) > Ji/4 for all a # b. This is possible when

exp{J1/8} > J2. We then define
mg log J:
0 ]y 2082, 42)
mimso

for all & € [J;]. Consider configuration z1; = [iJ1/mq]. Next, we fix z; and §. We can choose Z C [J3]™2 such that
|Z| > exp{Cmglog J2} and H(z,,2zy) > mo/6 for any z, # z, € Z. Then, the subspace is constructed as

@(T) = {@ | ®ij =6v ,Zo € Z}

21i22j

For any © and ©’ in ©(T), we can see that © and O’ have at least ms /6 different columns. For two different columns,
there are at least J; /4 - my/J; elements differ. Thus

' log J:
16— 6} > T T > malog o /24

for any ©,0’ € ©(T). By using Lemma 1 again, we then have the lower bound is at least c¢(ms log J3) by adjusting
constant c¢. We can repeat the same procedure to get another lower bound ¢(m log J; ). Combining all results, we know that

inf sup P(||© — 0|2 > c(mglog Jo +mylogJy + J1.Jo)) > ¢
6 e*eBo

by adjusting the constant ¢ and ¢’. This concludes the proof.
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3. Proof for Convergence Results
3.1. Local Convergence
Proof of Theorem 6 By the update rule, we know that

oy = arg max Z 17 k)65 1) Tog fo(yis)

4,J

= argmguxz Z (0)[ ]¢(0)H10gf0(yij)}~

kS dgiay, =k 2 =l

By Condition I1 that

Zi:zﬁ=k (b?z[k] > D and Z] 22 =1 (725 [ ] D
1 25
Zk’;ﬁk Zzzi‘q:k (b(l)z [k/] Zl’;&l Ez 21 =1 ¢2] [l/]
we get that
S 6O Uog folyyy) = cmin{Dy, Do} Y D k1657 1) 10 fo(yij)- 43)
i,j:z{i:hz;j:l i,j:21;7#k or z;_ﬁél

for some constant c. Note that the left hand side of above equation is bounded by mm2C (C is defined to be the upper
bound of log fy(y:;)), thus

1 3 (0) 111 4(0) Cy
. : ) < .
ming 17 [k]¢2j [l] IOg f9 (yU) = cmin{Dl, D2}

i,j:27,7#k or zé‘j;él

For the notational simplicity, we write

W(9>=mfm22{ > (O)[]¢>(°)[]10gfa(yij)}

kLN gzt =k 2y =l
and .
- (0) (0) -
Wi(0) = miims Z 1i [k]¢2j [[] log fo(yis)

z,].z”_k,zzj_l

in the rest of the proof. Therefore, |W1(0) — W (0)| < cmin{Cibleg}' We next define 6y, as arg maxg Wy (6). By algebraic
calculation and concavity of W7 (6), we know that there exists constant p’ such that

P'(QIS) —0)? < Wi(Bn) — Wl(%))
= Wi (O) — WA (05)) + W (Oht) — W (Bks) + W(6)) — W (6%))
< Wi(lw) — Wi(6))) — W(0) + W(95))
< Wilk) — W (O] + (Wi (85) — W (65))]
_ 204

cmin{Dy, Do}

Next we consider to bound the difference between 0y, and 6}, It is easy to see that 6}, is the maximizer of EW; (6). Again,
we can find that

p (O — 07)* <EWL(05,) — EWy(01) < 2 Sup [W1(0) — EW1(0)],

where sup, |71 (0) — EW,(0)| = O, (& J2+m1\1/°fl ;111n+2m2 198 /2 ) by concentration inequality (19). Therefore, |9,($) — 05 <
2C

cmin{D1,D>} + Op(l)'
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By update rule, we have that

Z x exp{{ Z Z QS(O) logfem(yw)} +7r( )[k]}

le[J2] j€[m2]

for each fixed k. We then compare (b%)[ k] and (b(l) [23;] (k # 27,), that is,

log (9} [25,]) — log (4} [k])
- Z Z ¢(O) 1nggii>l(yia)+7r§l) 21 — Z Z ¢> logfeill)(yij)}*ﬂl)[k]

