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A. Theoretical Details
A.1. Representing Distributions of Play via

Extensive-Form Correlation Plans

As mentioned in the body, every distribution over random-
ized stratregy profiles for the team members is equivalent
to a different distribution over deterministic strategy pro-
files by means of Kuhn’s theorem (Kuhn, 1953), one of
the most fundamental results about extensive-form game
playing. Specifically, given two independent mixed strate-
gies yT1 ∈ YT1 and yT2 ∈ YT2 for the team members, let
µT1 and µT2 be the distributions over normal-form plans
ΠT1,ΠT2 equivalent to yT1 and yT2, respectively. Then,
the distribution over reandomized strategy profiles that as-
signes probability 1 to (yT1,yT2) is equivalent to the prod-
uct distribution of µT1 and µT2, that is, the distirbution over
ΠT1×ΠT2 that picks a generic profile (πT1, πT2) with prob-
ability πT1(πT1) × πT2(πT2). The reverse is also true: a
product distribution over ΠT1 ×ΠT2 is equivalent to a dis-
tribution over randomized profiles that picks exactly one
profile with probability 1.

We now show that a similar result holds when the distribu-
tion over normal-form plans is represented as an extensive-
form correlation plan. First, we introduce the notion of
product correlation plan.

Definition 3. Let ξT ∈ V be a vector in the von Stengel-
Forges polytope. We say that ξT is a product correlation
plan if

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2.

Lemma 1. A product correlation plan is always an element
of ΞT.

Proof. Let ξT be a product correlation plan. Since by defi-
nition, ξT ∈ V , the vectors yT1,yT2 indexed over ΣT1 and
ΣT2, repsectively, and defined as

y[σT1] = ξT[σT1,∅], y[σT2] = ξT[∅, σT2]

are sequence-form strategies. By Kuhn’s theorem, there
exist distributions µT1, µT2 over ΠT1 and ΠT2, respectively,
such that

y[σT1] =
∑

πT1∈ΠT1(σT1)

µT1[πT1] ∀σT1 ∈ ΣT1, (3)

y[σT2] =
∑

πT2∈ΠT2(σT2)

µT2[πT2] ∀σT2 ∈ ΣT2. (4)

Consider the distribution µT over ΠT1 ×ΠT2 defined as the
product distribution µT1 ⊗ µT2, that is,

µT[σT1, σT2] := µT1[πT1] · µT2[πT2]

for all (πT1, πT2) ∈ ΠT1 × ΠT2. We will show that is the
extensive-form correlation plan corresponding to µT accord-
ing to (2), that is,

ξT[σT1, σT2] :=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2. Indeed, using the fact that
ξT is a product correlation plan together with (3) and (4):

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

= yT1[σT1] · yT2[σT2]

=


 ∑

πT1∈ΠT1(σT1)

µT1[πT1]




 ∑

πT2∈ΠT2(σT2)

µT2[πT2]




=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT1[πT1] · µT2[πT2]

=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2].

This concludes the proof.

Lemma 2. An extensive-form correlation plan is equivalent
to a distribution of play for the team that picks one profile of
randomized strategies (yT1,yT2) ∈ YT1×YT2 if and only if
ξT is a product correlation plan. Furthermore, when that is
the case, yT1[σT1] = ξT[σT1,∅], yT2[σT2] = ξT[∅, σT2] for
all σT1 ∈ ΣT1, σT2 ∈ ΣT2.

Proof. The proof of Lemma 1 already shows that when ξT is
a product correlation plan, it is equivalent to playing accord-
ing to the distribution of play for the team with singleton sup-
port (yT1,yT2), where yT1[σT1] = ξT[σT1,∅], yT2[σT2] =
ξT[∅, σT2] for all σT1 ∈ ΣT1, σT2 ∈ ΣT2. So, the only
statement that remains to prove is that distributions µT over
randomized strategy profiles for the team members with a
singleton support are mapped (Eq. (2)) to product correla-
tion plans.

