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Abstract

We study the problem of identifying anomalies in
a low-rank matrix observed with sub-exponential
noise, motivated by applications in retail and in-
ventory management. State of the art approaches
to anomaly detection in low-rank matrices ap-
parently fall short, since they require that non-
anomalous entries be observed with vanishingly
small noise (which is not the case in our problem,
and indeed in many applications). So motivated,
we propose a conceptually simple entrywise ap-
proach to anomaly detection in low-rank matrices.
Our approach accommodates a general class of
probabilistic anomaly models. We extend recent
work on entrywise error guarantees for matrix
completion, establishing such guarantees for sub-
exponential matrices, where in addition to miss-
ing entries, a fraction of entries are corrupted by
(an also unknown) anomaly model. Viewing the
anomaly detection as a classification task, to the
best of our knowledge, we are the first to achieve
the min-max optimal detection rate (up to log
factors). Using data from a massive consumer
goods retailer, we show that our approach pro-
vides significant improvements over incumbent
approaches to anomaly detection.

1. Introduction
Consider the problem of identifying anomalies in a low-rank
matrix: specifically, let M∗ be some low-rank matrix, and
let X = M∗ + E + A, where E is a noise matrix with
independent, mean-zero entries, and where A is a sparse
matrix of anomalies. We observe only X , and only on
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some subset of matrix entries Ω. The anomaly detection
problem concerns identifying the support of A simply from
this observation.

One of the most popular approaches to solving this problem
is the following convex optimization formulation, referred to
as ‘stable principal component pursuit’ (stable PCP) (Zhou
et al., 2010),

min
M̂,Â
‖M̂‖∗ + λ2‖Â‖1 + λ1‖PΩ(X − M̂ − Â)‖2F, (1)

where λ1 and λ2 are regularization parameters. The three
matrix norms in the objective are meant to promote, from
left to right, low-rankedness in M̂ , sparsity in Â, and fit toX
on the observed entries Ω. Upon solving problem (1), Â can
be used to estimate the support of A. Now in the absence of
anomalies, this optimization problem (after removing the Â
terms) is in essence optimal under a variety of assumptions
on the distributions of E and Ω. In contrast, the available
results for anomaly detection are weaker. Perhaps most
limiting, results that guarantee recovery of M∗ require that
the ‘average’ noise ‖E‖F/n vanishes, where n is the size of
the matrix. In this setting, noise in observing any individual
matrix entry in Ω grows negligibly small in large matrices.
This is limiting:

1. X is typically noisy: In the practical problem that
motivates this work, M∗ + E can be viewed as a
matrix of centered Poisson entries with mean M∗.
Clearly then, E‖E‖F will scale with the size of the
matrix, so theoretical guarantees for extant anomaly
detection approaches do not apply.

2. Even ignoring this theoretical limitation, we will see
that in the setting where X is noisy (such as in our mo-
tivating application), the optimization approach above
can perform quite poorly.

1.1. Overview of Main Contributions

Against the above backdrop, we make the following contri-
butions to the problem of anomaly detection in matrices:

1. An optimal algorithm: We develop a new algorithm
for low-rank matrices with sub-exponential noise, and
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prove that our approach, for the first time, achieves
the min-max optimal anomaly detection rate (up to
logarithmic terms) under a broad class of probabilistic
anomaly models (Theorem 1 and Proposition 1).

2. Entrywise guarantee for sub-exponential matrices:
As part of our approach, we prove a new recovery
guarantee of independent interest (Theorem 2)
for the matrix completion problem. This result is
unique in applying to sub-exponential (vs. the usual
sub-gaussian) noise, and bounding the entrywise (vs.
an aggregate) error.

3. Applications: Our work is motivated by a crucial in-
ventory management problem (‘phantom inventory’)
that costs the retail industry up to 4% in annual revenue.
We observe that this inventory problem can be viewed
as one of detecting anomalies in a low-rank Poisson
matrix. The latter is the matrix one obtains by viewing
sales data in matrix-form with rows corresponding to
store locations, columns corresponding to products,
and entries corresponding to observed sales over some
time. On large-scale data (thousands of stores, thou-
sands of products) we find that our approach achieves
13% and 19% higher accuracy (measured via the usual
area under ROC curve) than convex optimization ap-
proaches on synthetic and real data, respectively.

Why sub-exponential noise: Sub-exponentiality relaxes
the typical sub-gaussianity assumption, and includes a
broader class of relevant distributions such as the Poisson,
exponential, and Chi-square distributions. In particular, sub-
exponentiality occurs frequently in applications, e.g. to
model sales and demand. The technical difficulty mainly
arises from deriving the proper concentration bounds for
high-dimensional matrices.

