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Unbalanced minibatch Optimal Transport; applications to
Domain Adaptation

Supplementary material
Outline. The supplementary material of this paper is organized as follows:

• In section A, we first review the formalism with definitions and basic property proofs.

• In section B, we demonstrate our statistical and optimization results.

• In section C, we give extra experiments and details for domain adaptation experiments.

A. Minibatch UOT formalism and basic properties
We start with the rigorous formalism of the minibatch UOT transport plan.

A.1. Minibatch UOT plan formalism

Definition 1. We denote by Opth the set of all optimal transport plans for h = OTτ,εφ , cost matrix C and a marginal
u. Let um,um ∈ (Rm)2 be discrete positive uniform vectors. For each pair of index m-tuples I = (i1, . . . , im) and
J = (j1, . . . , jm) from J1, nKm, consider C ′ := CI,J the m×m matrix with entries C ′k` = Cik,j` and denote by Πm

I,J an
arbitrary element of Opth. It can be lifted to an n× n matrix where all entries are zero except those indexed in I × J:

ΠI,J = Q>I Πm
I,JQJ (1)

where QI and QJ are m× n matrices defined entrywise as

(QI)ki = δik,i, 1 ≤ k ≤ m, 1 ≤ i ≤ n (2)
(QJ)`j = δj`,j , 1 ≤ ` ≤ m, 1 ≤ j ≤ n. (3)

Each row of these matrices is a Dirac vector, hence they satisfy QI1n = 1m and QJ1n = 1m.

We also define the averaged minibatch transport matrix which takes into account all possible minibatch couples.

Definition 2 (Averaged minibatch transport matrix). Consider h = OTτ,εφ . Given data n-tuples X,Y , consider for each
pair of m-tuples I , J , the uniform vector of size m,um, and let ΠI,J be defined as in Definition 1.

The averaged minibatch transport matrix and its incomplete variant are :

Π
m

(X,Y ) :=
(n−m)!2

n!2

∑
I∈Pm

∑
J∈Pm

ΠI,J ., (4)

Π̃m
k (X,Y ) := k−1

∑
(I,J)∈Dk

ΠI,J , (5)

where Dk is a set of cardinality k whose elements are drawn at random from the uniform distribution on Γ := Pm × Pm.

The average in the above definition is always finite so we do not need to concern ourselves with the measurability of selection
of optimal transport plans. The same will be true whenever an average of optimal transport plans will be taken in the rest of
this paper, since all results concerning such averages will be nonasymptotic. We will therefore avoid further mentioning
this issue, for the sake of brevity. Unfortunately, on contrary to the balanced case, the minibatch UOT transport plan do
not define OT transport plan as they do not respect the marginals, so in general the averaged minibatch UOT is not an OT
transport plan. Note that the Sinkhorn divergence involves three terms, which explains why we can not define an associated
averaged minibatch transport matrix.
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A.2. Basic properties

Proposition 1 (Positivity, symmetry and bias). The minibatch UOT are positive and symmetric losses. However, they are
not definites, i.e., h̄m(X,X) > 0 for non trivial X and 1 < m < n.

Proof. The first two properties are inherited from the classical UOT cost. Consider a uniform probability vector and
random 3-data tuple X = (x1,x2,x3) with distinct vectors (xi)1≤i≤3. As h̄m is an average of positive terms, it is equal
to 0 if and only if each of its term is 0. But consider the minibatch term I1 = (i1, i2) and I2 = (i1, i3), then obviously
h(u,u, C(X(I1),X(I2))) 6= 0 as x2 6= x3, where X(I1) denotes the data minibatch corresponding to indices in I1.

We now give the proof for our claim ”A simple combinatorial argument assures that the sum of um over all m-tuples I
gives un.”

Proposition 2 (Averaged distributions). Let um be a uniform vector of size m. The average over m-tuples I ∈ Pm for a
given index of um is equal to ma

n , i.e., ∀i ∈ J1, nK,
∑
I∈Pm(um)i = (un)i = ma

n .

Proof. We recall that Pm denotes the set of all m-tuples without repeated elements. Let us check we recover the initial
weights (un)i = ma

n . Observe that
∑n
i=1 ai = ma and that for each 1 ≤ i ≤ n

]{I ∈ Pm : i ∈ I} = ]{I ∈ Pm : n ∈ I}
= ]{I = (i1, . . . , im) ∈ Pm : i1 = n}+ . . .+ ]{I = (i1, . . . , im) ∈ Pm : im = n}
= m · ]{I = (i1, . . . , im) ∈ Pm : im = n}. (6)

Since ]{I = (i1, . . . , im) ∈ Pm : im = n} is the number of (m − 1)-tuples without repeated indices of J1, n − 1K,
(n− 1)!/(n−m)!, it follows that

(n−m)!

n!
·
∑
I∈Pm

ma

m
1I(i) =

(n−m)!

n!

