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Abstract
Biclustering structures exist ubiquitously in data
matrices and the biclustering problem was first
formalized by John Hartigan (1972) to cluster
rows and columns simultaneously. In this paper,
we develop a theory for the estimation of general
biclustering models, where the data is assumed to
follow certain statistical distribution with underly-
ing biclustering structure. Due to the existence of
latent variables, directly computing the maximal
likelihood estimator is prohibitively difficult in
practice and we instead consider the variational
inference (VI) approach to solve the parameter
estimation problem. Although variational infer-
ence method generally has good empirical per-
formance, there are very few theoretical results
around VI. In this paper, we obtain the precise es-
timation bound of variational estimator and show
that it matches the minimax rate in terms of es-
timation error under mild assumptions in biclus-
tering setting. Furthermore, we study the con-
vergence property of the coordinate ascent varia-
tional inference algorithm, where both local and
global convergence results have been provided.
Numerical results validate our new theories.

1. Introduction
In a wide range of data analytic scenarios, we encounter
two-mode matrices with biclustering structures (Hartigan,
1972) and we might be interested in modeling the effects of
both rows and columns on the data matrix. Consider the fol-
lowing specific situations. In educational testing (Templin
and Henson, 2010; Matechou et al., 2016), two modes could
be test takers and question items. We expect that test takers
with same skills will form a group and similar questions
may also form into different groups. In gene expression
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studies (Prelić et al., 2006; Gu and Liu, 2008), one can or-
ganize the data matrix such that each row corresponds to a
cancer patients and each column corresponds to transcript.
Then the patients can form groups according to different
cancer subtypes and the genes are also expected to exhibit
clustering effect according to different pathways they belong
to. In online e-commerce service (Dolnicar et al., 2012),
researcher may wish to study user behaviors through their
purchasing and navigation history. Users and items can be
viewed as two modes. Users with similar shopping prefer-
ences can be clustered into a group and items with same
functionality can also be grouped together.

To capture aforementioned group effects, statistical mod-
els are often used for modeling the structure of two-mode
data matrix. Latent variables are introduced to capture un-
derlying block effects (Govaert and Nadif, 2010). How-
ever, in two-mode block mixture models, the maximal like-
lihood estimator (MLE) is prohibitively hard to compute
since computing marginal likelihood requires summation
over exponentially many terms. Quite a few computational
methods are developed to estimate the parameters in bi-
clustering models (e.g., double k-means method (Maur-
izio, 2001), model-based expectation-maximization (EM)
method (Pledger and Arnold, 2014), Gibbs-sampling based
method (Meeds and Roweis, 2007; Gu and Liu, 2008), non-
parametric Bayesian method (Niu et al., 2012)). Unfortu-
nately, these methods have no corresponding theoretical
results. We aim to fill this gap in the literature.

Variational inference (VI) approach (Jordan et al., 1999;
Hoffman et al., 2013) is a powerful tool for parameter esti-
mation in complicated hierarchical latent variable models.
When the analytic form of posterior distribution of latent
variables cannot be computed, VI seeks a good candidate
distribution to approximate the true posterior and reduces
computation complexity. VI method has also become popu-
lar in biclustering models in the recent literature (Guan et al.,
2010; Vu and Aitkin, 2015) . In this paper, we start from a
theoretical perspective and consider an estimation problem
for biclustering models via variational inference and develop
the corresponding theory. Specifically, we show both upper
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and lower estimation bounds for varitaional estimator under
biclustering setting, which bridges the gap in the literature
of VI theory. Moreover, we study the coordinate ascent vari-
ational inference (CAVI) algorithm for parameter estimation
and we establish the local convergence property of CAVI
method. Furthermore, we also provide the global conver-
gence results to discuss the situations under which CAVI
may or may not return a consistent estimator. To the best
of our knowledge, this is the first time that relatively com-
plete theoretical results have been provided on variational
inference estimation under the general biclustering settings.

The rest of paper is organized as follows. In Section 2, we
provide a preliminary of biclustering models and variational
inference methods. In Section 3, we study the theoretical
properties of variational estimator and give detailed esti-
mation bounds. In Section 4, we study the convergence
property of CAVI algorithm. Both local and global conver-
gence results are provided. Multiple numerical results are
provided in Section 5 to support our theoretical findings.
Finally, the concluding remarks are given in Section 6.

Notation. For positive integer m, we use [m] to denote set
{1, . . . ,m} and [m1] × [m2] to denote set {(i, j) : i ∈
[m1], j ∈ [m2]}. For two positive sequences {an}, {bn},
an . bn means that an ≤ Cbn for some large constant C
independent of n, and an � bn means that an . bn and
bn . an. The symbols E and P (·) denote generic expecta-
tion and probability whose distribution may be determined
from the context. Additionally, ‖x‖ / ‖x‖1 is used to de-
note `2- / `1- norm of vector x and ‖X‖F is used to denote
Frobenius norm of matrix X . We use x[i] to represent the
i-th entry of vector x and use X[i, j] to represent the entry
of matrix X on i-th row and j-th column. We use ∇f to
represent the derivative of function f with respect to θ.