1.2. Related Literature

There are three ongoing streams of work to which the
present paper contributes. The first, naturally, is in anomaly
detection for matrices. The majority of existing work has
focused on a formulation called robust principal component
analysis (robust PCA) (Candès et al., 2011; Chandrasekaran
et al., 2011). Most relevant to our problem are approaches
for noisy robust PCA (Zhou et al., 2010; Agarwal et al.,
2012; Wong & Lee, 2017; Klopp et al., 2017; Chen et al.,
2020b). See Table 1 for a summary of existing results. Note
that any hope of identifying the anomalies A would require,
at the very least, that ‖M̂ −M∗‖F = o(n). Thus, with
respect to the noisy problem we are studying, in which
‖E‖ = Ω(n), existing results are insufficient. In contrast,
our algorithm not only improves upon the recovery of M∗

to sufficiently allow for recovery of A, it also provides an

∥∥∥M̂ −M∗∥∥∥
F

∥∥∥M̂ −M∗∥∥∥
max

(Zhou et al., 2010) n ‖E‖F –
(Wong & Lee, 2017)

√
n ‖E‖F –

(Klopp et al., 2017)
√

log n ‖E‖F –
This paper

√
logn√
n
‖E‖F

√
logn
n
√
n
‖E‖F

Table 1: Comparison of our results with existing work under
proper hyper-parameters. The reported quantities are the
scalings of upper bounds on the error of ‖M̂ −M∗‖, for
two matrix norms, with respect to matrix size n and noise
E.

additional guarantee on entrywise recovery: ‖M̂−M∗‖max.
All our guarantees are min-max optimal, and beyond the
recovery of M∗, to the best of our knowledge, we are also
the first paper to analyze the anomaly detection rate as a
formal classification problem. Finally, concurrent with this
paper, (Chen et al., 2020b) provide a more-refined analysis
of Eq. (1) and achieve a recovery guarantee for M∗ similar
to ours. However, they require a zero-mean assumption on
the anomalies, i.e. E (A) = 0, which is not representative of
many applications, such as the ones motivating this work.1

The second body of work concerns statistical inference in
matrix completion (Abbe et al., 2017; Chen et al., 2019;
Ma et al., 2019; Chen et al., 2020a). Our contribution here
is an entrywise error bound for matrix completion under
sub-exponential noise. This result substantially improves
upon previous results for sub-exponential matrices, all of
which bound an aggregate error measure (Lafond, 2015;
Sambasivan & Haupt, 2018; Cao & Xie, 2015; McRae &
Davenport, 2019). Our analysis builds on a recent frame-
work introduced in (Abbe et al., 2017) for sub-gaussian
noise, and requires both a considerably more fine-tuned
computation, and drawing from a recent result for Poisson
matrix completion from (McRae & Davenport, 2019).

Finally, with respect to our motivating application: the phan-
tom inventory problem is well-studied in the field of Op-
erations Management (Raman et al., 2001; DeHoratius &
Raman, 2008; Nachtmann et al., 2010; Fan et al., 2014;
Chen & Mersereau, 2015; Wang et al., 2016). Existing al-
gorithmic solutions (Kök & Shang, 2007; DeHoratius et al.,
2008) have focused on adapting inventory management poli-
cies to this issue. Algorithmic detection, particularly in a
form that combines observations across products and stores,
is unstudied and is the motivation for this work.

Notation: The sub-exponential norm of X is defined as
‖X‖ψ1

:= inf{t > 0 : E (exp(|X|/t)) ≤ 2}. For

1As pointed out in (Chen et al., 2020b), this assumption is
likely a fundamental limitation of Eq. (1).
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A ∈ Rn×m, we write
∑

(i,j)∈[n]×[m]Aij as
∑
ij Aij

when no ambiguity exists. We require various ma-
trix norms: ‖A‖22,∞ = maxi

∑
j A

2
ij , ‖A‖max =

maxij |Aij |, ‖A‖2F =
∑
ij A

2
ij , ‖A‖0 =

∑
ij 1 {Aij 6= 0}.

The spectral norm of A is denoted ‖A‖2 . The letter C (or
c) represents a sufficiently large (or small) universal (i.e. in-
dependent of problem parameters) constant that may change
between equations.

2. Model
The following is the core problem we will study. There
exists an (unobserved) ‘rate’ matrix M∗ ∈ Rn×m+ (n ≤
m without loss of generality). A second matrix B ∈
{0, 1}n×m serves to indicate the position of anomalies.
Given M∗ and B, a random matrix X is generated with
independent entries distributed according to2

Xij ∼

{
Poisson(M∗ij) if Bij = 0

Anom(α∗,M∗ij) if Bij = 1.