le[J2] j€[ma2] i le[J2] j€[ma2]
O O Cy
> Z ¢2j 22] log fg(ll) s yu Z ¢2J 223 log fgl(i); (%g) - 2m2m -2
j€[ma)] 02 J€[ma] g
Cy
> —2my———— — 2. 44
Z  CoMna mao min{Dl,Dg} (44)
Here (44) uses the fact that
> ¢>(2(J)) (23 logf9<1) . i) — Y ¢>$) [23; Inggl(vlz)*v(yij)
j€[ma) %2 j€[ma2] 27
(0) (0)
Z |]E Z ¢2] Z2j longii) . y’Lj —E Z ¢2] 22_7 logfgl(clz)*(yl])‘ -2D
J€[ma2] 1972 J€[ma2] 2
> 2comg — Op(ﬁ) > coma

by using continuity and concentration bound for D, where

D = sup| Z 637 [23:110g folyis) —E > ¢5)[23,110g folyiy)l-

JE[ma2] JE[M2]

Hence, we know that

¢uil27;] = 1 = Jrexp{cyma},
when D; and D, are large enough. Similarly, we can obtain that

bojlz55] > 1 — Jyexp{chm}

for j € [ms] as well. For iteration ¢ > 2, repeating the previous procedure we know that () is always in the local

neighborhood of 8*. Thus the estimated latent class memberships Z;; and Z5; are consistent. Then the consistency of 0
follows as well.

Proof of Theorem 7 is similar to that of Theorem 6. Hence we omit it here.

3.2. Global Convergence

In the next, we consider the global convergence of the algorithm. Recall that the initialization for ¢1;’s and ¢q;’s are
¢1i ~ Dlr(al) and ¢2i ~ Dif(ag), (45)

where o is a vector of length J; with all entries being 1 and as is a vector of length J, with all entries being 1. (Remark:
(45) can be replaced by other non-informative priors, i.e., ¢1;[k]’s (k € [J1]) have the same marginal distribution.) We first
consider the degenerate case, i.e., Jo = 1, then the biclustering model reduces to the latent class model.

Case Jo = 1: We first show that the algorithm can return global optimum with high probability for arbitrary true model
parameters when J; = 2 and Jo = 1 with mo > logm;.
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Proof of Theorem 8 We first write ¢§§) =3 + <;$(0) and ¢(0) =3 + &‘0) Therefore, we know ]E(j)(o) Eqb(o) 0. Without
loss of generality, we only prove for Gau551an / Bernoulli / P01sson model then we have

R+ 0y O Dy,
911 - (O) l’ld 921 - (0)7 (46)
gy Y, 6% O S
where y;. = > .y;; and § = 3. yij/(mamz). In addition, we let a = (3, qgliyi.)/(iml;”?) and b =
(m2Y, (;511) / (7152). Then, we can compute the difference
1 1 a — by
951) - 951) = 271 s
_ 4 > ég(j)yl Y i (gg(z)) )
1—-02" mims my
~(0) 1
_ 4 (Zi 0% B 9*2 ¢(O) (14 0p(——)))
- 1 - b2 mq p \/ Mo
_ 4(Z#W*—m+ L
N 1-— b2 mq mimeso
I (00 (02, R
N 1— b2 mi mimeso '
By central limit theorem, we get
t
o) — o) > > 2 - 20(ct
PR 0012 =) 22 - 20
for some universal constant ¢ and any ¢t > 0. That is, 9(1) — 0(1)| = (—F) In below, we show that |0(t1) — 0£§)| is

strictly increasing as long as |9§t1) — 9%?\ = 0(1). Thus, there exists ¢, such that |911 — 95':1 | = Q(1). Then, at this time
d(qg ), 2%,) = o(1). This further implies the parameter #(*-*1) is consistent.

Without loss of generality, we can assume 9%1) > 0(1) By update rule for qﬁﬁ), we can compute

log (¢4} [1]) — log (64} [2])
> (log Foo (Yi5) =log fy (yij)) +logmi[1] — log m [2]

J

vary~e;, (10g fo (y) = log fy (y)
= ma(Ey~pr, log fyo) (y) — Eyner, log f,0 (1) + Op( )
11 21

> cema(65) — 65))

mao

for any ¢ with 2, = 1 and some constant c. Similarly, we can get
1 1 1 1
log(91;[2]) — log (61 [1]) > ems (631 - 041))

for any ¢ with z]; = 2. Therefore, we can write d)l,li =1/2+4¢; fori € Ay and ¢$) =1/2—¢; for i € A, such that §;’s
are all positive with A; := {i : 2], = 1} and Ay := {i : 2}, = 2}.
For the second iteration, the parameters are updated as
92 _ Doiea, (L+00)Ti + D i, (1= 8:)7.
11 Doiea, 1 +0) + 2 a,(1—6i)

