
Risk-Sensitive Reinforcement Learning with Function Approximation:
A Debiasing Approach

Yingjie Fei 1 Zhuoran Yang 2 Zhaoran Wang 1

Abstract

We study function approximation for episodic re-
inforcement learning with entropic risk measure.
We first propose an algorithm with linear function
approximation. Compared to existing algorithms,
which suffer from improper regularization and re-
gression biases, this algorithm features debiasing
transformations in backward induction and regres-
sion procedures. We further propose an algorithm
with general function approximation, which is
shown to perform implicit debiasing transforma-
tions. We prove that both algorithms achieve a
sublinear regret and demonstrate a tradeoff be-
tween generality and efficiency. Our analysis pro-
vides a unified framework for function approxi-
mation in risk-sensitive reinforcement learning,
which leads to the first sub-linear regret bounds
in the setting.

1. Introduction
In this paper, we consider the problem of risk-sensitive
reinforcement learning (RL) with the entropic risk measure,
a classical framework pioneered by the seminal work of
Howard & Matheson (1972). Informally, for a given risk
parameter β 6= 0, our goal is to learn a policy that maximizes
the following objective of a total reward R,

Vβ =
1

β
log{EeβR}. (1)

Here, the expectation is taken over the policy, transitions
and possible randomness of the reward R; a formal defi-
nition is given in (2) below. The objective (1) admits the
Taylor expansion Vβ = E[R] + β

2 Var(R) + O(β2). Com-
paring it with the risk-neutral objective V = E[R] studied
in the standard RL setting, we see that β > 0 induces a

1Northwestern University, Evanston, Illinois, USA 2Princeton
University, Princeton, New Jersey, USA. Correspondence to:
Yingjie Fei <yf275@cornell.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

risk-seeking objective and β < 0 induces a risk-averse one.
It can also be seen that Vβ tends to the risk-neutral V as
β → 0. Risk-sensitive RL has been widely applied in be-
havioral modeling in neuroscience and psychology (Braun
et al., 2011; Nagengast et al., 2010; Niv et al., 2012; Shen
et al., 2014). Therefore, better designs and analyses of risk-
sensitive RL algorithms may contribute to a better under-
standing of human behaviors, which further helps improve
human-oriented systems such as recommendation systems,
online marketplaces, human-computer interfaces and etc.

Unfortunately, existing risk-sensitive RL algorithms suffer
serious drawbacks: they either are designed for the tabular
setting only, which do not scale to the large state-action
space of the real world, or lack finite-sample guarantees,
which makes it difficult to understand and interpret the be-
haviors of the algorithms in a principled way. We remedy
this unsatisfactory situation by studying algorithm design
with function approximation and regret guarantees. Func-
tion approximation enables algorithms to work efficiently
in large or even infinite state spaces, and regret quantifies
the performance of algorithms in terms of key model param-
eters. This is a challenging task, however, for reasons we
outline in the following.

Challenges. Most existing works on function approxima-
tion for RL with regret guarantees focus on the risk-neutral
setting and follow the paradigm of value-targeted regres-
sion. A key step of such approach is to estimate models by
least-squares regression. However, this line of works heav-
ily exploits the linearity of risk-neutral objective V = E[R]
in both transition dynamics (implicitly captured by the ex-
pectation) and the reward R, which is not available in the
risk-sensitive objective (1). It is therefore unclear whether
this approach might apply to risk-sensitive RL given its non-
linear objective. Specifically, for linear function approxima-
tion, it is unclear what features, targets and regularization
should be used in the regression procedure, as well as how
they would lead to provable regret guarantees. Given these
complications in the linear setting, a principled algorithm
design for general function approximation appears even
more elusive.

Our contributions. In this work, we address the above

Risk-Sensitive Reinforcement Learning with Function Approximation

challenges and make the following contributions.

1. For linear function approximation, we introduce a novel
algorithm named RSVI-L. While existing algorithms suf-
fer from improper regularization and biases in regression
procedures, RSVI-L resolves these issues with three of its
mechanisms: 1) it regularizes the regression procedure in
a way that adapts to the full range of risk sensitivity; 2) it
applies simple yet crucial debiasing transformations to both
regression features and targets; 3) it applies another debias-
ing transformation to backward induction in response to the
debiasing of 2). Under episodic Markov decision processes
(MDPs), we show that RSVI-L achieves sub-linear regret
with respect to the number of episodes. We provide insights
on how the regularization and debiasing together lead to the
regret guarantee, which demonstrates a synergistic relation
between the two.