∑
I∈Pm,i∈I

ma

m
=

(n−m)!

n!

ma

m
· ]{I ∈ Pm : i ∈ I} (7)

=
(n−m)!

n!

ma

m
m · (n− 1)!

(n−m)!
=
ma

n
(8)

B. Proof main results
In this section we prove the UOT properties and the minibatch statistical and optimization theorems. We start with UOT
properties as they are necessary to derive the minibatch results.

B.1. Unbalanced Optimal Transport properties

We recall the definition of Csiszàr divergences. Consider a convex, positive, lower-semicontinuous function such that
φ(1) = 0. Define its recession constant as φ′∞ = limx→+∞ φ(x)/x. The Csiszàr divergence between positively weighted
vectors (x,y) ∈ Rd+ reads

Dφ(x,y) =
∑
yi 6=0

yiφ
(xi
yi

)
+ φ′∞

∑
yi=0

xi.

It allows to generalize OT programs. We retrieve common penalties such as Total Variation and Kullback-Leibler divergence
by respectively taking φ(x) = |x − 1| and φ(x) = (x logx − x + 1). We provide a generalized definition of all OT
programs as

OTτ,εφ (a, b, C) = min
Π∈Rn×n+

F(Π, C) = min
Π∈Rn×n+

〈C,Π〉+ τDφ(Π1n|a) + τDφ(ΠT1n|b) + εKL(Π|a⊗ b).

Where F denotes the UOT energy.
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B.1.1. ROBUSTNESS

We start by showing the robustness properties lemma 1 that we split in two different lemmas. Lemma 1.1 shows that the
UOT cost is robust to an outlier while lemma 1.2 shows that OT is not robust to an outlier.

Lemma 1.1. Take (µ, ν) two probability measures with compact support, and z outside of ν’s support. Recall the
Gaussian-Hellinger distance (Liero et al., 2017) between two positive measures as

GHτ (µ, ν) = inf
π≥0

∫
C(x, y)dπ(x, y) + τKL(π1|µ) + τKL(π2|ν).

For ζ ∈ [0, 1], write µ̃ = ζµ+ (1− ζ)δz a measure perturbed by a Dirac outlier. Write m(z) =
∫
C(z, y)dν(y) One has

GHτ (µ̃, ν) ≤ ζ GHτ (µ, ν) + 2τ(1− ζ)(1− e−m(z)/2τ ) (9)

In particular, with the notation OTτ,0KL it reads

OTτ,0KL (µ̃, ν, C) ≤ ζ OTτ,0KL (µ, ν, C) + 2τ(1− ζ)(1− e−m(z)/2τ )

Proof. Recall that the OT program reads

Write π the optimal plan for OTτ,0φ (µ, ν). We consider a suboptimal plan for OTτ,0φ (µ̃, ν) of the form

π̃ = ζπ + (1− ζ)κδz ⊗ ν,

where κ is mass parameter which will be optimized after. Note that the marginals of the plan π̃ are π̃1 = ζπ1 + (1− ζ)κδz
and π̃2 = ζπ2 + (1− ζ)κν. Note that KL is jointly convex, thus one has

KL(π̃1|µ̃) ≤ ζKL(π1|µ) + (1− ζ)KL(κδz|δz),
KL(π̃2|µ̃) ≤ ζKL(π2|ν) + (1− ζ)KL(κν|ν).

Thus a convex inequality yields

OTτ,0φ (µ̃, ν) ≤ ζ
[ ∫
||x− y||dπ(x, y) + τKL(π1|µ) + τKL(π2|ν)

]
+ (1− ζ)

[
κm(z) + τKL(κδz|δz) + τKL(κν|ν)

]
.

We optimize now the upper bound w.r.t. κ. Both KL terms are equal to φ(κ) = κ log κ− κ+ 1, thus differentiating w.r.t. κ
yields

m(z) + 2τ log κ = 0⇒ κ = e−m(z)/2τ .

Reusing this expression of κ in the upper bound yields Equation (9).

Lemma 1.2. Take (µ, ν) two probability measures with compact support, and z outside of ν’s support. Define the
Wasserstein distance between two probabilities as

W(µ, ν) = sup
f(x)+g(y)≤C(x,y)

∫
f(x)dµ(x) +

∫
g(y)dν(y). (10)

For ζ ∈ [0, 1], write µ̃ = ζµ+ (1− ζ)δz a measure perturbed by a Dirac outlier. Write (f, g) the optimal dual potentials of
W(µ, ν), and y∗ a point in ν’s support. One has

W(µ̃, ν) ≥ ζ W(µ, ν) + (1− ζ)
(
||z − y∗||2 − g(y∗) +

∫
gdν

)
(11)

In particular, with the notation OT∞,0KL it reads

OT∞,0φ (µ̃, ν) ≥ ζ OT∞,0φ (µ, ν) + (1− ζ)
(
C(z, y∗)− g(y∗) +

∫
gdβ

)
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Proof. We consider a suboptimal pair (f̃ , g̃) of potentials for OT∞,0φ (µ̃, ν). On the support of (µ, ν) we take the optimal
potentials pair (f, g) for (µ, ν), i.e. f̃ = f and g̃ = g. We need to extend f̃ at z. To do so we take the c-transform of g, i.e.