Let {(yT1,yT2)} ⊆ YT1 × YT2 be the (singleton) support
of µT, and let µT1, µT2 be distributions over ΠT1 and ΠT2,
respectively, equivalent to yT1 and yT2. Then,

y[σT1] =
∑

πT1∈ΠT1(σT1)

µT1[πT1] ∀σT1 ∈ ΣT1, (5)

y[σT2] =
∑

πT2∈ΠT2(σT2)

µT2[πT2] ∀σT2 ∈ ΣT2. (6)

Since by assumption the two team members sample strate-
gies independently, their equivalent distribution of play over
determinitic strategies is the product distribution µT :=
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µT1 ⊗ µT2. Using (2), µT has a representation as extensive-
form correlation plan given by

ξT[σT1, σT2] =
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT[πT1, πT2]

=
∑

πT1∈ΠT1(σT1)
πT2∈ΠT2(σT2)

µT1[πT1] · µT2[πT2]

=


 ∑

πT1∈ΠT1(σT1)

µT1[πT1]




 ∑

πT2∈ΠT2(σT2)

µT2[πT2]




= yT1[σT1] · yT2[σT2] (7)

for all (σT1, σT2) ∈ ΣT1 × ΣT2. In particular, choosing
σT2 = ∅ in (7), and using the fact that yT2[∅] = 1, we
obtain

ξT[σT1,∅] = yT1[σT1] ∀ σT1 ∈ ΣT1.

Similarly,

ξT[∅, σT2] = yT2[σT2] ∀ σT2 ∈ ΣT2.

Substituting the last two equalities into (7) we can write

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 × ΣT2. That, together with the
inclusion ΞT ⊆ V , shows that ξT is a product correlation
plan.

Semi-randomized correlation plans are product plans
In the body we mentioned that semi-randomized correlation
plans correspond to a distribution of play where one team
member plays a deterministic strategy and the other team
member plays a randomized strategy. We now give more
formal grounding that that assertion.

Lemma 3. Let ξT ∈ Ξ∗T1 ∪Ξ∗T2 be a semi-randomized plan.
Then, ξT is a product plan.

We reuse some ideas that already appeared in Farina &
Sandholm (2020) to prove Lemma 3. In particular, in the
proof we will make use of the following lemma.

Lemma 4 (Farina & Sandholm (2020, Lemma 6)). Let
ξT ∈ V . For all σT1 ∈ ΣT1 such that ξT[σT1,∅] = 0,
ξT[σT1, σT2] = 0 for all σT2 ∈ ΣT2 : σT1 ./ σT2. Similarly,
for all σT2 ∈ ΣT2 such that ξT[∅, σT2] = 0, ξT[σT1, σT2] =
0 for all σT1 ∈ ΣT1 : σT1 ./ σT2.

Proof of Lemma 3. We will only show the proof for the case
ξT ∈ Ξ∗T1. The other case (ξT ∈ Ξ∗T2) is symmetric.

To show that

ξT[σT1, σT2] = ξT[σT1,∅] · ξT[∅, σT2]

for all (σT1, σT2) ∈ ΣT1 ./ ΣT2, we perform induction on
the depth of the sequence σT2. The depth depth(σT2) of a
generic sequence σT2 = (J, b) ∈ ΣT2 of Player i is defined
as the number of actions that Player T2 plays on the path
from the root of the tree down to action b at information set
J , included. Conventionally, we let the depth of the empty
sequence be 0.

The base case for the induction proof corresponds to the
case where σT2 has depth 0, that is, σT2 = ∅. In that case,
the theorem is clearly true, because ξT[∅,∅] = 1 as part of
the von Stengel-Forges constraints (Definition 1).

Now, suppose that the statement holds as long as
depth(σT2) ≤ d. We will show that the statement will hold
for any (σT1, σT2) ∈ ΣT1 ./ ΣT2 such that depth(σT2) ≤
d+ 1. Indeed, consider (σT1, σT2) ∈ ΣT1 ./ ΣT2 such that
σT2 = (J, b) with depth(σT2) = d+ 1.

There are only two possible cases:

• Case 1: ξT[∅, σT2] = 0. From Lemma 4,
ξT[σT1, σT2] = 0 and the statement holds.

• Case 2: ξT[∅, σT2] = 1. From the von Stengel-Forges
constraints, ξT[∅, σ(J)] =

∑
b′∈AJ

ξT[∅, (J, b′)] =
1 +

∑
b′∈AJ ,b′ 6=b ξT[∅, (J, b′)] ≥ 1. Hence, because

all entries of ξT[∅, σ2] are in {0, 1} by definition of
Ξ∗T1, it must be ξT[∅, σ(J)] = 1 and ξT[∅, (J, b′)] = 0
for all b′ ∈ AJ , b′ 6= b.