(47)

and

Diea, (L =0T+ > e 4,(1+6:)7
Piea, (L =0)) + 24, (1 +05)

2
9&1) =
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where ;. = >, y;;/mo. Therefore, we can compute 952) 951 as
1+ 6; 1-9;
9(2) _ 9(2) _ v _
D D NIETAES RPN e R SH e SE SR L

€A

Y (s -5 B L+4; i
’LeAl (1 + 61) + ZieAz(l - 61) ZzeAl( ) + Z’LGA (1 + 6 )

1€As
(48)
To simplify the above equation, we consider the following
1+9; B 1—9;
ZieAl (1 + 51') + ZieA2(1 - 52’) ZiEAl (1 - 52’) + ZieA2(1 + 51’)
B 1+6; B 1—-6;
n+ (iea, 0 = 2iea, 0)  n— (i, 0 — 2ica, 0i)
_ @8~ (Xiea, 0 — 2hiea, %)) — (1= 8)(n+ (Xiea, 0i — 2lica, %))
n? — (ZieAl 0; — ZieAz ;)2
— 9 ndi — (Xica, 0 — Dica, 0i)
n? — (ZieAl 0i — ZiEAz 8;)?
As we know that g;. = 65, + O ( —), we get that
S 2iea, (L4 0) + 2004, (1=00)  Dliea, (1—0i) + ZzeA 1+ 6"
& — i 0 — 2 d; 1
= 2> nz Suien 0~ Suicas 2(91‘1 + O0p(—=))
A, n- — (ZieAl 0; — ZieAZ Wy V12
2|A2|216A1§ + |A1|21€A2 1(9 +O ( 1 ))
n? = (Ciea, 0i = Yien, 00 Ve
Similarly, we get
Z ( 1—46; . 149, )
A, Doiea, (L4+0) + 3 ca, (1 =0i)  dica, (1 =06i) + > e, (1+6)
_ 2|A2‘216A16 +|A1‘ZZ€A2 7/(9 +0 ( 1 ))
n? — (Zzéfh 5 - Z’LEAZ 5 ) 21 V2
From (48), we arrive at
o2l 2 ica, 0+ A1 Diea, O 1
9?1) *9g21) = 2 _ €4 o — eg (911 ‘921 JFOp(i))
n (ZZGAI ZZEAQ ) V2
As||A
> (07 — 9;1)50| 27!2 1
= (011 = 031)dom [1m[2],
where §p = min; d;. Note that §; > exp{cma( 9 - 921 )}/ (exp{ema (01 — 92?)}) — 1/2. When ms, is sufficiently

large, we have
0 — 05 > C (65, — 05)00m [Lm [2] > 031 — 03,

where C'is a large constant. Thus, by repeating this procedure, we will have that gap Oﬁ) — 0%) strictly increases as ¢

increases. Thus, qﬁ) — 0.+ forall i € [my]. This gives the global convergence of the variational algorithm.
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Proof of Theorem 9 When argmaxy ), ; gb(o)[ 1]log fg(yij) = argmaxy qﬁ(?) [2] log fo(yi;) holds, this tells us that
9%11) = 9&). This further gives us that ¢(11- 1] = (1)[ 2] = 5. Thus, we have 77(0)[1] = 77%0) [2] = 1/2 as well. By induction,
we can show that 9?1) = thl) and ¢§?[ 1] = 5?[ 2] = % = 5”[ 1] = 7r§t)[ 2] for any ¢t > 1. Thus the algorithm never
converges to the global optimum.

On the other hand, when argmaxg ; ; ¢§2) [1]1og fo(yi;) = arg maxy ¢§‘j> [2]log f4(yi;) does not hold, we know that

9511) # 9;11). By using the same procedure in the proof of Theorem 8, we can show that \9%) - 9§§)| strictly increases as ¢
increases. Thus the algorithm will converge to the global optimal point.

On the other hand, when J; > 3, the global convergence result is different. Specifically, we consider the case that J; = 3.