2. Preliminary
In this paper, we consider the following general biclustering
model. We assume

Yij ∼ fθ(y|z1i, z2j), i ∈ [m1], j ∈ [m2],

where z1i’s and z2j’s are unobserved latent member-
ships with

z1i ∼ π1 and z2j ∼ π2,

π1 is a discrete probability distribution over J1 latent classes
and π2 is a discrete probability distribution over J2 latent
classes. In other words, P (z1i = k) = π1[k] (k ∈ [J1])
and P (z2j = l) = π2[l] (l ∈ [J2]). Density function
fθ(y|z1, z2) are parameterized by θ. Furthermore, we as-
sume fθ(y|z1, z2) can be reduced to fθz1z2 (y), that is, the
observation only depends on latent class-specific parameter.

Given observations (yij , i ∈ [m1], j ∈ [m2]), we can write

the likelihood function as

L(θ) =
∑
z1,z2

∏
i

π1[z1i]
∏
j

π2[z2j ]
{∏
i,j

fθ(yij |z1i, z2j)
}
,

where z1 = (z11, . . . , z1m1
) and z2 = (z21, . . . , z2m2

).

Additionally, if only a subset Ω ⊂ [m1] × [m2] can be
observed, then the corresponding likelihood function can be
written as

L(θ) =
∑
z1,z2

∏
i,j

π1[z1i]π2[z2j ]
{ ∏

(i,j)∈Ω

fθ(yij |z1i, z2j)
}
.

In particular, when Yij follows the Gaussian distribution
with mean θz1iz2j and variance 1, then

fθ(yij |z1i, z2j) ∝ exp{−(yij − θz1iz2j )2/2}.

When Yij is the binary response, that is, Yij ∼
Bernoulli(θz1iz2j ) with 0 < θz2iz2j < 1, then

fθ(yij |z1i, z2j) = θyijz1iz2j (1− θz1iz2j )
1−yij .

This is also known as the stochastic block model (SBM, Hol-
land et al., 1983; Abbe, 2017; Zhou and Li, 2020).

When Yij is the ordinal response, that is, Yij ∼
Multinom(θz1iz2j [1], . . . , θz1iz2j [K]) (K is the number of
categories), then

fθ(yij |z1i, z2j) =

K∏
k=1

(θz1iz2j [k])1{yij=k}.

Furthermore, Yij can be an event process (i.e., yij =
(tij,1, . . . , tij,n) is a sequence of event times in [0, T ]),
which follows a certain counting process model with in-
tensity function θz1iz2j (t). Then

fθ(yij |zi, zj) = {
n∏
l=1

θzizj (tij,l)} exp{−
∫ T

t=0

θz1iz2j (t)dt}.

Especially, when θij(t) ≡ θz1iz2j , it reduces to the homoge-
neous Poisson point process. Therefore,

fθ(yij |z1i, z2j) = θnz1iz2j exp{−Tθz1iz2j}.

Approximation via varitaional inference. By a close look
at the formula of L(θ), it is difficult to compute the likeli-
hood directly, which requires summation over exponentially
many terms. An alternative approach is to utilize variational
inference (Jordan et al., 1999; Hoffman et al., 2013) meth-
ods to optimize the evidence lower bound (ELBO) instead
of the log likelihood. In general, the ELBO function is
defined as

ELBO = Ez∼q(z)l(θ, z)− Ez∼q(z) log q(z),
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where the expectation is taken with respect to latent vari-
ables z and q(z) is an approximate distribution function for
posterior of z. Under our setting, z = (z1, z2),

l(θ, z) =
∑
i

log π1[z1j ] +
∑
j

log π2[z2j ]

+
∑
i,j

log fθ(yij |z1i, z2j).

For computational feasibility, we consider a mean-
field family (Blei et al., 2017) for the choice of q(z).
More precisely, we take q(z) :=

∏
i qi(z1i)

∏
j qj(z2j),

qi(z1i) = multinom(φ1i) with φ1i = (φ1i[1], . . . , φ1i[J1])
and qj(z2j) = multinom(φ2j) with φ2j =
(φ2j [1], . . . , φ2j [Jz]). Here multinom(φ) represents
a multinomial distribution with parameter φ. By calculation,
the ELBO can be obtained,

ELBO =
∑
(i,j)

∑
k,l

φ1i[k]φ2j [l] log fθ(yij |k, l)

+
∑
i

∑
k

φ1i[k] log(π1[k]/φ1i[k])

+
∑
j

∑
l

φ2j [l] log(π2[l]/φ2j [l]). (1)

Although variational inference is a powerful tool in opti-
mization for complex statistical models, the VI theory has
not been fully explored yet in the literature.

3. Estimation Bound of Variational Estimator
It is known that the ELBO function is a lower bound of the
log-likelihood function, that is,

logL(θ)− ELBO = KL(q(z)‖pθ(z|y)).

Since KL divergence is always non-negative, therefore the
maximizer of ELBO may not be an unbiased estimator of
true parameter. Under the biclustering model, we have

KL(q(z)‖pθ(z|y))

= KL(
∏
i

q(z1i)
∏
j

q(z2j)‖pθ(z1, z2|y))

=
∑
z1,z2

∏
i

φ1i[z1i]
∏
j

φ2j [z2j ] ·

{log(
∏
i

φ1i[z1i]
∏
j

φ2j [z2j ])− log pθ(z1, z2|y)}.