f̃(z) = inf
y∈spt(ν)

||z − y||2 − g(y) = ||z − y∗||2 − g(y∗),

where the infimum is attained at some y∗ since ν has compact support. the pair (f̃ , g̃) is suboptimal, thus

OT∞,0φ (µ̃, ν) ≥
∫
f̃(x)dµ̃(x) +

∫
g̃(y)dν(y)

≥ ζ
∫
f(x)dµ(x) + (1− ζ)f̃(z) +

∫
g̃(y)

≥ ζ OT∞,0φ (µ, ν) + (1− ζ)
[
||z − y∗||2 − g(y∗) +

∫
g(y)dν(y)

]
Hence the resulted given by Equation (11).

B.1.2. UOT PROPERTIES

Now let us present results which will be useful for concentration bounds. A key element is to have a bounded plan and a
finite UOT cost in order to derive a hoeffding type bound. We start this section by proving lemma 2. We split it in two,
lemma 2.1 proves that the UOT cost is finite and provides an upper bound while lemma 2.2 proves that the UOT plan exists
and belongs to a compact set.

Lemma 2.1 (Upper bounds). Let (a, b) be two positive vectors and assume that 〈ab>, C〉 < +∞, then the UOT cost is
finite. Furthermore, we have the following bound for h = OTτ,εφ , one has |h(a, b, C)| 6Mh

a,b, where

Mh
a,b = Mmamb + τmaφ(mb) + τmbφ(ma). (12)

Regarding h = Sτ,εφ , one has |h(a, b, C)| 6MS
a,b, where

MS
a,b = 2Mmamb + τmaφ(mb) + τmbφ(ma) + τmaφ(ma) + τmbφ(mb) +

ε

2
(ma −mb)2. (13)

Proof. As 〈ab>, C〉 < +∞ is finite, one can bound the ground cost C as 0 6 Ci,j 6 M . Consider the OT kernel
h ∈ {OTτ,εφ } for any ε ≥ 0. Let us consider the transport plan Π = ab> = (aibj) (with respect to the cost matrix C).
Because all terms are positive, we have:

|h| 6 〈ab>, C〉+ εKL(ab>|ab>) + τDφ

(
(ab>)1n|a

)
+ τDφ

(
(ba>)1n|b

)
6M

∑
i,j

aibj + τmaφ(mb) + τmbφ(ma)

6Mmamb + τmaφ(mb) + τmbφ(ma) (14)

Defining Mh
a,b as the last upper bound finishes the proof. The case h = Sτ,εφ , is the sum of three terms of the form OTτ,εφ

Thus the sum Mh
a,b + 1

2M
h
a,a + 1

2M
h
b,b is an upper bound of Sε.

We now bound the UOT plan.

Lemma 2.2 (locally compact optimal transport plan). Assume that 〈ab>, C〉 < +∞. Consider regularized or unregularized
UOT with entropy φ and penalty Dφ such that one has φ′∞ > 0. Then there exists an open neigbhourhood U around C, and
a compact set K, such that the set of optimal transport plan for any C̃ ∈ U is in K, i.e., Opth(C̃) ⊂ K. Furthermore, if all
costs are uniformly bounded such that 0 ≤ C ≤M <∞, then the compact K can be taken global, i.e. independent of C.

Proof. We identify the mass of a positive measure with its L1 norm, i.e. ma =
∑

ai = ||a||1. We first consider the case
where 0 ≤ C ≤ M < ∞. The OT cost is finite because the plan π = ab> is suboptimal and yields OTτ,εφ (a, b, C) ≤
Mmamb + τmaφ(mb) + τmbφ(ma) < +∞.
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Take a sequence Πt approaching the infimum. Note that thanks to the Jensen inequality, one hasDφ(x,y) ≥ myφ(mx/my)
(see (Liero et al., 2017)). Write mΠ =

∑
Πt,ij . One has for any t

〈Πt, C〉+ τDφ(Πt,11n|a) + τDφ(Π>t,21n|b) + εKL(Πt|ab>)

≥ mΠ

[
minCij + τ

ma

mΠ
φ
(mΠ

ma

)
+ τ

mb

mΠ
φ
(mΠ

mb

)
+ ε

mamb

mΠ
φKL

( mΠ

mamb

)]
≥ mΠL(mΠ).

If ||Πt||1 = mΠ → +∞, then L(mΠ) → +∞ if ε > 0 and L(mΠ) → minCij + 2φ′∞ > 0 otherwise. In both cases, as
t → ∞ and ||Πt||1 = mΠ → +∞, we are supposed to approach the infimum but its lower bound goes to +∞, which
contradicts the fact that the optimal OT cost is finite.