Proof of Theorem 10 By update rule, we then can compute that

~ 7(0 _
0 _ Tioilllye _ 8+ Wy _ E+ o s gta )
me el me (3460 13+ 000 L+b
where ¢(0) (0) —1/3,a1 =% - (b(o)[ 1]g;. and by = =~ 35 ¢(0)[ 1]. Similarly, we get
S SOl g+ S Lo Bl g+
b1 = o = Typ Ml O = T = Trh (50)
U3+ 0302 1Hbe 3+ o 3 1+
Then, we can get the difference
g _gny _ Yta gtas al—a2+( 2 — 01)y + aiby — asby
W72 4 14by (14 01)(1 + by)
_ @R -l -0 L -
B m1(1+b1)(1+b2) Prymamy
Similarly, we can get
W0 g _ TR aBOG, -0 L
2 s (14 b2)(1 + b3) Prymima
60 RI+ (6111 - 6P 2Dz, — 0) vou L )
B my (1 + b2)(1 + b3) Pry/mims
by using the relation 0 = é( 1] + (b(o)[ 2] + (559)[ ] Moreover, we know that \/t >l (O)[ 1] — 52) 2)(6%, , — 0)

converges to a normal distribution with mean 0 and F > zj)(o)[ ](0;;1 — ) also converges to a normal distribution with

mean 0. This fact will be used later. We further assume 911 > 921) > Hi(ﬁ)
For gbh , we know that
11 (K] oc exp{ 3 log fyn (ig) + log i K]}, (53)
j
that is,

Ok
Gk

= eXP{Z{log fow (yij) — log fgé}i (i)} (54)
j
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Take ¢ from Class 2 and ¢’ from Class 3, we then know
1 1
012,08

/ 14
1 1
G els)

exp{) _{log oo (yi5) +10g fy (yiry) — 1og foen (yi5) —log oo (yirs) }}
j
= exp{msE[log fyo (v:) +1og fy (4ir) —log fyn (y:) — log fyw ()] + O o(v/mady)}
= exp{ma(VElog fy (4))(05 — 631) — VE[log fc <yy>1<958 — 65))) + Op(v/madg)}
= exp{ma(VE[log f3(y)) (65, — 611') — VElog f5(y:)) (051 — 651))) + Op(v/mada)},
= oxp{ma(ga(0y) — 011)) — a(6) — 0))) + opwm» (55)
where dyp = max{||9£? - 9§11) Il | ||9§11) - GS)}. Therefore, (55) depends on g2 and g3 (see the definition (27) in the main

612 /¢§1

<1.In
¢\ 1] d)ﬁ?

paper). Notice the fact that Class 3 becomes the dominate group in the second estimated group, if

other words, the algorithm will converges to a local optimum, i.e.,
011 = 012, 021 — 031, 031 — 031,
where 05 := arg maxy T By~r,. 108 fo(y) + m2Ey~y,. log fo(y). By formula (51) and (52), the asymptotic probability
11 11

of P(OS) - 0%11) > x(G(l) - 9(1))) does not depend on true model parameter for any fixed . To see this, we define

G- —0) and Z; .—FZqSl 0% 1 L1 —0) (56)

@) - N((g> o (<;}112 1;122>> (57)

in distribution, where v, = vy = E[($\% [1]))2|E[(0, ; — 0)2] and v12 = B[\ [1)¢\V[2]]E[(6 , — )2]. Thus, we know

7 2141 z141

that P(Hﬁ) - 95? > x(@éi) - 0&11))) is free of model parameters for any fixed = as my, ma — 0.

By straightforward calculation,

Under constraint B, z,. log fg,,(y) > Ey~y,. log fo: (y), the algorithm can never jump out of the local optimum value,
21 21
once (55) is smaller than 1. Thus the failure probability is asymptotically at least

P(g2Z1 + g3Z> > 0,71 > 0,2, > 0)

This completes the proof.

Proof of Theorem 11 We next consider the scenario when J; = 2 and Jo = 2. Under this setting, we have

e TG 2 Pl + 5 D P2 + Yo Prida;

= - - A (58)
TR BRSO+ T Y b5 + D, D1
and
oD TG — 53 by + 52 é%jyj - Zi{él}'(z&j’ 59)
2y bri + D Py — Do Pridd2;
where y;. = > yij and y.; = >, yi;. We write a1 = (3, b1iYs. )/ (F572), ag = (ma ), ¢11)/(m”"2) and also write
b= (32 d2jy.5)/(F572), bo = (ma 3, o)/ (™am2). Thus, we know thatal,ag are Oy (A -) and by, by are O, ( ).