Anom(·, ·) is some non-negative, integer-valued random
variable and α∗ ∈ Γ ⊂ Rd is an unknown parameter vector.
We observe XΩ where Ω ⊂ [n] × [m] is random. Specif-
ically, we assume that entries are observed independently
with probability pO. In addition, we assume that B is a
Bernoulli(p∗A) random matrix where p∗A is bounded away
from one by a constant.

Our goal is to infer B given XΩ. We discuss next how this
model fits the phantom inventory problem, and the assump-
tions we place on both M∗ and the anomaly distribution.

Fit to Application: In the Phantom Inventory problem,X
is a sales matrix so that the (i, j)th entry corresponds to sales
of product j at store i; the Poisson distribution is typically a
good fit for sales data (Conrad, 1976; Shi et al., 2014). Our
results can be easily generalized from Poisson distribution
to general sub-exponential distribution. Anomalies in this
setting are the consequence of so-called shelf-execution
errors and typically result in a censoring of sales so that
for our motivating problem Anom(α∗, λ) is perhaps best
viewed as a censored Poisson(λ) random variable. Our
results will allow for a broad family of distributions for
anomalies, which we describe momentarily.

Assumptions on M∗: Let M∗ = UΣV T , be the SVD of
M∗, where Σ ∈ Rr×r is a diagonal matrix with singular
values σ∗1 ≥ σ∗2 ≥ . . . ≥ σ∗r (κ = σ∗1/σ

∗
r ); and U ∈

Rn×r, V ∈ Rm×r are two matrices that hold the left and
right-singular vectors. We make the following assumptions:

2We focus here on a model with non-negative integer-valued
X that fits our application. The results can easily be extended to
more general sub-exponential noise, as we discuss in Section 4.2.

• (Boundedness): ‖M∗‖max + 1 ≤ L.

• (Incoherence): ‖U ‖2,∞ + ‖V ‖2,∞ ≤
√

µr
n+m .

• (Sparsity):
√
pO ≥ C1

log1.5(m)µrLκ2

‖M∗‖max

√
m

for some known
constant C1.

Our guarantees will be parameterized by µ, L, r and κ.
These assumptions and parameters for M∗ are similar to
those in the existing matrix completion literature (Abbe
et al., 2017; Ma et al., 2019).

Assumptions on Anom(·, ·): We make the following as-
sumptions:

• (Sub-exponential): Anom(α∗,M∗ij) is sub-
exponential:

∥∥Anom(α∗,M∗ij)
∥∥
ψ1
≤ L.

• (Lipschitz): For any M ∈ R+, α ∈ Γ and all k ∈ N,
P (Anom(α,M) = k) is K-Lipschitz in (α,M).

• (Mean Decomposition): For any M ∈ R+, α ∈ Γ, we
have E (Anom(α,M)) = g(α)M for some g : Rd →
R where g(α) is K-Lipschitz in α.

We pause to discuss these assumptions on anomalies. To
begin, we assume a probabilistic anomaly model charac-
terized by finite unknown parameters α. This generally
applies to many applications. The probabilistic and Lip-
schitz properties enable the identification of α and then
the measure of the anomaly detection rate. We also as-
sume a mean-decomposition condition: E (A) ∝M∗. Note
that this is less restrictive than the zero-mean assumption
E (A) = 0 sometimes found in the literature. It is also
well justified from the known mechanism for anomalies in
the phantom inventory problem such as Anom(α,M∗ij) =
Poisson(αM∗ij). (DeHoratius et al., 2008).

In contrast to this probabilistic model, one could consider
an adversarial anomaly model. Note that the adversarial
model that allows for arbitrary anomalies requires in essence
exact observations of M∗ for non-anomalous observations
(Candès et al., 2011), which is not consistent with our highly
noisy setup.

2.1. Performance Metrics

Let Aπ(XΩ) be some estimator of B. Given XΩ, we de-
fine the true positive rate for this estimator, TPRπ(XΩ) as
the ratio of the expected number of true positives under
the algorithm and the expected number of anomalies given
XΩ. We similarly define the false positive rate, FPRπ(XΩ).
More formally, let f∗ij be the conditional probability that the
(i, j)-th entry is not anomalous, given X , i.e.

f∗ij := P (Bij = 0 | X) .
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Then, some algebraic manipulation establishes that

TPRπ(XΩ) =

∑
(i,j)∈Ω P

(
Aπij(XΩ) = 1

)
(1− f∗ij)∑

(i,j)∈Ω(1− f∗ij)

FPRπ(XΩ) =

∑
(i,j)∈Ω P

(
Aπij(XΩ) = 1

)
f∗ij∑

(i,j)∈Ω f
∗
ij

.