Using the inductive hypothesis, we have that

ξT[σT1, σ(J)] = ξT[σT1,∅]·ξT[∅, σ(J)] = ξT[σT1,∅]
(8)

for all σT1 ∈ ΣT1, σT1 ./ σ(J). On the other hand,
since ξT[∅, (J, b′)] = 0 for all b′ ∈ AJ , b′ 6= b, from
Lemma 4 we have that

ξT[σT1, (J, b
′)] = 0 ∀σT1 ./ J, b

′ 6= b. (9)

Hence, summing over all b′ ∈ AJ and using the von
Stengel-Forges constraints, we get

ξT[σT1,∅] · ξT[∅, σT2] = ξT[σT1, σ(J)]

=
∑

b′∈AJ

ξT[σT1, (J, b
′)]

= ξT[σT1, (J, b)] = ξT[σT1, σT2]

for all σT1 ./ (J, b). This concludes the proof by
induction.

So, from Lemma 2 it follows that semi-randomized plans
correspond to distributions of play over randomized profiles
with the singleton support (yT1,yT2) ∈ YT1 × YT2. Fur-
thermore, because of the second part of Lemma 2, when
ξT ∈ Ξ∗T1, yT2[σT2] ∈ {0, 1} for all σT2 ∈ ΣT2, which
means that yT2 is a deterministic strategy for Player T2 (a
similar statement holds for ξT ∈ Ξ∗T2).
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Convex combinations of product plans Both of the al-
gorithms we presented in the paper ultimately produce an
extensive-form correlation plan ξT that is a convex combi-
nation of semi-randomized plans ξ(1)

T , . . . , ξ
(n)
T , that is, of

the form
ξT = λ(1)ξ

(1)
T + ·+ λ(n)ξ

(n)
T

for λ(i) ≥ 0 such that λ(1) + · · · + λ(n) = 1. Since
semi-randomized correlation plans are product correlation
plans (Lemma 3), from Lemma 2 each ξ(i)

T is equivalent to
the team playing a single profile of randomized strategies
(y

(i)
T1 ,y

(i)
T2 ) ∈ YT1 × YT2 with probability 1. By linearity,

it is immediate to show that ξT is equivalent to playing ac-
cording to the distribution over randomized strategies for
the team that picks (y

(i)
T1 ,y

(i)
T2 ) with probability λ(i).

A.2. TMECor Formulation Based on Extensive-Form
Correlation Plans

Proposition 1. An extensive-form correlation plan ξT is a
TMECor if and only if it is a solution to the LP





arg max
ξT

v∅, subject to:

1 vI −
∑

I′∈IO
σO(I′)=(I,a)

vI′ ≤
∑

z∈Z
σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑

I′∈IO
σO(I′)=∅

vI′ ≤
∑

z∈Z
σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO

4 ξT ∈ ΞT.

Proof. We follow the steps mentioned in the body, starting
from the bilinear saddle point problem formulation of the
problem of computing a TMECor strategy for the team:

arg max
ξT∈ΞT

min
yO∈YO

∑

z∈Z
ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)].

Expanding the constraint yO ∈ YO using the sequence-form
constraints (Koller et al., 1996; von Stengel, 1996), the inner
minimization problem is

(P ) :





min
yO

∑

z∈Z
ûT(z)ξT[σT1(z), σT2(z)]y[σO(z)]

1 − y[σ(I)] +
∑

a∈AI

yO[(I, a)] = 0 ∀I ∈ IO

2 yO[∅] = 1

3 yO[σO] ≥ 0 ∀ σO ∈ ΣO.

Introducing the free dual variables {vI : I ∈ IO} for Con-
straint 1 , and the free dual variable v∅ for Constraint 2 ,

we obtain the dual linear program

(D) :





max
vI ,v∅

v∅, subject to:

1 vI −
∑

I′∈IO
σO(I′)=(I,a)

vI′

≤
∑

z∈Z
σO(z)=(I,a)

ûT(z)ξT[σT1(z), σT2(z)]

∀ (I,a)∈ΣO\{∅}

2 v∅ −
∑

I′∈IO
σO(I′)=∅

vI′ ≤
∑

z∈Z
σO(z)=∅

ûT(z)ξT[σT1(z), σT2(z)]

3 v∅ free, vI free ∀ I ∈ IO.