More precisely, there exists a large enough value M̃ such that for mΠ > M̃ , the lower bound is superior to the upper bound
Mmamb + τmaφ(mb) + τmbφ(ma) and thus necessarily not optimal. Furthermore, M̃ depends on (ma,mb,M) since
0 ≤ C ≤ M . Thus, there exists M̃ > 0 and some t0 such that for t ≥ t0 any plan approaching the optimum statisfies
||Πt||1 ≤ M̃ . The sequence (Πt)t is in a finite dimensional, bounded, and closed set, i.e. a compact set. One can extract a
converging subsequence whose limit is a plan attaining the minimum. Thus any optimal plan is necessarily in a compact set.

To generalize to local compactness, we consider δ > 0 and a neighbourhood U of C such that for any C̃ ∈ U one has
0 ≤ C̃ ≤ maxC + δ. Reusing the above proof yields the existence of M̃ such that for any C̃ ∈ U , any plan approaching
the optimum satisfies ||Πt||1 ≤ M̃ , but this time M̃ depends on (ma,mb,maxC + δ), which is independent of C in its
neighbourhood.

We recall we denote the set of all optimal transport plan Opth(X,Y ) ⊂M+(X ). While the UOT energy takes positive
vectors and a ground cost as inputs, we make a slight abuse of notation with Opth(X,Y ). Indeed, the ground cost can
be deduced from X,Y and we associate uniform vectors as a and b. As each element Π of Opth(X,Y ) is bounded
by a constant M , Opth(X,Y ) is a compact space ofM+(X ). We denote the maximal constant M which bounds all
elements of Opth(X,Y ) as MΠ. We now prove that the set of optimal transport plan is convex , which will be useful for
the optimization section.

Lemma 3 (optimal transport plan convexity). Consider regularized or unregularized UOT with entropy φ and penalty Dφ.
The set of all optimal transport plan Opth(X,Y ) is a convex set.

Proof. It is a general property of convex analysis. Take a convex function f and two points (x,y) that both attain the
minimum over a convex set E. Write z = tx + (1 − t)y for t ∈ [0, 1]. By convexity and suboptimality of z one has
minE f ≤ f(z) ≤ tf(x) + (1 − t)f(y) = minE f . Thus z is also optimal, hence the set of minimizers is convex. The
losses OTτ,εφ fall under this setting.

Finally, we provide a final result about UOT cost which is also useful for the optimization properties.

Lemma 4 (UOT is Lipschitz in the cost C). The map C 7→ h(u,u, C) is locally Lipshitz. Furthermore, if the costs are
uniformly bounded (0 ≤ C ≤M ) then the loss is globally Lipschitz.

Proof. We recall that h(u,u, C) = min
Π∈Rn×n+

F(Π, C). Let C1 and C2 be two ground costs. Let Π1 and Π2 be the optimal

solutions of h(u,u, C1) and h(u,u, C2), i.e., h(u,u, C1) = F(Π1, C1). Then we have:

F(Π1, C1)−F(Π1, C2) ≤ h(u,u, C1)− h(u,u, C2) ≤ F(Π2, C1)−F(Π2, C2) (15)

Thus we have

h(u,u, C1)− h(u,u, C2) ≤ F(Π2, C1)−F(Π2, C2)

= 〈Π2, C1 − C2〉 (16)
≤ ‖Π2‖‖C1 − C2‖ (17)
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Where the last inequality uses the Cauchy-Schwarz inequality. Following the same logic we get a bound for minus the left
hand term

h(u,u, C2)− h(u,u, C1) ≤ F(Π1, C2)−F(Π1, C1) ≤ ‖Π1‖‖C1 − C2‖ (18)

It remains to bound ‖Πi‖. When we study the local Lipschitz property, without loss of generality, we fix C1 and take C2 in a
local neighbourhood of C1. Thus Lemma 2.2, gives that ‖Πi‖ ≤ M̃ , where M̃ only depends on (φ, τ, ε,a, b,maxC), with
a = b = u, i.e. it is locally independant of C in its neighbourhood, hence the local Lipschitz property. When 0 ≤ C ≤M ,
then M̃ is independent of the cost, hence the bound is global and the map is globally Lipschitz.

B.2. Statistical and optimization proofs

We consider a positive, symmetric, definite and C1 ground cost and without loss of generality, we consider our ground cost
to be squared euclidean. We recall our definitions and hypothesis. As the distributions α and β are compactly supported,
there exists a constant M > 0 such that for any 1 6 i, j 6 n, c(xi,yj) 6 M with M := diam(Supp(α) ∪ Supp(β))2.
We also furthermore suppose that the input masses ma and mb of positive vectors are strictly positive and finite, i.e.,
0 < ma <∞. These hypothesis assures us that the UOT cost is finite and that the UOT plan is bounded.