Our goal will be to maximize TPR for some bound on
FPR. In establishing the quality of our algorithm we will
compare, for a given constraint on FPR, the TPR achieved
under our algorithm to that achieved under the (clairvoyant)
optimal estimator. We will show that in large matrices this
gap grows negligibly small at a min-max optimal rate.

3. Algorithm and Results
We are now prepared to state our approach to the anomaly
detection problem formulated above. Our algorithm, which
we refer to as the entrywise (EW) algorithm, leverages an
entrywise matrix completion guarantee for sub-exponential
noise that we will describe shortly. Besides the observed
data XΩ, the only other input into the EW algorithm is a
target FPR which we denote as γ. The crux of our algorithm
is stated in Algorithm 1 below:

Algorithm 1 Entrywise (EW) Algorithm πEW(γ)

Input: XΩ, γ ∈ (0, 1]

1: Set M̂ = nm
|Ω| SVD(XΩ)r. Here SVD(XΩ)r :=

arg minrank(M)≤r ‖M −X ′‖F, where X ′ is obtained
from XΩ by setting unobserved entries to 0.

2: Estimate (p̂A, α̂) based on a moment matching estima-
tor.

3: Estimate a confidence interval [fL
ij , f

R
ij ] for f∗ij for

(i, j) ∈ Ω.
4: Let {tEW

ij } be an optimal solution to the following opti-
mization problem:

PEW : max
{0≤tij≤1,(i,j)∈Ω}

∑
(i,j)∈Ω

tij

subject to
∑

(i,j)∈Ω

tijf
R
ij ≤ γ

∑
(i,j)∈Ω

fL
ij

5: For every (i, j) ∈ Ω, generate Aij ∼ Ber(tEW
ij ) inde-

pendently.
Output: AΩ

Step 2 and Step 3 are based on natural plug-in estimators
(see full details specified in Eq. (2) and Eq. (3) respectively).
The goal of the EW algorithm is to maximize the TPR sub-
ject to a FPR below the input target value of γ. Our main
result is the following guarantee, which states that (a) the
‘hard’ constraint on the FPR is satisfied with high probability,

and (b) the TPR is within an additive regret of a certain un-
achievable policy we use as a proxy for the best achievable
policy. Specifically, for any γ ∈ (0, 1], let π∗(γ) denote the
optimal policy when M∗, p∗A, and α∗ are known (this policy
is described later in this section). One can verify that, for
any γ, XΩ and policy π, TPRπ∗(γ)(XΩ) ≥ TPRπ(XΩ)
if FPRπ(XΩ) ≤ γ. Note that the only additional assump-
tions we require, beyond those stated in Section 2, are the
set of regularity conditions (RC) naturally imposed by the
estimation of (p̂A, α̂), stated in Section 4.2.

Theorem 1. Assume that the regularity conditions (RC)
hold. With probability 1−O( 1

nm ), for any 0 < γ ≤ 1,

FPRπEW(γ)(XΩ) ≤ γ,
TPRπEW(γ)(XΩ) ≥ TPRπ∗(γ)(XΩ)

− C (K + L)3L3κ4µr

p∗Aγ

log1.5(m)
√
pOm

.

To parse this result, consider that in a typical application,
we can expect the problem parameters to fall in the fol-
lowing scaling regime: K,L, κ, r, µ = O(1), pO, p∗A, γ =
Ω(1), and m/n = Θ(1). For this regime, the regret is
O
(
n−1/2 log1.5 n

)
, which is in fact optimal up to logarith-

mic factors. To be precise, we fix a particular value of γ for
which the following proposition states that, for any n, there
exists a family of anomaly modelsMn for which no algo-
rithm can achieve a regret on TPR lower than O(n−1/2)
across all models within the family (we will explicitly con-
struct this family in the proof in Section 4.4). To allow for
direct comparison to Theorem 1, let Πγ denote the set of all
policies π such that

PX|M∗ (FPRπ(X) ≤ γ) ≥ 1− C/n2 for all M∗ ∈Mn.

Proposition 1. For any algorithm π ∈ Πγ , there exists
M∗ ∈Mn such that

EX|M∗
(
TPRπ∗(γ)(X)− TPRπ(X)

)
≥ C/

√
n.

This shows that our algorithm is optimal for the TPR up to
logarithmic factors.