So, ξT is a TMECor if and only if it is a solution of
arg maxξT∈ΞT

(D), which is exactly the statement.

A.3. Semi-Randomized Correlation Plans

Proposition 3. In every game, ΞT is the convex hull of the
set Ξ∗T1, or equivalently of the set Ξ∗T2. Formally, ΞT =
co Ξ∗T1 = co Ξ∗T2 = co(Ξ∗T1 ∪ Ξ∗T2).

Proof. We will show that ΞT = co Ξ∗T1. The proof that
ΞT = co Ξ∗T2 is symmetric.

We will break the proof of ΞT = co Ξ∗T1 into two parts:

(⊆) In the first part of the proof, we argue that Ξ∗T1 ⊆ ΞT.
This is straightforward: from Lemma 3 we know
that all elements of Ξ∗T1 are product correlation plans
(Definition 3), which implies that Ξ∗T1 ⊆ ΞT by
Lemma 1. Since convex hulls preserve inclusions,
we have

co Ξ∗T1 ⊆ co ΞT,

which is exactly the statement Ξ∗T1 ⊆ ΞT upon using
the known fact that ΞT is a convex polytope and
therefore co ΞT = ΞT.

(⊇) To complete the proof, we now argue that the re-
verse inclusion, namely ΞT ⊆ co Ξ∗T1, also holds.
Let f : µT 7→ ξT be the mapping from the distri-
bution of play µT ∈ ∆(ΠT1 × ΠT2) to its corre-
sponding extensive-form correlation plan defined in
Eq. (2). By definition, ΞT = f(∆(ΠT1 ×ΠT2)). Let
1(πT1,πT2) denote the distribution of play with sin-
gleton support (πT1, πT2), that is, the distribution of
play that assigns the deterministic strategy profile
(πT1, πT2) for the team with probability 1. Since f is
linear, and since

∆(ΠT1 ×ΠT2)

= co{1(πT1,πT2) : πT1 ∈ ΠT1, πT2 ∈ ΠT2},
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we have

ΞT = co{f(1(πT1,πT2)) : πT1 ∈ ΠT1, πT2 ∈ ΠT2}.

Hence, to conclude the proof of this part, it will be
enough to show that for each πT1 ∈ ΠT1, πT2 ∈ ΠT2,
it holds that f(1(πT1,πT2)) ∈ Ξ∗T1. Since 1(πT1,πT2)

assigns probability 1 to one profile and 0 to all other
profiles, f(1(πT1,πT2)) is an extensive-form correla-
tion plan whose entris are all in {0, 1}. So, in partic-
ular, f(1(πT1,πT2)) ∈ Ξ∗T1. This concludes the proof
of the inclusion ΞT ⊆ co Ξ∗T1.

Together, the two statements that we just prove show that
ΞT = co Ξ∗T1.

Finally, using the fact that unions and convex hulls commute,
we have

co(Ξ∗T1 ∪ Ξ∗T2) = (co Ξ∗T1) ∪ (co Ξ∗T2) = ΞT ∪ ΞT = ΞT,

thereby concluding the proof.

B. Game Instances
The size of the parametric instances we use as benchmark is
described in Table 1. In the following, we provide a detailed
explanation of the rules of each game.

Kuhn poker Two-player Kuhn poker was originally pro-
posed by Kuhn (1950). We employ the three-player vari-
ation described in Farina et al. (2018). In a three-player
Kuhn poker game with rank r there are r possible cards. At
the beginning of the game, each player pays one chip to the
pot, and each player is dealt a single private card. The first
player can check or bet, i.e., putting an additional chip in
the pot. Then, the second player can check or bet after a first
player’s check, or fold/call the first player’s bet. If no bet
was previously made, the third player can either check or
bet. Otherwise, the player has to fold or call. After a bet of
the second player (resp., third player), the first player (resp.,
the first and the second players) still has to decide whether
to fold or to call the bet. At the showdown, the player with
the highest card who has not folded wins all the chips in the
pot.