As sample sizes m1 and m2 go to infinity, we are able to
show that KL(q(z)‖pθ(z|y) goes to 0 in probability. This
can guarantee that the VI estimator is asymptotically con-
sistent. Before going to the main results, we first introduce
some additional notations and assumptions.

Assumption A1: For every k 6= k′ ∈ [J1], there exists
l ∈ [J2] such that

θkl 6= θk′l. (2)

For every l 6= l′ ∈ [J2], there exists k ∈ [J1] such that

θkl 6= θkl′ . (3)

Assumption A1 is an identifiability assumption that the ma-
trix θ cannot have two same columns or two same rows.
This constraint ensures that the individuals from different
classes should have different structural properties. For ex-

ample, when J1 = J2 = 2 and θ =

(
θa θa
θb θb

)
(θa 6= θb),

we can easily differentiate objects from difference classes
for the first mode, while we fail to classify the objects for the
second mode. This can lead to mis-classification of z2j’s.

Assumption A2: There exists a bounded and compact set
B such that

θkl ∈ B, for k ∈ [J1], l ∈ [J2].

Assumption A2 is a compactness assumption to make
sure the objective function has nice continuity property.
For example, when Yij is binary and has distribution
Bernoulli(θzizj ), we require θkl ∈ [ξ, 1 − ξ] for positive
constant ξ. This is also a usual assumption in SBM litera-
ture (Celisse et al., 2012).

Assumption A3: There exist positive constants γ1 and γ2

such that

π1[k] ∈ [γ1, 1− γ1], for k ∈ [J1]

and
π2[l] ∈ [γ2, 1− γ2], for l ∈ [J2].

The above assumption implies that no class is drained. In
this paper, γ1 and γ2 are assumed to be free of sample
sizes, m1 and m2. Moreover, z1i’s and z2j’s are the re-
alizations of multinomial random variables with parame-
ter π1 and π2 respectively. Define empirical latent class
probability π̃1[k] := N1[k]

m1
and π̃2[l] := N2[l]

m2
, where

N1[k] := |{i ∈ [J1] : z1i = k}| and N2[l] := |{j ∈
[J2] : z2j = l}}|. Therefore, by large of large number, we
know that π̃1 ∈ [γ1/2, 1−γ1/2] and π̃2 ∈ [γ2/2, 1−γ2/2].
But unfortunately, we do not have access to z1i’s and z2j’s.
They have to be estimated as well.

Assumption A4: It is assumed that fθ(y|z1, z2) ≡
fθz1,z2 (y) for z1 ∈ [J1] and z2 ∈ [J2] and is log-concave
twice differentiable function. We define

hkl(θ) = Ey∼fθkl log fθ(y) (4)

and assume hkl(θ) is a strictly concave function of θ over
B for any k ∈ [J1], l ∈ [J2].
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Assumption A4 puts the requirement on the density of bi-
clustering model. Smooth function fθ(y|z1, z2) is assumed
to depend on θkl only. Function hkl(θ) is the expectation
of log density function with respect to true distribution. In
most case, hkl(θ) is naturally a strictly concave function.
For example, when fθ(y) is the density of Gaussian distri-
bution with variance 1, we have

hkl(θ) = −1

2
(θkl − θ)2,

which is obviously strictly concave. When fθ(y) is the
density of Bernoulli(θ), then

hkl(θ) = θkl log θ + (1− θkl) log(1− θ),

which is also strictly concave on its domain.

Next, we define the variational estimator θ̂kl’s, π̂1, π̂2, φ̂1i’s
and φ̂2j’s as

(θ̂, π̂1, π̂2, φ̂1i, φ̂2j) := arg max
θ,π1,π2,φ1i,φ2j

ELBO.

The domain for original parameter is θkl ∈ B, π1[k] ∈
[γ1, 1 − γ1], π2[l] ∈ [γ2, 1 − γ2]. The domain for vari-
ational parameter is φ1i ∈ S1 and φ2j ∈ S2, where
S1 = {

∑J1

k=1 φ[k] = 1 and 0 ≤ φ[k] ≤ 1} and S2 =

{
∑J2

l=1 φ[l] = 1 and 0 ≤ φ[l] ≤ 1}. In a summary, the total
number of parameters is J1J2 +(J1−1)m1 +(J2−1)m2 +
J1 + J2 − 2.

3.1. Theoretical Results

Next, we provide the theoretical estimation bounds for the
variational estimator, including classification consistency,
population consistency and parameter consistency. We use
superscript ”∗” to denote the true values in the rest of paper.

Classification consistency. We use δ1k to denote the prob-
ability mass function on discrete sets {1, . . . , J1} that as-
signs the total probability at k ∈ [J1] and use δ2l to denote
the probability mass function on discrete sets {1, . . . , J2}
that puts the total probability at l ∈ [J2]. Let q̂1i =

multinom(φ̂1i) and q̂2j = multinom(φ̂2j) be the estimated
approximate posterior distribution for z1i and z2j , respec-
tively. Note that the model is invariant in regard to class
label permutation. Without loss of generality, we always
assume that the estimated class labels can be permuted to
match the true labels when the estimator is consistent. We
then can show that the q̂1i converges to δ1z∗1i and q̂2j con-
verges to δ2z∗2j . The result is stated in Theorem 1.