B.2.1. PROOF OF THEOREM 1

We now give the details of the proof of theorem 1. We separate theorem 1 in two sub theorem 1.1 and theorem 1.2. In
the theorem 1.1, we show the deviation bound between h̃mk and Eh and in theorem 1.2, we show the deviation bound
between Π̃m

k and Π
m

. For theorem 1.1, we rely on two lemmas. The first lemma bounds the deviation between the complete
estimator h̄m and its expectation Eh. We denote the floor function as bxc which returns the biggest integer smaller than x.

Lemma 5 (U-statistics concentration bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed, and two compactly
supported distributions α, β. Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and a kernel h ∈ {OTτ,εφ , Sτ,εφ }. We have a
concentration bound between h̄m(X,Y ) and the expectation over minibatches Eh depending on the number of empirical
data n

|h̄m(X,Y )− Eh| ≤Mh
u,u

√
log(2/δ)

2bn/mc
(19)

with probability at least 1− δ and where Mh
u,u is an upper bound defined in lemma 2.1.

Proof. h̄m(X,Y ) is a two-sample U-statistic of order 2m and Eh is its expectation as X and Y are iid random variables.
h̄m(X,Y ) is a sum of dependant variables and it is possible to rewrite h̄m(X,Y ) as a sum of independent random variables.
As α, β are compactly supported by hypothesis, the UOT loss is bounded thanks to lemma 2.1. Thus, we can apply the
famous Hoeffding lemma to our U-statistic and get the desired bound. The proof can be found in (Hoeffding, 1963) (the two
sample U-statistic case is discussed in section 5.b) .

The second lemma bounds the deviation between the incomplete estimator h̃mk and the complete estimator h̄m.

Lemma 6 (Deviation bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed, and two compactly supported
distributions α, β. Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and a kernel h ∈ {OTτ,εφ , Sτ,εφ }. We have a deviation

bound between h̃mk (X,Y ) and h̄m(X,Y ) depending on the number of batches k

|h̃mk (X,Y )− h̄m(X,Y )| 6Mh
u,u

√
2 log(2/δ)

k
(20)

with probability at least 1− δ and where Mh
u,u is an upper bound defined in lemma 2.1.

Proof. First note that h̃mk (X,Y ) is an subsample quantity of h̄m(X,Y ). Let us consider the sequence of random variables
((bl(I, J)(I,J)∈Pm)16l6k such that bl(I, J) is equal to 1 if (I, J) has been selected at the l−th draw and 0 otherwise. By
construction of h̃mk , the aforementioned sequence is an i.i.d sequence of random vectors and the bl(I, J) are Bernoulli
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random variables of parameter 1/|Γ|. We then have

h̃mk (X,Y )− h̄m(X,Y ) =
1

k

k∑
l=1

ωl (21)

where ωl =
∑

(I,J)∈Pm(bl(I, J) − 1
|Γ| )h(I, J). Conditioned upon X = (x1, · · · ,xn) and Y = (y1, · · · ,yn), the

variables ωl are independent, centered and bounded by 2Mh
u,u thanks to lemma 2.1. Using Hoeffding’s inequality yields

P(|h̃mk (X,Y )− h̄m(X,Y )| > ε) = E[P(|h̃mk (X,Y )− h̄m(X,Y )| > ε|X,Y )] (22)

= E[P(|1
k

k∑
l=1

ωl)| > ε|X,Y )] (23)

6 E[2e
−kε2

2(Mhu,u)2 ] = 2e
−kε2

2(Mhu,u)2 (24)

which concludes the proof.

We are now ready to prove Theorem 1.1.

Theorem 1.1 (Maximal deviation bound). Let δ ∈ (0, 1), three integers k ≥ 1 and m ≤ n be fixed and two compactly
supported distributions α, β. Consider two n-tuples X ∼ α⊗n and Y ∼ β⊗n and a kernel h ∈ {OTτ,εφ , Sτ,εφ }. We have

a maximal deviation bound between h̃mk (X,Y ) and the expectation over minibatches Eh depending on the number of
empirical data n and the number of batches k

|h̃mk (X,Y )− Eh| ≤Mh
u,u

√
log(2/δ)

2bn/mc
+Mh

u,u

√
2 log(2/δ)

k
(25)

with probability at least 1 - δ and where Mh
u,u is an upper bound defined in lemma 2.1.

Proof. Thanks to lemma 6 and 5 we get

|h̃mk (X,Y )− Eh| ≤ |h̃mk (X,Y )− h̄m(X,Y )|+ |h̄m(X,Y )− Eh| (26)

≤Mh
u,u

√
log(2/δ)

2bn/mc
+Mh

u,u

√
2 log(2/δ)

k
(27)

with probability at least 1− ( δ2 + δ
2 ) = 1− δ.

We now give the details of the proof of theorem 1.2. In what follows, we denote by Π(i) the i-th row of matrix Π. Let us
denote by 1 ∈ Rn the vector whose entries are all equal to 1.