Goofspiel This bidding game was originally introduced
by Ross (1971). We use a 3-rank variant, that is, each player
has a hand of cards with values {−1, 0, 1}. A third stack
of cards with values {−1, 0, 1} is shuffled and placed on
the table. At each turn, a prize card is revealed, and each
player privately chooses one of his/her cards to bid, with the
highest card winning the current prize. In case of a tie, the
prize is split evenly among the winners. After 3 turns, all
the prizes have been dealt out and the payoff of each player

is computed as follows: each prize card’s value is equal to
its face value and the players’ scores are computed as the
sum of the values of the prize cards they have won.

Goofspiel with limited information This is a variant of
Goofspiel introduced by Lanctot et al. (2009). In this varia-
tion, in each turn the players do not reveal the cards that they
have played. Rather, they show their cards to a fair umpire,
which determines which player has played the highest card
and should therefore received the prize card. In case of tie,
the umpire directs the players to split the prize evenly among
the winners, just like in the Goofspiel game. This makes
the game strategically more challenging as players have less
information regarding previous opponents’ actions.

Leduc poker We use a three-player version of the clas-
sical Leduc hold’em poker introduced by Southey et al.
(2005). We employ game instances of rank 3, in which the
deck consists of three suits with 3 cards each. Our instances
are parametric in the maximum number of bets, which in
limit hold’em is not necessarely tied to the number of play-
ers. The maximum number of raise per betting round can
be either 1, 2 or 3. As the game starts players pay one chip
to the pot. There are two betting rounds. In the first one a
single private card is dealt to each player while in the second
round a single board card is revealed. The raise amount is
set to 2 and 4 in the first and second round, respectively.

Liar’s dice Liar’s dice is another standard benchmark in-
troduced by Lisỳ et al. (2015). In our three-player imple-
mentation, at the beginning of the game each of the three
players privately rolls an unbiased k-face die. Then, the
three players alternate in making (potentially false) claims
about their toss. The first player begins bidding, announcing
any face value up to k and the minimum number of dice
that the player believes are showing that value among the
dice of all the players. Then, each player has two choices
during their turn: to make a higher bid, or to challenge the
previous bid by declaring the previous bidder a ”liar”. A
bid is higher than the previous one if either the face value
is higher, or the number of dice is higher. If the current
player challenges the previous bid, all dice are revealed. If
the bid is valid, the last bidder wins and obtains a reward
of +1 while the challenger obtains a negative payoff of -1.
Otherwise, the challenger wins and gets reward +1, and the
last bidder obtains reward of -1. All the other players obtain
reward 0. We test our algorithms on Liar’s dice instances
with k = 3 and k = 4.

C. Additional Experimental Results
All experiments were run 10 times, and the experimental
tables show average run times. We always use the same
random seed to sample no-regret strategies for the team
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members in the seeding phase of our column-generation
algorithm. The seed was never changed, and we don’t treat
it as a hyperparameter. So, all algorithms are deterministic,
and the only source of randomness in the run time is due
to system load. Consequently, we observed small standard
deviations in the run times, less than 10% in all cases.

We used the same time limit for FTP that was found to
be beneficial by the original authors (Farina et al., 2018),
namely 15 seconds. For FTP and CG-18, we used the origi-
nal implementations, with permission from the authors. In
all algorithms, we observed that the majority of time is spent
within Gurobi.

Table 4 and Table 5 show the comparison between our
column-generation algorithm, FTP, and CG-18 when the
opponent plays as the first and as the second player, respec-
tively.

Comparison between the Algorithm of Section 5 and
the Prior State of the Art

Depending on the cap n on the number or semi-randomized
correlation plans, the algorithm we describe in Section 5
might not reach the optimal TMECor value for the team
(although, as we argue in Section 7, a very small n already
guarantees a large fraction of the optimal value empirically).

For completeness, we report the run time of the algorithm
for a sample instance. We employ instance [H] with O = 3
as it is has a good trade-off between dimensions and man-
ageability. When n = 1 the algorithm reaches an optimal
solution in 9.21s. The optimal solution with n = 1 achieves
15% of the optimal utility with no restrictions on the num-
ber of plans. With n = 2 the run time is 12m 05s and the
solution reaches 90% of the optimal value. With n = 3 the
run time is 1h 53m and the solution guarantees 92% of the
optimal value.