Theorem 1 Under Assumptions A1 - A4, there exist con-
stants c0 and C such that

dTV (q̂1i, δ1z∗1i) ≤ J1 exp{−c0m2}

and

dTV (q̂2j , δ1z∗2j ) ≤ J2 exp{−c0m1}

hold with probability at least 1 − (m1 +
m2) max{J1, J2} exp{−C min{m1,m2}} for i ∈ [J1]
and j ∈ [J2].

Here, dTV is the total variation distance between two dis-
tribution. Theorem 1 tells us that we can classify z1i’s
and z2j’s into correct latent classes with high probabil-
ity. To be more specific, we define estimated label as
ẑ1i := arg maxk∈[J1] q̂1i[k], ẑ2j := arg maxl∈[J2] q̂2j [l],
and ẑ1 = (ẑ11, . . . , ẑ1,m1), ẑ2 = (ẑ21, . . . , ẑ2m2). We then
have P (ẑ1 = z∗1, ẑ2 = z∗2)→ 1, which is known as strong
consistency in the SBM literature (Abbe et al., 2015; Mossel
et al., 2014; Gao et al., 2017). Moreover, mis-classification
errors decrease exponentially fast in terms of sample sizes.

Population consistency. By the definition of variational
estimator, we can obtain the relation between π̂1, π̂2 and
φ̂1i’s, φ̂2i’s, which is

π̂1[k] =

∑
i∈[m1] φ̂1i[k]

m1
for k ∈ [J1]

π̂2[l] =

∑
j∈[m2] φ̂2j [l]

m1
for l ∈ [J2]

by simplifying the optimality conditions. By Theorem 1 and
law of large number, we can obtain the consistency of π̂1

and π̂2.

Theorem 2 Under Assumptions A1 - A4, there exist con-
stants c0 − c2 and C such that

|π̂1[k]− π∗1 [k]| ≤ J1 exp{−c0m2}+
c1√
m1

and

|π̂2[l]− π∗2 [l]| ≤ J2 exp{−c0m1}+
c2√
m2

hold with probability at least 1 − 2(m1 +
m2) max{J1, J2} exp{−C min{m1,m2}} for k ∈ [J1]
and l ∈ [J2].

Here the estimation errors of π1 and π2 come from two
sources, variational approximation and sampling noise (i.e.,
the deviation between empirical distribution of z1i’s / z2i’s
and true prior π1 / π2.). When both m1,m2 go to infinity,
then the sampling noise will become the dominated term.
Hence the estimation errors of π̂1 and π̂2 achieve the optimal
rate, i.e., O( 1√

m1
) and O( 1√

m2
).

Parameter consistency. Next we move onto the estimation
of θ which is the key parameter to differentiate between
different classes. The upper bound is given in the follow-
ing theorem.
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Theorem 3 Under Assumptions A1−A4, there exist con-
stants C1 − C3 such that it holds

‖θ̂ − θ∗‖2F
J1J2

≤ C1(J1J2 +m1 log J1 +m2 log J2)

m1m2

+ max{J1, J2} exp{−C2 min{m1,m2}} (5)

with probability at least

1− exp{−C3(J1J2 +m1 log J1 +m2 log J2)} −
(m1 +m2) max{J1, J2} exp{−C3 min{m1,m2}}.

Again, we can see that the upper bound for 1
J1J2
‖θ̂ − θ‖2F

consists of two main parts (sampling noises and varia-
tional approximation errors). When both m1 and m2 go
to infinity at the same order, the first term on the right
hand side of (5) will denominate the second term. In fact,
(J1J2+m1 log J1+m2 log J2)

m1m2
is the optimal error rate for any

estimator in the estimation of biclustering model, see ex-
planations in the next part. Moreover, the part involving
J1J2 reflects the number of parameters in θ, while the part
involving (m1 log J1+m2 log J2) comes from the complex-
ity of estimating the latent memberships for both modes. It
is the price we need to pay when we do not know the true
clustering information.

Lower bound of parameter estimation. To show that our
upper bound is tight, we first reformulate our parameter
setting. We define an augmented parameter space,

BΘ := {Θ ∈ Rm1×m2 : Θij = θz1iz2j ,

z1i ∈ [J1], z2j ∈ [J2], θ ∈ B}. (6)

In other words, the parameter Θ is constructed based on θ
by letting Θij = θz1iz2j through the latent memberships.
Let ẑ1i = arg maxk φ̂1i[k] and ẑ2j = arg maxj φ̂2j [k] be
the estimated latent memberships. We then can construct Θ̂
as Θ̂ij = θ̂ẑ1iẑ2j . Similarly, we can define Θ∗ in the same
way. We then have

1

m1m2
‖Θ̂−Θ∗‖2F �

1

J1J2
‖θ̂ − θ∗‖2F .

Therefore, we only need to work on the lower bound of
1

m1m2
‖Θ̂−Θ∗‖2F .