Theorem 1.2 (Distance to marginals). Let δ ∈ (0, 1), two integers m ≤ n be fixed. Consider two n-tuples X ∼ α⊗n and
Y ∼ β⊗n and the kernel h = OTτ,εφ . For all integer k ≥ 1, all 1 6 i 6 n, with probability at least 1− δ on the draw of
X,Y and Dk we have

|Π̃m
k (X,Y )(i)1−Π

m
(X,Y )(i)1| 6 M∞Π

√
2 log(2/δ)

k
, (28)

where M∞Π denotes an upper bound of all minibatch UOT plan.

Proof. Let us consider the sequence of random variables ((bp(I, J)(I,J)∈Γ)16p6k such that bp(I, J) is equal to 1 if (I, J)

has been selected at the p−th draw and 0 otherwise. By construction of Π̃m
k (X,Y ), the aforementioned sequence is an i.i.d

sequence of random vectors and the bp(I, J) are bernoulli random variables of parameter 1/|Γ|. We then have

Π̃m
k (X,Y )(i)1 =

1

k

k∑
p=1

ωp (29)
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where ωp =
∑

(I,J)∈Γ

∑n
j=1(ΠI,J)i,jbp(I, J). Conditioned upon X = (x1, · · · ,xn) and Y = (y1, · · · ,yn), the random

vectors ωp are independent, and thanks to lemma 2.2, they are bounded by a constant MΠ which is the maximum mass of
all optimal minibatch unbalanced plan in Opth(X(I),Y (J)). We denote the maximum upper bound MΠ of all minibatch
UOT plan as M∞Π . Moreover, one can observe that E[Π̃m

k (X,Y )(i)1] = Π
m

(X,Y )(i)1. Using Hoeffding’s inequality
yields

P(|Π̃m
k (X,Y )(i)1−Π

m
(X,Y )(i)1)| > ε) = E[P(|1

k

k∑
p=1

ωp − E[
1

k

k∑
p=1

ωp])| > ε|X,Y )] (30)

6 2e
−2 kε2

(M∞
Π

)2 (31)

which concludes the proof.

Note that the unbalanced Sinkhorn divergence Sτ,εφ involves three terms of the form OTτ,εφ , hence three transport plans,
which explains why we do not attempt to define an associated averaged minibatch transport matrix.

B.2.2. PROOF OF THEOREM 2

To prove the exchange of gradients and expectations over minibatches we rely on Clarke differential. We need to use this non
smooth analysis tool as unregularized UOT is not differentiable. It is not differentiable because the set of optimal solutions
might not be a singleton. Clarke differential are generalized gradients for locally Lipschitz function and non necessarily
convex. A similar strategy was developped in (Fatras et al., 2021). The key element of this section is to rewrite the original
UOT problem OTτ,εφ as:

OTτ,εφ (a, b, C) = min
Π∈Rn×n+

〈C,Π〉+ εKL(Π|a⊗ b) + τDφ(Π1n|a) + τDφ(Π>1n|b) (32)

= min
Π∈OptOT

τ,ε
φ

〈C,Π〉+ εKL(Π|a⊗ b) + τDφ(Π1n|a) + τDφ(Π>1n|b), (33)

Where OptOTτ,εφ
(X,Y ) is a compact set of the set of measuresM+(X ). The compact set is a key element for using

Danskin like theorem (Proposition B.25 (Bertsekas, 1997)).

We start by recalling a basic proposition for Clarke regular function:

Proposition 3. A C1 or convex map is Clarke regular.

Proof. see Proposition 2.3.6 (Clarke, 1990)

We first give a lemma which gives the Clarke regularity of the UOT cost with respect to a parametrized random vector.

Lemma 7. Let u be a uniform probability vector. Let X be a Rdm-valued random variable, and {Y θ} a family of
Rdm-valued random variables defined on the same probability space, indexed by θ ∈ Θ, where Θ ⊂ Rq is open. Assume
that θ 7→ Y θ is C1. Consider a C1 cost C and let h ∈ {OTτ,εφ , Sτ,εφ }. Then the function θ 7→ −h(u,u, C(X,Y θ)) is
Clarke regular. Furthermore, for h = OTτ,εφ and for all 1 ≤ i ≤ q we have:

∂θih(u,u, C(X,Y θ)) = co{−〈Π ·D〉 · (∇θiY ) :Π ∈ Opth(X,Y ), (34)
D ∈ Rm,m, Dj,k = ∇Y Cj,k(X,Y θ)}

where ∂θi is the Clarke subdifferential with respect to θi, ∇Y Cj,k is the differential of the cell Cj,k of the cost matrix with
respect to Y , Opth(X,Y θ) is the set of optimal transport plan and co denotes the closed convex hull. Note that when
ε > 0 the set Opth(X,Y θ) is reduced to a singleton, and the notation co is superfluous.