Then we can compute

?j+a1+b1_gj—a1+b1 o 1

9(1) _ 9(1) —
1 21 1+a2 +b2 1 — as +b2 P mimeso

a1(1 4 b2) —aa(y + b1) 1
= 2
(1+b2)2 — a2 + O mims
ay — agy 1
= 22— — ). 60
G+or-a o ) ©0
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Similarly, we have

y—+ar — by g—a1—b1 1
9(1) _9(1) _ ¥ _ O, (———
12 22 ].+(l2 —b2 1—0,2 —b2 + p( mimeso
(1—b2)—a2( bl) 1
= 9% 0
(1—[)2) —a2 + p( mimso
— 1
SN Sl VoS ). 61)

(1 — bg) — Ay A/ T1mo

1 1 1 1
Thus, 9%1) - 951) = 952) - Oé . +0 (\/W)

By computation, we see that
1 1
log('[11/611[2])

> qu“” 1] 10g fym (i) + D > 847 108 Fyen (vig)

Jiz5;=1 jzzj_Q l
= Zd?(o) [10g fy (:5) + 3 S e [10g fyo (vis)
Jiz3;=1 Jiz5;=2 1
= {2 Z¢> og fy (vig) = > Z% Jlog £y (yi)}
]22]—1 j22]_1
DD Do Mloe fyn (i) = Y D 4 [1]10 fyn (i)}
j:zgj:2 l gzzj_Q l
_ (0)
= { Z Z¢> logf98>(yij)—10gf9$>(yij))}
jz%_l
(0)
+{ Zzzz:¢ logfgﬁ)(yij)710gf9§;)(yij))}~ (62)
Jizy;=

For any fixed set of parameter (611, 612,621, 622), we have that
> Z 352 [1) (108 fay, (yi5) — 10g fo (yi))
jizg=1
= gz;.1012(m2 + Op(y/m2)), (63)
and
S S 681 (10g for, (yi) — 108 fa (i)
j:z%:? l

= gz:,201,2(m2 + Op(vma2)), (64)

where gy, := VE,.y,. log f5(y). Additionally, 6,2 := 9%11) - 0511). Furthermore, noticing that VE, . ¢, log f5(y) is
kl
increasing function of § and 07, > 675,05, > 055,07, > 05,075 > 055, we then know g11 > g21 and g12 > gao.

Let (b(l) (1 +6;, 2 — 6;). We then know that §; = exp{cég}/(l + exp{cégz) ) — 1/2 for some positive constant c.
(Here 5(1) 9(1) 0&11).) Then minimum of §; for ¢ with 2]; = 1 is larger than maximum of ¢; for ¢ with 2}, = 2. Similarly,
we let ¢2j = (3 +0;,5 — ;). Then §; = exp{c’ég}f}/(l + exp{c’éé,ll)}) — 1/2 where 6511) = 9511) — 9512). In addition,
the minimum of §; for j with 23 ; = 11is larger than the maximum of d0; for j with 23, = ; = 2. In other words, for sufficiently
large m1 and mo, we know min;c z,, §; —max;ecz,, 6; = Minjcz,, 0; —MaX;jcz,, 0; = Q(max{ﬁ(l) 0%12), 9(1) 0(1)}),
where Zyy = {i: 27, =1}, Zoy = {j : 25, = 1} (= 1,2).

Define sets A1 = {(4,) : 2}; =1 )25 = 1}, A = {(4,5) : =125 = 2}, Aor = {(4,7) : 27, = 2,25; = 1},
Agz = {(i,7) : 21; = 2, 23; = 2}. Then for the second iteration, we can update the parameters as follows.

0> _ E(i,j)gAll(%J"&i)(%+5j)1/11j+Z(i,j)€A12(%+5i)(%_5j)Yij+Z(i‘j)eA21(%_61;)(%""5]') i+ 2, J)eAzz( —8)(% —8,)Y;
" Sy (3 FIDG )+ X yea, (3 +6)(3 =) + (i yean (3 =6 +9) + i jrean, (3 — 83 —55)
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0 _ Siiean (3 —0)G +8)Yii + X eay (3 — 005 = 8)Yij + 0 jyeay (3105 +6;)Yij + 20 j)eay, (3 (5 —8;)Yi;
2 Stiean (3 —0)G +8) + (i nean (5 — 003 = 6) + i jrean (3 +0)(5 +6;) + 2 jyean, (5 +0:)(5 — ;)