Theorem 4 Under Assumptions A1−A4, there exist some
constants C, c > 0 such that

inf
Θ̌

sup
Θ∗∈BΘ

P

(
1

m1m2
‖Θ̌−Θ∗‖2F >

C(J1J2 +m1 log J1 +m2 log J2)

m1m2

)
> c.

By Theorem 3 and Theorem 4, we know that the variational
estimator could achieve the minimax rate when sample sizes

m1 and m2 tend to infinity at the same order. Compared
with the error bound of MLE (Gao et al., 2016), we can see
that the bias induced by variational approximation is only
of order exp{−C min{m1,m2}} which is negligible when
both m1 and m2 go to infinity.

Partial observation case. Furthermore, we consider the sit-
uation that the data may be only partially observed. That
is, we observe (yij : (i, j) ∈ Ω) instead of (yij : (i, j) ∈
[m1]× [m2]), where Ω is the subset of [m1]× [m2]. In addi-
tion, we assume that each pair (i, j) is observed completely
at random with fixed observation rate p (0 < p < 1). Thus,
the size of Ω is approximately pm1mn. Under this setting,
we can generalize our theoretical results as follows.

Theorem 5 Under the partial observation setting and As-
sumptions A1−A4, there exist C ′0 − C ′6 such that

dTV (q̂1i, δ1z∗1i) ≤ J1 exp{−C ′0pm2},
dTV (q̂2j , δ1z∗2j ) ≤ J2 exp{−C ′0pm1},

|π̂1[k]− π∗1 [k]| ≤ J1 exp{−C ′0pm2}+
C ′1√
m1

,

|π̂2[l]− π∗2 [l]| ≤ J2 exp{−C ′0pm1}+
C ′2√
m2

,

and

1

J1J2
‖θ̂ − θ∗‖2F ≤

C ′3(J1J2 +m1 log J1 +m2 log J2)

pm1m2

+ max{J1, J2} exp{−C ′4pmin{m1,m2}}

hold with probability at least 1 − max{J1, J2}(m1 +
m2) exp{−C ′6p(1−p) min{m1,m2}}−exp{−C ′5(J1J2 +
m1 log J1 +m2 log J2)}.

To ensure the estimation consistency, we need that p should
not be too small. From the bounds in Theorem 5, it is
required that

pm1m2/max{J1J2,m1 log J1,m2 log J2} → ∞

and

max{J1, J2}(m1 +m2) exp{−C ′6p(1− p) min{m1,m2}}
→ 0

as m1,m2 → ∞. After simplification, we know that the
observation rate p should be at least of order

max{logm1, logm2}
min{m1,m2}

.

Such requirement for p is nearly optimal since

p = Ω(max{ log J1

m2
,

log J2

m1
})
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is required for the consistency of maximum likeilhood esti-
mator (Gao et al., 2016).

Connection to the literature. The theoretical properties of
maximal likelihood estimator under biclustering setting has
been considered by Gao et al., 2016. They proved the min-
imax estimation rate of MLE under Gaussian biclustering
models. The biclustering model is related to stochastic block
model. The latter one assumes the symmetric relationship
between two modes. Celisse et al., 2012 established classifi-
cation and estimation consistency for variational inference
of SBM, while they do not provide precise error bound of
estimators. Biclustering model is also related to graphon
model where both observations and latent variables are as-
sumed to be continuous between [0, 1]. Theory on graphon
estimation includes Airoldi et al., 2013; Olhede and Wolfe,
2014; Choi, 2017; Gao et al., 2015; Klopp et al., 2017 and
the references therein. Graphon models are estimated by
nonparametric methods instead of using VI. The bicluster-
ing model also has connection to the matrix completion
problem. The latter one imposes a low rank constraints on
parameter Θ as opposed to the latent class structure. The the-
ory for matrix completion problem can be found in Candès
and Recht, 2009; Keshavan et al., 2010; Cai et al., 2010;
Koltchinskii et al., 2011; Liu and Li, 2016; Chi et al., 2019;
Cai and Li, 2020, etc.

When the number of classes are unknown. A nature ques-
tion is what is the performance of variational estimator when
J1 and J2 are misspecified. If J1 or J2 is over-specified,
it is expected that the estimation is still consistent in the
sense that some classes may be split into two (or more)
sub-classes. If J1 or J2 is under-specified, different classes
may merge together. The VI estimator should converge to a
local stationary point. The precise characterization of such
local optimum is of great interest in the future work.

4. Convergence of Variational Algorithm
Although the variational estimator entails nice theoretical
properties, a natural question is how to compute the such
estimator in practice. In this section, we consider a coor-
dinate ascent variational inference (CAVI) algorithm via
alternatively optimizing the model parameters and varia-
tional parameters and discuss the convergence issues.