Proof. We start with the regularity of θ 7→ −OTτ,εφ (u,u, C(X,Y θ)). To prove the Clarke regularity of this map, we
rely on a chain rule argument. Consider the function Y 7→ Cj,k(X,Y ), it is Clarke regular because it is C1. Since
θ 7→ Y θ is C1, it follows by the chain rule that θ 7→ Cj,k(X,Y θ) is C1 and thus Clarke regular. The Unbalanced OT
cost OTτ,εφ is a minimization of an energy which is linear in C, and it is thus concave in C, hence −OTτ,εφ is Clarke



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

regular by convexity. Therefore from Theorem 2.3.9(i) and Proposition 2.3.1 (for s = 1) in (Clarke, 1990) it follows that
θ 7→ −OTτ,εφ (u,u, C(X,Y θ)) is Clarke regular.

We now furnish the gradients associated to θ 7→ −OTτ,εφ (u,u, C(X,Y θ)). By chain rule, the gradient of θ 7→
Cj,k(X,Y θ) reads

∇θiCj,k(X,Y θ) = ∇Y Cj,k(X,Y θ) · ∇θiYθ.

We now deal with the gradient of the map C 7→ OTτ,εφ (u,u, C) by verifying the assumptions of Danskin’s theorem (Clarke,
1975, Theorem 2.1). We use in particular the remark below (Clarke, 1975, Theorem 2.1) which states that the hypothesis on
the map are verified if the map is u.s.c in both variables (Π, C) and convex in C. We recall that Opth(X,Y ) is a compact
and a convex set, thanks to lemma 3 and lemma 4. Furthermore, the energy associated to h = OTτ,εφ is concave in the cost
C and l.s.c in (Π, C) (Liero et al., 2017, Lemma 3.9). From (Clarke, 1975, Theorem 2.1) it follows that the subderivatives
of the convex function C 7→ −h(u,u, C) are equal to Opth(X,Y ), due to the energy’s linearity in C. Thus combining the
formulas of the Danskin theorem with the Chain rule yields Equation (34). When ε > 0 the set Opth(X,Y θ) is reduced to
a singleton, and the notation co is superfluous.

We now give the proof for the regularity of the map θ 7→ Sτ,εφ (u,u, C(X,Y θ)) with ε > 0 as when ε = 0, we get the
unregularized UOT treated in the above paragraph. We recall that Sτ,εφ is the summation of three terms of the form OTτ,εφ .
For ε > 0 and each term of the sum, the set of optimal plans OptOTτ,εφ

(X,Y ) is reduced to a unique element and the
differential (34) is also a singleton, thus OTτ,εφ is differentiable. Then Sτ,εφ is differentiable as a difference of differentiable
functions. Furthermore Sτ,εφ is also Clarke regular as a difference of differentiable functions.

We finally prove theorem 2.

Theorem 2. Let u be uniform probability vectors and let X,Y , C be as in lemma 7, h ∈ {OTτ,εφ , Sτ,εφ }, and assume
in addition that the random variables X, {Yθ}θ∈Θ are compactly supported. If for all θ ∈ Θ there exists an open
neighbourhood U , θ ∈ U ⊂ Θ, and a random variable KU : Ω→ R with finite expected value, such that

‖C(X(ω),Y θ1(ω))− C(X(ω),Y θ2(ω))‖ ≤ KU (ω)‖θ1 − θ2‖ (35)

then we have

∂θ E [h(u,u, C(X,Y θ))] = E [∂θh(u,u, C(X,Y θ))] . (36)

with both expectation being finite. Furthermore the function θ 7→ −E [h(u,u, C(X,Y θ))] is also Clarke regular.

Proof. Suppose that U ⊂ Θ is open and KU is a function for which (35) is satisfied. As data lie in compacts the ground cost
C, which is C1, is in a compact KC and as the map C 7→ h(u,u, C) is locally Lipshitz by lemma 4, there exists a uniform
constant which makes the map C 7→ h(u,u, C) globally Lipshitz on the compact KC . Thus, a similar bound to (35) is
also satisfied for the function h(u,u, C(X(ω),Y θ(ω))). Thanks to lemma 7, −h(u,u, C(X,Y θ)) is Clarke regular, the
interchange (36) and regularity of θ 7→ −E[h(u,u, C(X,Y θ))] will follow from Theorem 2.7.2 and Remark 2.3.5 (Clarke,
1990), once we establish that the expectation on the left hand side is finite. This is direct as we suppose we have compactly
supported distributions and C is a C1 cost. Indeed consider the function which is equal to Mh

u,u on the distributions’s
support and which is set to 0 everywhere else. Taking the expectation on this function is finite as Mh

u,u is finite.

C. Domain adaptation and partial domain adaptation experiments
In this section we provide architecture and training procedure details for the domain adaptation experiments. We also discuss
the reported scores procedure. Finally we discuss the training behaviour for both JUMBOT and DEEPJDOT.

C.1. Domain adaptation

In this subsection, we detail the setup of our domain adaptation experiments.