H

02 Siyear; (3 T3 = 85)Yij + (i jyear, (3 F 85 +6)Yij + (i jyean (3 =85 —8)Yij + (5 j)c gy (3 — 8:)(F +8;)Yi; )
2 Stirean (300G =) + (i ean (5 )G +8) + i ey (3 =03 —6;) + T jreag, (5 — 8:)(5 +65)

02 _ 2, J)€A11< % >(§ = 5))Yi + 2, 1)61‘312(1 5 )@ +6)Yi5 + 2, J)€A21<é +38i )@ = 6)Yi; +E(i7j)5A22(% +5i)(% +85)Yi;
22 Cliyear; (3 =03 =0+ T years (3 =00 + ) + i eng (3 +0)(E = 8) + Ty, (5 + (5 +85)

Compute

(3 +6:)(3 +5;)Vi
Z:(11)51“11(2 + 95 )(2 + 945 >+E(t J>€A12(2 + 38 )(2 =9 >+Z(1 J)€A21( =% )(2 +9; )+Z(i,j)€A22(% *51)(% —55)
(2 —6)(% +6;)Y5
E(IJ)gAH( —8;) (5 +6; )+E(1J)6A12( —5)(3% *5j)+2(i,j)€A2l(% +6;)(% +5j)+2(i,j)eA22(% +8;)(% —65)
(3 +3 )( +9; )Y”

A 5; d;
% +2Xa, Lo+ ZA12 ZAzl 2 — XAy ot EAH 35 ZA12 5 + ZA21 5 XAy, 5 + Ay 0105 — XAy, 005 — XAy, 0i05 + 2 a,, 0i6;
_ (§_§£)(§+5')YLJ
A S 35 84 5. .
Bl -y, 6 -S4y, %+ >ag %+ Yhgy T +Xayy 3~ Xap, 3t ZA21 B —Tapy 3~ XAy 90 T XAy, 00 + Xy, 0i6; — Ta,, 06
(65)
By taking
1 1 1 1
E S0i + E S0i — E 50i — g 50i
2 2 2 2
Aqq Az Aoy A2z
and

1 1 1 1
Zi(sj —Z§5j+z§5j—Ziaﬁz(siéj—Zaiaj—zfsiéﬁz(siaj,

A1 Ai2 Ao Az A1 Aq2 Ao A2z

then (65) becomes

(36 +0:8,) (4 +9) = (G + 33))z

(G +y)2 - a2
B 1 (nl + ng)(ng + 714)61‘ — Zi’EZu (nd + n4)5i/ + Zi/GZu (’I’Lg + 77/4)(52‘/ + higher order
; ey ’
L 1,1
= w;

where nq = |A11|, ne = |A12|, ng = |Aa1], na = |Asa|, higher order terms incorporate all §;6;, ;,, §;, terms. Similarly,
1,2 21 2,2
we can define w;)”, w;; and w;”. Thus,

ij * ig
9(2) 0(2)
= > wilVi+ > wiVi+ > whlii+ > whY
1,j€A11 i,jE€A12 1,j€A21 1,jE€A22
1 2 2 * * * * ]-
= 7y (( Z nz(ng + na)"0; + Z ny(ng +n4)70;) (07, + 015 — 03, — 035) + Op(—= + 0:9;))
8((1 +2)2 -y &7 Vi

Y

cmma0 (07, + 075 — 05, — 655),
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where 0 > 0 is min;e z,, §; — max;ecz,, §; and c is a universal constant. Similarly, we can also compute the difference
2 2 * * * * 1 1
01 — 012 > 2mimad (07, + 03, — 05, — 055) > 01 — 613,
Therefore, before max{|9§t1) — 95? l, |9§t1) — 99 [} = (1), both gaps 9§? - 95? and Oﬁ) — 6?2) increase as iterate ¢ goes on.

It eventually gives qg? — 0,2, and qé? — 525j forall i € [mq], j € [mg]. We then obtain the global convergence.

References

Adityanand Guntuboyina. Lower bounds for the minimax risk using f-divergences, and applications. /EEE Transactions on
Information Theory, 57(4):2386-2399, 2011.

Pascal Massart. Concentration inequalities and model selection, volume 6. Springer, 2007.

Bin Yu. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages 423-435. Springer, 1997.