The column-generation algorithm has better run time perfor-
mances and guarantees to reach an optimal solution without
having to pick the right support size. However, we observe
that the algorithm of Section 5 already outperforms FTP
and CG-18. Specifically, FTP cannot reach a strategy guar-
anteeing 50% of the optimal utility within the time limit,
while our algorithm guarantees 90% of the optimal value
within roughly 10 minutes. On the other hand, CG-18 can-
not complete even a single iteration within the time limit.
This confirms the our pricing formulation is significantly
tighter than previous formulations.
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Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 0 100 1000 value

[A] 2ms 2ms 0ms† 15.00s† 2m 35s† 66ms 5 0 −0.481 −0.133 −0.133 0
[B] 17ms 27ms 0ms 16m 39s > 6h 1.01s 0 3 −0.307 0.037 0.037 0.038
[C] 4.67s 6.86s 7m 36s > 6h > 6h > 6h 7 38 −0.381 0.055 0.058 0.066

[D] 302ms 654ms 2ms > 6h > 6h 1m 56s 17 0 −1.000 0.239 0.251 0.252
[E] 821ms 1.52s 6ms > 6h > 6h 23m 17s 31 0 −1.110 0.242 0.249 0.253

[F] 5.73s 15.34s 19m 25s > 6h > 6h > 6h 1 0 −0.926 0 0 0
[G] 8.08s 1h 09m > 6h > 6h > 6h > 6h 0 2 −0.696 0.039 0.063 0.063

[H] 32.12s 40.16s 2h 49m > 6h > 6h > 6h 1 90 −2.000 0.001 0.173 0.199
[I] 14m 51s 15m 12s > 6h > 6h > 6h > 6h 0 232 −2.000 −0.020 0.105 0.186
[J] 11m 23s 8m 24s > 6h > 6h > 6h > 6h 1042 123 −2.000 −0.433 0.395 0.549

(a) — Comparison of run times (b) (c)

Table 4: Results for O = 1. (a) Runtime comparison between our column generation algorithm, FTP, and CG-18. The
seeded version of our algorithm runs m = 1000 iterations of CFR+ (Section 6.2), while the non seeded version runs m = 0.
‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution
with expected value at least −ε/10 for the team. (b) Number of times the pricing problem for our column-generation
algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our
column-generation algorithm (seeded version with m = 1000). (c) Quality of the initial strategy of the team obtained for
varying sizes of S compared to the expected utility of the team at the TMECor.

Game Ours Fictitious Team Play (FTP) CG-18 Pricers Team utility after seeding TMECor
Seeded Not seed. ε = 50% ε = 10% ε = 1% Relax. MIP m = 0 100 1000 value

[A] 0ms 3ms 0ms† 19s† 3m 09s† 147ms 1 0 −0.667 0 0 0
[B] 0ms 12ms 1m 39s > 6h > 6h 7.53s 1 0 −0.281 0.027 0.027 0.027
[C] 4.01s 4.22s 48m 08s > 6h > 6h > 6h 6 26 −0.636 0.018 0.027 0.038

[D] 221ms 696ms 1ms > 6h > 6h 1m 46s 13 0 −1.000 0.247 0.252 0.252
[E] 1.11s 1.37s 1.39s > 6h > 6h 12m 30s 42 0 −1.110 0.241 0.252 0.253

[F] 20.72s 1m 03s 1h 30m > 6h > 6h > 6h 38 2 −0.778 0.246 0.256 0.256
[G] 5h 48m 5h 44m > 6h > 6h > 6h > 6h 140 17 −0.969 0.260 0.264 —

[H] 2m 02s 2m 44s > 6h > 6h > 6h > 6h 24 168 −1.679 0.061 0.164 0.253
[I] 27m 17s 27m 50s > 6h > 6h > 6h > 6h 6 553 −1.911 −0.011 0.076 0.183
[J] 28m 05s 11m 21s > 6h > 6h > 6h > 6h 4600 254 −2.000 0.190 0.392 0.628

(a) — Comparison of run times (b) (c)

Table 5: Results for O = 2. (a) Runtime comparison between our column generation algorithm, FTP, and CG-18. The
seeded version of our algorithm runs m = 1000 iterations of CFR+ (Section 6.2), while the non seeded version runs m = 0.
‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution
with expected value at least −ε/10 for the team. (b) Number of times the pricing problem for our column-generation
algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our
column-generation algorithm (seeded version with m = 1000). (c) Quality of the initial strategy of the team obtained for
varying sizes of S compared to the expected utility of the team at the TMECor. ‘oom’: out of memory.