Setup. First note that for all datasets, JUMBOT uses a stratified sampling on source minibatches as done in DEEPJDOT
(Damodaran et al., 2018). Stratified sampling means that each class has the same number of samples in the minibatches.
This is a realistic setting as labels are available in the source dataset.
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Method A-C A-P A-R C-A C-P C-R P-A P-C P-R R-A R-C R-P avg
RESNET-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN 46.2 65.2 73.0 54.0 61.0 65.2 52.0 43.6 72.0 64.7 52.3 79.2 60.7
CDAN-E 52.8 71.4 76.1 59.7 70.6 71.5 59.8 50.8 77.7 71.4 58.1 83.5 67.0
ALDA 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
ROT 47.2 70.8 77.6 61.3 69.9 72.0 55.4 41.4 77.6 69.9 50.4 81.5 64.6
DEEPJDOT 53.4 71.7 77.2 62.8 70.2 71.4 60.2 50.2 77.1 67.7 56.5 80.7 66.6
JUMBOT 55.3 75.5 80.8 65.5 74.4 74.9 65.4 52.7 79.3 74.2 59.9 83.4 70.1

Table 1. Office-Home experiments with maximum classification (ResNet50)

For Digits datasets, we used the 9 CNN layers architecture and the 1 dense layer classification proposed in (Damodaran
et al., 2018). We trained our neural network on the source domain during 10 epochs before applying JUMBOT. We used
Adam optimier with a learning rate of 2e−4 with a minibatch size of 500. Regarding competitors, we use the official
implementations with the considered architecture and training procedure.

For office-home and VisDA, we employed ResNet-50 as generator. ResNet-50 is pretrained on ImageNet and our discrimi-
nator consists of two fully connected layers with dropout, which is the same as previous works (Ganin et al., 2016; Long
et al., 2018; Chen et al., 2020). As we train the classifier and discriminator from scratch, we set their learning rates to be 10
times that of the generator. We train the model with Stochastic Gradient Descent optimizer with a momentum of 0.9. We
schedule the learning rate with the strategy in (Ganin et al., 2016), it is adjusted by χp = χ0

(1+µq)ν , where q is the training
progress linearly changing from 0 to 1, χ0 = 0.01, µ = 10, ν = 0.75.

We compare JUMBOT against recent domain adaptation papers, namely DANN(Ganin et al., 2016), CDAN-E (Long et al.,
2018), ALDA (Chen et al., 2020), DEEPJDOT (Damodaran et al., 2018) and ROT (Balaji et al., 2020) on all considered
datasets. We reproduced their scores and on contrary of these papers we do not report the best classification on the test
along the iterations but at the end of training, which explains why there might be a difference between reported results
and reproduced results. We sincerely believe that the evaluation shall only be done at the end of training as labels are not
available in the target domain. But we also report the maximum accuracy along epochs for the Office-Home DA task in
table 1 and it shows that our method is above all of the competitors by a safe margin of 3%.

For Office-Home, we made 10000 iterations with a batch size of 65 and for VisDA, we made 10000 iterations with a
batch size of 72. For fair comparison we used our minibatch size and number of iterations to evaluate competitors. The
hyperparameters used in our experiments are as follows η1 = 0.1, η2 = 0.1, η3 = 1, τ = 1, ε = 0.1 for the digits and for
office-home datasets η1 = 0.01, η2 = 0.5, η3 = 1, τ = 0.5, ε = 0.01. For VisDA, η1 = 0.005, η2 = 1, η3 = 1, ε = 0.01
and τ was set to 0.3.

C.2. Partial DA

For Partial Domain Adaptation, we considered a neural network architecture and a training procedure similar as in the
domain adapation experiments which also corresponds to the setting in (Jian et al., 2020). Our hyperparameters are set
as follows : τ = 0.06, η1 = 0.003, η2 = 0.75 and finally η3 was set to 10. Regarding training procedure, we made 5000
iterations with a batch size of 65 and for optimization procedure, we used the same as in (Jian et al., 2020). We do not
use the ten crop technic to evaluate our model on the test set as we were not able to reproduce the results from ENT and
PADA. Furthermore, we do not know if the reported results ENT and PADA were evulated at the end of optimization or during
training, but our reported scores are above their scores by at least 5% on average.

C.3. Overfitting

In this subsection, we discuss the training behaviour of DEEPJDOT and our method JUMBOT on the DA task MNIST 7→
M-MNIST. In figure 1, one can see that DEEPJDOT starts overfitting from epoch 30 on each class. There are some classes
which are more affected by overfitting than others. The accuracy on each class is reduced of several points. This behaviour
is not shared with our method JUMBOT. Indeed it is more stable, it does not show any sign of overfitting and it has a higher
accuracy. This shows the relevance of using our method JUMBOT.
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Figure 1. (Best viewed in colors) DEEPJDOT and JUMBOT class accuracies along training. We report the class accuracies along training of
DEEPJDOT and JUMBOT on the DA task MNIST 7→ M-MNIST for optimal hyper-parameters. Each color represents a different class.
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