Algorithmic Novelty: Before proceeding to the sketches
of these results, it is worth discussing the novelty of our algo-
rithm. The vast majority of existing algorithms all seek to de-
compose X into its three components (M,A,E) by solving
a single optimization problem: min f(M) + g(A) + h(E),
where f, g, h are carefully chosen penalty functions, e.g.,
Eq. (1). In contrast to these approaches, our algorithm uses
two separate procedures. The first procedure (Step 1) is ef-
fectively a de-noising and completion routine which, rather
unintuitively, makes no attempt to identify the positions of
anomalies, but is able to estimate M with a guarantee on
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entrywise accuracy, but only up to an unknown affine scal-
ing. This entrywise guarantee (a fundamentally new result
not previously exploited by the aforementioned optimiza-
tion algorithms) enables the second procedure (Steps 2–5),
which leverages the underlying probabilistic structure to
estimate the affine scaling and perform entrywise inference,
yielding the first sharp statements about the optimality of
the anomaly detection rate.

4. Algorithm Details and Proof Sketches
In this section, we motivate the steps of Algorithm 1 and
sketch the proofs of our main results. Beginning with The-
orem 1, and mirroring the algorithm itself, the following
description is given in four parts: (i) an entrywise guaran-
tee for M̂ ; (ii) a moment matching estimator for (p̂A, α̂);
(iii) a confidence interval for f∗ij ; (iv) an analysis of the
optimization problem PEW.

4.1. Step 1: Entrywise Guarantee for M̂

Our algorithm is initiated with a de-noising of XΩ. To
ease notation, let θ = (pA, α), θ∗ = (p∗A, α

∗), and de-
note e(θ) := pAg(α) + (1 − pA). This latter function
is chosen so that, as follows from a quick calculation,
E (X) = e(θ∗)M∗. While the SVD-based de-noising algo-
rithm used here is standard, the key result that drives rest of
the algorithm and analysis is the following new entrywise
error bound, which may be of independent interest:

Theorem 2. Let

M̂ =
nm

|Ω|
SVD(XΩ)r.

Then with probability 1−O( 1
nm ),

∥∥∥M̂ − e(θ∗)M∗∥∥∥
max
≤ Cκ4µrL

√
log(m)

pOm
.

Our result can be viewed as the first entrywise guarantee
result for Poisson matrix completion.3 The proof sketch
is provided in the Appendix. As a comparison, consider
the recent results for aggregated error on matrix completion
with Poisson noise (McRae & Davenport, 2019). Under the
proper hyper-parameters, their results based on SVD pro-
vide the following Frobenius norm bound: ‖M̂ −M∗‖F .
n1/2. In contrast, our entrywise guarantees provide that
‖M̂ −M∗‖max . n−1/2 log1/2 n. Therefore, our results
show that the SVD approach not only provides aggregated
error guarantee but also yields a much stronger result: the
entrywise error guarantee. Furthermore, the entrywise error
is evenly distributed among all entries up to a logarithmic
factor.

3In fact, the proof also holds valid for sub-exponential noise.

The entrywise guarantee is the key that opens up optimal
anomaly detection. In particular, this enables us in the
next steps to infer both the parameters θ∗ and the posterior
probabilities of anomalies at each entry.

4.2. Step 2: Moment Matching Estimator

Step 1 yields an (entrywise) accurate estimator M̂ of M∗,
but only up to some linear scaling that depends on the un-
known anomaly model parameters θ∗. Now in Step 2, we
are able to use M̂ to estimate that unknown scaling e(θ∗),
along with θ∗ itself, via a generalized moment of the cu-
mulative distribution function at sufficiently many values
for identifiability. In particular, for any t ∈ N, let gt(θ,M)
be the proportion of entries of XΩ expected to be at most t
with the model specified by θ and M :

gt(θ,M) := E (|Xij ≤ t, (i, j) ∈ Ω|) /E (|Ω|) .

Given that M∗ ≈ M̂/e(θ∗), we choose θ̂ to be the mini-
mizer of the following function which seeks to match a set
of T empirical moments to their expectations as closely as
possible (in `2 distance),

θ̂ := arg min
θ∈Θ

T−1∑
t=0

(
gt(θ, M̂/e(θ))− |Xij ≤ t, (i, j) ∈ Ω|

|Ω|

)2

(2)

where T is a large enough constant for identifiability (usu-
ally T = d + 1 for θ ∈ Rd+1) and Θ is chosen such
that θ∗ ∈ Θ and pA is bounded from 1 by a constant for
θ = (pA, α) ∈ Θ.

Let F = (F0, F1, . . . , FT−1) : Θ → RT be defined
as Ft(θ) = gt(θ,M

∗e(θ∗)/e(θ)). We could expect that
Ft(θ̂) ≈ Ft(θ∗) by solving θ̂ from Eq. (2). In fact, we have
the following result.