The procedure of estimating the biclustering model is sum-
marized as follows. We use t ∈ {0, . . . , T} to represent the
iteration index and T to represent the total iteration numbers.
We first set the initial model parameter as θ(0), π

(0)
1 , π

(0)
2

and initialize the variational parameters φ1i’s and φ2j’s such
that

∑
k φ

(0)
1i [k] = 1 and

∑
l φ

(0)
2j [l] = 1 for all i ∈ [m1],

j ∈ [m2]. Next, we update model parameters θ, π1, π2 and
variational parameters φ1i’s, φ2j’s alternatively. That is, we
update θ(t) by maximizing equation (1) with φ1i, φ2j fixed

at φ(t−1)
1i and φ(t−1)

2j . When density function fθ(y|z1i, z2j)

belongs to some special distributional families, θ(t) admits
an explicit form. For example,

θ
(t)
kl =

∑
(i,j)∈A φ

(t−1)
1i [k]φ

(t−1)
2j [l]yij∑

(i,j)∈A φ
(t−1)
1i [k]φ

(t−1)
2j [l]

when fθ(y|z1i, z2j) is the density of Bernoulli, Gaussian
or Poisson distribution. We update φ(t)

1i by maximizing
equation (1) with model parameters fixed at value of t-th
iteration and φ2j fixed at φ(t−1)

2j . We update φ(t)
2j in the same

fashion. We then update π(t)
1 and π(t)

2 via using relations (5)
and (5). The detailed mathematical formulas are presented
in Algorithm 1.

Remark. We want to point out that we are not trying to
propose a new algorithm in the current paper. The CAVI-
type algorithm is a standard computational scheme in VI
optimization problems (Blei et al., 2017). Our goal is to
analyze the behavior of CAVI in general biclustering models.
In below, we establish the local and global convergence
results which may benefit the understanding of landscape of
biclustering models.

4.1. Local Convergence

There exist a literature of convergence analysis for EM al-
gorithm under mixture models. Local convergence property
of EM are studied by Jin et al., 2016; Yan et al., 2017; Zhao
et al., 2020. Global convergence property of EM is con-
sidered in Xu et al., 2016. Landscape of stochastic block
model is described in Mukherjee et al., 2018. Local conver-
gence theory of CAVI for SBM model has also been studied
in Zhang and Zhou, 2020. However, there is no literature
on VI algorithm for biclustering models. We fill this gap
in the literature. We first study the local convergence of
Algorithm 1. In this section, we show that algorithm re-
turns a consistent estimator of model parameter when the
initialization is good enough.

Assumption A5: We assume that there exist constants D1

and D2 such that φ(0)
1i ’s satisfy∑
i:z∗1i=k

φ
(0)
1i [k]∑

k′ 6=k
∑
i:z∗1i=k

φ
(0)
1i [k′]

> D1 (7)

for all k ∈ [J1] and φ(0)
2j ’s satisfy∑

j:z∗2j=l
φ

(0)
2j [l]∑

l′ 6=l
∑
j:z∗2j=l

φ
(0)
2j [l′]

> D2 (8)

for all l ∈ [J2].

Here, (7) and (8) guarantee that, for each latent class, initial
distribution should put relatively large mass on that true
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label. In other words, the initialization of variational distri-
bution should be good enough to concentrate locally around
true labels.

Algorithm 1 CAVI for Biclustering Model.
1: Input. Observations: {yij}
2: Output. Estimated parameter: θ̂
3: Initialization.

Randomly sample θ(0) from parameter space B and
choose π(0)

1 = ( 1
J1
, . . . , 1

J1
) and π(0)

2 = ( 1
J2
, . . . , 1

J2
).

Sample variational parameter φ(0)
1i independently so that∑

k∈[J1] φ
(0)
1i [k] = 1.

Sample φ(0)
2j independently so that

∑
l∈[J2] φ

(0)
2j [l] = 1.

4: while not converged do
5: Increase the time index: t = t+ 1.
6: For each k ∈ [J1] and l ∈ [J2], update θkl by

θ
(t)
kl = arg max

θ

∑
i,j

φ
(t−1)
1i [k]φ

(t−1)
2j [l] log fθ(yij |k, l).

7: For each i ∈ [m1], update φ1i by

φ
(t)
1i = arg max

φ

∑
k∈[J1],l∈[J2]

∑
j∈[m2]

{
φ[k]φ

(t−1)
2j [l]

· log fθ(t)(yij |k, l)
}
−
∑
k∈[J1]

φ[k](log φ[k]

− log π
(t−1)
1 [k]).

8: For each j ∈ [m2], update φ2j by

φ
(t)
2j = arg max

φ

∑
k∈[J1],l∈[J2]

∑
i∈[m1]

{
φ[l]φ

(t)
1i [k]

· logFθ(t)(yij |k, l)
}
−
∑
l∈[J2]

φ[l](log φ[l]

− log π
(t−1)
2 [l]).

9: For k ∈ [J1], update

π
(t)
1 [k] =

1

m1

∑
i∈[m1]

φ
(t)
1i [k].

10: For l ∈ [J2], update

π
(t)
2 [l] =

1

m2

∑
j∈[m2]

φ
(t)
2j [l].

11: end while
12: Set θ̂ = θ(Tc), where Tc is the time index when the

algorithm converges.

Theorem 6 Under Assumptions A1 - A4, we assume (7)
and (8) hold with sufficiently large D1 and D2, then Algo-
rithm 1 will return a consistent estimator with probability
tending to 1 as m1,m2 →∞.