Lemma 1. With probability 1−O( 1
nm ),

∥∥∥F (θ̂)− F (θ∗)
∥∥∥ ≤ C(K + L)κ4µrL

√
log(m)

pOm
.

To establish that θ̂ ≈ θ∗ from F (θ̂) ≈ F (θ∗), additional

regularity conditions are required. Let δ′ = κ4µrL
√

logm
pOm

be the entrywise bound of ‖M̂ − e(θ∗)M∗‖max. We now
formally state the regularity conditions that we require:

(RC) Regularity Conditions on F (θ):

• F : Θ→ RT is continuously differentiable and injec-
tive.

• Let δ̃ = δ′(K + L) logm. We require Bδ̃(θ
∗) ⊂ Θ,

where Br(θ∗) = {θ : ‖θ∗ − θ‖ ≤ r}.
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• For any θ ∈ Bδ̃(θ
∗), ‖JF (θ)− JF (θ∗)‖2 ≤

C
δ̃
‖θ − θ∗‖, where J is the Jacobian matrix.

•
∥∥JF (θ∗)−1

∥∥
2
≤ C.

These conditions are among the typical set of conditions
for methods involving generalized moments and are well
justified in typical applications (Newey & McFadden, 1994;
Imbens et al., 1995; Hall, 2005; Hansen, 1982). The follow-
ing lemma establishes that our moment matching estimator
is able to accurately estimate θ∗.
Lemma 2. Assuming the above regularity conditions (RC)
on F (θ), with probability 1−O( 1

nm ),∥∥∥θ̂ − θ∗∥∥∥ ≤ C(K + L)κ4µrL

√
logm

pOm
.

Extending to general noise models: To extend Algo-
rithm 1 to general sub-exponential noise, all steps hold the
same except that the estimator for θ̂ in the Step 2 needs to
be changed. For observation X with continuous values, one
can use MLE estimator to solve θ̂ = arg maxθ P (X|θ,M∗)
by plugging inM∗ ≈ M̂/e(θ). For integer-valueX beyond
Poisson noise, we still use moment matching estimator (in-
corporate negative values in Eq. (2) if needed). In both cases,
the results in this paper will still hold with slightly different
regularity conditions for the identification of parameters.

4.3. Steps 3–5: Confidence Intervals and the
Optimization Problem PEW:

Next, we use M̂ and θ̂ as plug-in estimators to optimize
TPR under the FPR constraint. Let

x̂ij := [p̂APAnom(Xij |α̂, M̂ij/e(θ̂))],

ŷij := [(1− p̂A)PPoisson(Xij |M̂ij/e(θ̂))],

where [x] denotes x ‘truncated’ to its nearest value in [0, 1],
i.e. [x] = max(min(x, 1), 0). We then can estimate a con-
fidence interval [fL

ij ,f
R
ij ] for each conditional non-anomaly

probability f∗ij = P (Bij = 0 | X) using what effectively
amounts to a plug-in estimator based on x̂ij , ŷij . That is the
content of the following result:
Lemma 3. Let

δ = (K + L)3κ4µrL2

√
logm

pOm
.

There exists a (known) constant C1 such that, if

fL
ij :=

[
ŷij − C1δ

x̂ij + ŷij

]
and fR

ij :=

[
ŷij + C1δ

x̂ij + ŷij

]
, (3)

then with probability 1−O( 1
nm ), for every (i, j) ∈ Ω, we

have

fL
ij ≤ f∗ij ≤ fL

ij + εij and fR
ij − εij ≤ f∗ij ≤ fR

ij ,

where εij = min(4C1δ/(x
∗
ij + y∗ij), 1).

The final two steps involve solving PEW. To motivate
its particular form, consider the ‘ideal’ anomaly detection
algorithm if the f∗ij’s were known. Intuitively, one should
identify anomalies at entries with the smallest values of f∗ij .
This leads to the following idealized algorithm, which we
will call π∗(γ):

1. Let {t∗ij} be an optimal solution to the following opti-
mization problem.

P∗ : max
{0≤tij≤1,(i,j)∈Ω}

∑
(i,j)∈Ω

tij

subject to
∑

(i,j)∈Ω

tijf
∗
ij ≤ γ

∑
(i,j)∈Ω

f∗ij

2. For every (i, j) ∈ Ω, generate Aij ∼ Ber(t∗ij) inde-
pendently.

The following claim establishes the optimality of π∗(γ).

Claim 1. For any π, γ, and XΩ, if FPRπ(XΩ) ≤ γ, then
TPRπ(XΩ) ≤ TPRπ∗(γ)(XΩ).

Now notice that PEW is obtained from P∗ by replacing f∗ij
with the confidence interval estimators fL

ij and fR
ij defined in

the previous step. Intuitively, we could expect that PEW ≈
P∗, and therefore the algorithm πEW should achieve the
desired performance. In fact, FPRπEW(γ)(X) ≤ γ holds
immediately because fL

ij ≤ f∗ij ≤ fR
ij and so {tEW

ij } is a
feasible solution ofP∗. The guarantee for TPRπEW(X) can
be established based on a fine-tuned analysis of Lemma 3.
See the Appendix for the formal proof.

4.4. Minimax Lower Bound

In this final subsection, we provide a sketch for showing
Proposition 1 based on the hypothesis testing argument.
We consider the following special model: let pO = 1 and
p∗A = 1

2 , and when Bij = 1, Xij = 0. We refer to this in
notational form as X ∼ H(M∗).

We constructMn = {M b ∈ Rn×n, b ∈ {0, 1}n/2} as fol-
lows. Fix a constant C. Consider b ∈ {0, 1}n/2. For
any i ∈ [n/2], j ∈ [n], if bi = 0, M b

2i,j = 1 and
M b

2i+1,j = 1 − C√
n

; if bi = 1, M b
2i,j = 1 − C√

n
and

M b
2i+1,j = 1. Let M b be drawn uniformly formMn and

X ∼ H(M b). In order to achieve high TPR, one needs
to identify the correct b given X . By our construction, the
error probability for distinguishing M b1 and M b2 is large
when b1 is 1-bit different from b2. This provides a lower
bound on identifying b and leads to a O(1/

√
n) regret on

TPR. The formal proof can be found in the Appendix. One
can also verify that Theorem 1 guarantees O(log1.5 n/

√
n)
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regret for every M b ∈Mn. This shows that our algorithm
is optimal for the TPR up to logarithmic factors.

5. Experiments
To evaluate the empirical performance of the EW algorithm,
we first consider a synthetic setting where we compare the
performances of our EW algorithm with various state-of-the-
art approaches. We then measure performance on real-world
data from a large retailer.

5.1. Synthetic Data

We generated an ensemble of 1000 matricesM∗ of size n =
m = 100. The varying parameters of the ensemble include
(i) r: the rank of the matrix; (ii) M̄∗ = 1

nm

∑
ijM

∗
ij :

the average value of all entries; (iii) pO : the probability
of an entry being observed; (iv) p∗A: the probability of an
entry where an anomaly occurs; and (v) α∗: the anomaly
parameter. When an anomaly occurs, E (Anom(α∗,M)) =
α∗M.

The parameters were sampled uniformly: r ∈ [1, 10], M̄∗ ∈
[1, 10], pO ∈ [0.5, 1], p∗A ∈ [0, 0.3] and α∗ ∈ [0, 1]. Each
instance was generated in two steps: (i) Generate M∗:
for a given choice of r and entrywise mean M̄∗, we
set M∗ = kUV T . U, V ∈ Rn×r are random with in-
dependent Gamma(1, 2) entries and k is picked so that
M̄∗ = 1

nm

∑
ijM

∗
ij . This is a typical way of generat-

ing M∗ with rank r and non-negative entries (Cemgil,
2008). (ii) Observation: If (i, j) is observed, then with
probability 1 − p∗A, Xij ∼ Poisson(Mij); otherwise,
Xij ∼ Poisson(Exp(α∗)Mij). Here Exp(α∗) models the
occurring time of the anomalous event.

We compared our EW algorithm with three existing al-
gorithms: (i) Stable-PCP (Zhou et al., 2010; Chen et al.,
2020b), (ii) Robust Matrix Completion (RMC) (Klopp et al.,
2017), and (iii) Direct Robust Matrix Factorization (DRMF)
(Xiong et al., 2011). These three algorithms all recover the
matrices by decomposingX = M̂+ Â+ Ê and minimizing
f(M̂) + λ1g(Â) + λ2h(Ê) where f, g, h are penalty func-
tions with Lagrange multipliers λ1, λ2. For all algorithms,
we tuned Lagrange multipliers corresponding to rank us-
ing knowledge of the true rank. In order to generate ROC
curves and compute AUCs, we varied γ in our EW algo-
rithm. For three existing optimization algorithms, we do
this by varying the Lagrange multipliers.