Note that VI estimator is biased under the finite sample
cases. Here, m1,m2 → ∞ means that m1 and m2 go
to infinity at the same rate. In Algorithm 1, the order of
updating model parameter θ and variational parameters φ’s
can be exchanged (i.e., we first implement lines 6-7 and
then implement line 5 in each iteration). We can still show
the local convergence if we additionally assume that θ(0) is
in the neighborhood of θ∗.

Theorem 7 Under Assumptions A1 - A4, we assume that
(8) holds with sufficiently large D2 and θ(0) ∈ B(θ∗, δ)
for small radius δ, then Algorithm 1 returns a consistent
estimator with probability tending to 1 as m1,m2 →∞.

4.2. Global Convergence

However, we do not have the knowledge of true model
parameters or true latent memberships so that Condition I1
cannot be guaranteed in practice. Can we obtain the global
convergence of Algorithm 1. In the following, we give the
partial answer to this question.

We first observe that there exist saddle points in optimiz-
ing (1). For example, if we let φ(0)

1i = ( 1
J1
, . . . , 1

J1
) and

φ
(0)
2j = ( 1

J2
, . . . , 1

J2
). Then whatever true parameter is, the

algorithm will always return that

θ(t) ≡ θ̆, π(t)
1 ≡ (

1

J1
, . . . ,

1

J1
), π

(t)
2 ≡ (

1

J2
, . . . ,

1

J2
),

where θ̆ is a matrix with all entries equal to
arg maxθ

∑
i,j log fθ(yij). Hence, we need to add

random noise into the initialization of variational
parameters to escape from this saddle point.

We consider the following random initialization. Specifi-
cally, we sample

φ
(0)
1i ∼ Dir(α1) and φ

(0)
2j ∼ Dir(α2) (9)

for i ∈ [m1] and j ∈ [m2] independently. Here Dir(α)
represents the Dirichlet distribution with parameter α; α1

is a vector of length J1 with all entries being 1 and α2 is a
vector of length J2 with all entries being 1. In other words,
Dir(α1) and Dir(α2) are non-informative priors.

Degenerate Case. We first consider a degenerate situation
when J2 = 1. Then the biclustering model reduces to a
latent class model. Under this simplified setting, we aim to
find out the global convergence properties.

We first additionally assume that J1 = 2. Then we are able
to show that the algorithm can always gives a consistent
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estimator as long as the model is identifiable (i.e., model
satisfies Assumption A1, θ∗11 6= θ∗21).

Theorem 8 Under Assumptions A1 − A4 and the setting
that J1 = 2 and J2 = 1, then Algorithm 1 will return a
consistent estimator with probability tending to 1 as both
m1,m2 →∞ when the initialization satisfies (9).

Actually, we have the stronger result that the algorithm only
fails when φ1i’s lie on certain measure zero set. A precise
statement is stated as follows.

Theorem 9 Under Assumptions A1 − A4 and the setting
that J1 = 2 and J2 = 1, then Algorithm 1 will fail to return
a consistent estimator if and only if

arg max
θ

∑
i,j

φ
(0)
1i [1] log fθ(yij)

= arg max
θ

∑
i,j

φ
(0)
1i [2] log fθ(yij). (10)

We can easily see that naive random initialization will make
(10) held with probability zero. This explains the useful-
ness of random initialization. This result is related to EM
method in estimating mixture Gaussian models. In Xu et al.,
2016, they fully characterize the global convergence of EM
algorithm for two equal-proportion Gaussian distributions.

When J1 ≥ 3, the story is different. The algorithm might be
trapped at local optimizers. When J1 = 3, we can relabel
the latent classes such that

θ∗11 > θ∗21 > θ∗31.

We define θ̄ as follows,

θ̄ := arg max
θ
{

3∑
k=1

πkEy∼fθ∗
k1

log fθ(y)},

which can be viewed as population mean. We similarly
define

θ̄k1k2
:= arg max

θ
{πk1

Ey∼fθ∗
k11

log fθ(y)

+πk2
Ey∼fθ∗

k21
log fθ(y)},

which can be viewed as the population parameter of groups
k1 and k2. We further define

gk = ∇Ey∼fθ∗
k1

[log fθ̄(y)], k ∈ {1, 2, 3}. (11)

The slope gk quantifies the gap between θ∗k1 and θ̄. When
θ∗k1 = θ̄, then gk = 0. In addition, we define several
variance quantities,

v1 = v2 = E[(φ
(0)
1i [1]− 1/3)2],

v12 = E[(φ
(0)
1i [1]− 1/3)(φ

(0)
1i [2]− 1/3)],

and let V =

(
v1 v12

v12 v2

)
.

Theorem 10 Under Assumptions A1 - A4 and the setting
with J1 = 3, J2 = 1, θ∗31 < θ∗21 < θ∗11 and

Ey∼fθ∗21
log fθ̄12

(y) > Ey∼fθ∗21
log fθ∗31

(y), (12)

the probability that Algorithm 1 fails to return a consistent
estimator is at least P (g2Z1 + g3Z2 > 0, Z1 > 0, Z2 > 0)
with (Z1, Z2) ∼ N(0,V), when both m1,m2 →∞.

Here condition (12) implies that Group 2 is closer to Group
1 rather than Group 3. When θ̄ is close to θ∗21, it is easier
for algorithm to find global optimum. By contrast, when θ̄
is close to θ∗31, then Class 3 becomes the dominating group.
The algorithm may be stuck at the local optimum, since
Class 1 and Class 2 are classified into one group and the
dominating Class 3 could be split into two groups. The
algorithm can never jump out of this local optimum due
to the constraint (12). By Theorem 10, we know that the
algorithm may not always converge to the global maximizer
and hence will give inconsistent estimator when J1 ≥ 3.

Case J1 = 2 and J2 = 2

Theorem 11 Under the Gaussian/Bernoulli/Poisson model
satisfying Assumptions A1 - A3 with J1 = J2 = 2 and
π1 = π2 = ( 1

2 ,
1
2 ), Algorithm 1 returns a consistent esti-

mator with probability tending to 1 as m1,m2 →∞ when
initialization satisfies (9), and

(θ∗11 − θ∗21)(θ∗12 − θ∗22) > 0, (θ∗11 − θ∗12)(θ∗21 − θ∗22) > 0. (13)

Theorem 11 guarantees the global convergence when true
parameters are well separated in the sense of (13). For
example, consider a Bernoulli model with π1 = π2 =
(0.5, 0.5) and

θ =

(
0.7 0.3
0.3 0.7

)
,

the algorithm will be trapped at local optimum. Condition
(13) is only sufficient, it is of interest to obtain the necessary
condition under setting of J1 = J2 = 2 in future work.

Technical challenges. 1) To establish the consistency re-
sults, different types of concentration inequalities are needed
for variational parameter and model parameters separately.
2) To compute the estimation bound under the setting of gen-
eral response distribution functions, the calculation is more
involved and tedious. 3) To study the global convergence
of CAVI, we need carefully calculating the differences be-
tween class-specific model parameters. The computation is
overwhelming.
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Figure 1. Plots of estimation errors under different settings. Upper
two plots are for Bernoulli models. Bottom two plots are for
Poisson models. The standard error bars are also plotted.

5. Numerical Results
In this section, we collect several numerical experiments to
support our theory, i.e., validating the tightness of estimation
bound and global convergence of CAVI algorithm.

Estimation bound. We consider the Bernoulli bicluster-
ing model (i.e., Yij ∼ Bernoulli(θzizj )) and Poisson bi-
clustering model (i.e., Yij ∼ Poisson(θzizj )). We set
sample size m1 = m2 = m, where m take values
from {100, 200, 300, 400, 500}. We set number of classes
J1 = J2 = J = 2 or 3. True parameter θ is randomly
generated and π1, π2 are set to be uniform prior. For
each setting, we run 100 replications. Estimation errors
( 1√

J1J2
‖θ̂ − θ∗‖F ) with corresponding standard errors are

shown in Figure 1. Based on curves, we can see that the es-
timation error decreases as sample sizes increase. When the
number of classes increases, the error will become larger. In
addition, when J is fixed, the estimation error decays at rate
of 1√

m
with variational approximation error vanishing (less

than 1e-9). This matches the results stated in Theorem 3.

Global convergence. We take J1 = 3, J2 = 1 and consider
mixture Bernoulli model and mixture Gaussian model. We
fix parameters θ11, θ21, population prior π1 and but let θ31

vary. We want to study the probability of global convergence
as θ31 changes. The detailed settings and corresponding
results under different sample sizes can be found in caption
of Figure 2. Each setting is replicated for 100 times.

It is straightforward to see that group 3 is the dominating
class (i.e., π1[3] has the largest value). From Figure 2, when
θ31 is much smaller than θ11, θ21, then it becomes harder to
find the global optimum. There exists a non-zero probability
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Figure 2. Probability of global convergence for Bernoulli and Pois-
son models under different settings. The parameter choice is spec-
ified as follows. Upper left: π1 = (0.1, 0.2, 0.7), θ11 = 0.9,
θ21 = 0.7. Upper right: π1 = (0.1, 0.2, 0.7), θ11 = 0.9,
θ21 = 0.6. Bottom left: π1 = (0.2, 0.2, 0.6), θ11 = 1, θ21 = 0.
Bottom right: π1 = (0.3, 0.1, 0.6), θ11 = 1, θ21 = 0. For all four
cases, m1 = 500 and m2 ∈ {250, 500, 750, 1000}.

of failure in recovering the true parameter. As θ31 increases,
the recovery probability increases up to 1. This phenomenon
matches our theory.

6. Conclusion
In this paper, we develop a theory of variational inference
estimation in biclustering models. Our result is general in
the sense that we do not assume any specific response func-
tions. The assumptions are mild and they are satisfied by
most probabilistic models, including but not limited to SBM
model, mixture Gaussian model and mxiture Poisson model.
We establish the classification consistency, population con-
sistency and parameter consistency. Both upper and lower
bounds of estimation errors are also obtained. Our theory an-
swers the question why variational inference works well for
biclustering problem. In addition, we consider a coordinate
ascent variational inference (CAVI) algorithm for parameter
estimation. The algorithm is shown to have local conver-
gence property under a reasonable initialization requirement.
On the other hand, with the random initialization, global
convergence results are also established under several im-
portant special settings. This work not only bridges the gap
in the literature around VI theory and but also gives a deeper
understanding of the landscape of biclustering models.
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