The results are summarized in Table 2 and Figure 1. Table 2
reports AUC, ‖M̂−M‖F, and ‖M̂−M‖max averaged over
1000 instances for four algorithms (M̂ of EW is obtained
after recovering from the estimated scaling). The results
show that EW achieves an AUC close to π∗ (the ideal algo-
rithm that knows M∗ and the anomaly model), confirming
Theorem 1. For all considered metrics, the results also

Algorithm AUC ‖M̂ −M‖F ‖M̂ −M‖max

π∗ 0.823 – –
EW 0.803 237.1 27.4
Stable PCP 0.708 314.3 43.6
DRMF 0.549 391.2 60.4
RMC 0.519 1099.0 123.1

Table 2: Summary of results on synthetic data. AUC, ‖M̂ −
M‖F, and ‖M̂ −M‖max are averaged over 1000 instances.
Evaluated algorithms include an ideal algorithm that knows
M∗ and the anomaly model (π∗), our algorithm (EW), and
three existing benchmarks.

demonstrate that EW outperforms other algorithms signifi-
cantly. Figure 1 (Left) shows that the above phenomenon
holds uniformly over the ensemble.4 Figure 1 (Right) shows
the explicit ROC curve for a representative setting.

5.2. Real Data

We collected data, from a retailer, consisting of weekly
sales of m = 290 products across n = 2481 stores with
pO ∼ 0.14 and mean value 2.64. Since there is no ground-
truth for anomalies, we viewed the collected data as the
underlying matrix M∗, and then introduced noise and ar-
tificial anomalies. Specifically, we generated X as in the
synthetic data (with fixed M∗), introducing anomalies by
deliberately perturbing a fraction p∗A of entries and thinning
the resulted sales at rate α∗. In particular, for each sam-
ple, p∗A ∈ [0, 0.3], α∗ ∈ [0, 1] were uniformly drawn. We
generated an ensemble of 1000 such perturbed matrices.

Figure 2 reports the results. We see similar relative merits as
in the synthetic experiments: EW achieves an AUC close to
that of an algorithm that knows M∗ and α∗ whereas Stable
PCP is consistently worse than EW. In particular, the average
AUC of π∗ is 0.733, the average AUC of πEW is 0.672,
whereas the average AUC of Stable-PCP is 0.566. Right
of the Figure 2 shows an ROC curve for a representative
setting of p∗A = 0.04 and α∗ = 0.2 5 where we see the
absolute performance. Our results also confirm the EW’s
ability to recover M∗ for real-world data and simulated
anomalies. We left the experiments on real anomalies as the
future work. More details about experiments can be found
in the Appendix.

Scalability: EW is also much faster than compared al-
gorithms, since our main computational cost is a typical
matrix completion procedure (our linear program step can
be solved via a sort). Concretely, we can expect to solve
a 70000 × 10000 matrix with 107 observed entries within

4We show results vs. Stable-PCP, but the same holds true for
the other two existing algorithms in the experiments.

5The parameters are chosen to fit the reported loss caused by
the phantom inventory (Gruen et al., 2002).
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Figure 1: Synthetic data. (Left) Scatter plot showing AUC of ideal algorithm vs. that of EW (blue points, above 45-degree
line); and AUC of Stable PCP vs EW (green, mostly below 45 degree line). (Right) ROC curve in a representative setting
with n = m = 100, r = 3, M̄∗ = 5, pO = 0.8, p∗A = 0.04, α∗ = 0.2.

Figure 2: Real data. (Left) An ensemble similar to the synthetic data. (Right) ROC curve in a representative setting of
p∗A = 0.04 and α∗ = 0.2.

minutes (Yao & Kwok, 2018).

6. Conclusion
We proposed a simple statistical model for anomaly detec-
tion in low-rank matrices that is motivated by the phantom
inventory problem in retail. We proved a new entrywise
bound for matrix completion with sub-exponential noise,
and used this to motivate a simple policy for the anomaly
detection problem. We proved matching upper and lower
bounds on the anomaly detection rate of our algorithm, and
demonstrated in experiments that our approach provides
substantial improvements over existing approaches.

While our results are somewhat encouraging, they by no
means cover the most general settings of practical inter-
est. There are many possible extensions that merit future
investigation, to name a few,

• Less Restrictive Ω and B. Our current model for Ω or
B is dedicated to a uniformly random model that has
been widely used in the literature since (Candès et al.,
2011). We think it is an exciting direction to study the
noisy anomaly detection problem with less restrictive
Ω and B given the recent advancements in the topic of
matrix completion with deterministic missing patterns,
e.g., (Chatterjee, 2020).

• Dependency on K and L. Our current TPR regret
likely scales sub-optimal with K amd L. A more re-
fined analysis may lead to the improvement for such
dependency.

In addition, as our real dataset validated the core of the
theory (e.g., the algorithm ability to recover M∗, which is
crucial to separate S), it is promising to test our algorithm
for data with ground-truth anomalies and we leave this for
future work.
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