2. We also consider the setting of general function ap-
proximation and provide a novel algorithm named RSVI-G,
which is substantially different from RSVI-L. Perhaps inter-
estingly, we show that RSVI-G performs implicit debiasing
transformations to regression features and targets. In addi-
tion, we prove that it also admits sub-linear regret in terms
of the number of episodes. A comparison of RSVI-L and
RSVI-G shows that RSVI-L is computationally more effi-
cient in the linear setting, while RSVI-G applies to more
general settings of function approximation.

3. Our proof establishes a unified framework for analyz-
ing both linear and general function approximation. The
framework is flexible enough to incorporate other types of
function approximation in future studies and could be of
independent interest.

To the best of our knowledge, this is the first work that
provides risk-sensitive RL algorithms with function approx-
imation that attain sub-linear regret.

Related work. Initiated by the seminal work of Howard
& Matheson (1972), risk-sensitive control/RL with the en-
tropic risk measure has been studied in a vast body of liter-
ature (Bäuerle & Rieder, 2014; Borkar, 2001; 2002; 2010;
Borkar & Meyn, 2002; Cavazos-Cadena & Hernández-
Hernández, 2011; Coraluppi & Marcus, 1999; Di Masi &
Stettner, 1999; 2000; 2007; Fleming & McEneaney, 1995;
Hernández-Hernández & Marcus, 1996; Jaśkiewicz, 2007;
Marcus et al., 1997; Mihatsch & Neuneier, 2002; Osogami,
2012; Patek, 2001; Shen et al., 2013; 2014; Whittle, 1990).
Yet, this line of works either assumes known transition
kernels or focuses on asymptotic behaviors of the prob-
lem/algorithms.

The most relevant work to ours is perhaps Fei et al. (2020),
who consider the same problem as ours under the tabular
setting. They propose two algorithms based on value iter-

ation and Q-learning. They prove regret bounds for their
algorithms, which are then certified to be nearly optimal
by a lower bound. However, their algorithms and analysis
are restricted to the tabular setting. Compared to Fei et al.
(2020), our paper proposes novel algorithms with linear
and general function approximation, which scale to large or
even infinite state spaces. It is worth noting that both of the
function approximation settings subsume the tabular setting.

We also briefly discuss existing works on function approxi-
mation with regret analysis, which so far have focused on the
risk-neutral setting. The works of Cai et al. (2019); Jin et al.
(2019); Wang et al. (2019); Yang & Wang (2019); Zhou et al.
(2020) study linear function approximation, while Ayoub
et al. (2020); Wang et al. (2020) investigate general function
approximation. In addition, they provide sub-linear regret
bounds for their algorithms. In contrast with the risk-neutral
RL problem, the nonlinear objective (1) makes algorithm
design and regret analysis for function approximation much
more challenging in risk-sensitive settings.

Notations. For a positive integer n, we let [n] :=
{1, 2, . . . , n}. For a number u 6= 0, we define sign(u) = 1
if u > 0 and −1 if u < 0. For two non-negative sequences
{ai} and {bi}, we write ai . bi if there exists a universal
constant C > 0 such that ai ≤ Cbi for all i, and write
ai � bi if ai . bi and bi . ai. We use Õ(·) to denote
O(·) while hiding logarithmic factors. For any ε > 0 and
set X , we let Nε(X , ‖ · ‖) be the ε-net of the set X with
respect to the norm ‖ · ‖. We let ∆(X) be the set of proba-
bility distributions supported on X . For any vector u ∈ Rn
and symmetric and positive definite matrix Γ ∈ Rn×n, we
let ‖u‖Γ :=

√
u>Γu. We denote by In the n × n identity

matrix.

2. Problem formulation
2.1. Episodic MDP

An episodic MDP is parameterized by a tuple
(K,H,S,A, {Ph}h∈[H], {rh}h∈[H]), where K is the
number of episodes, H is the number of steps in each
episode, S is the state space, A is the action space,
Ph : S × A → ∆(S) is the transition kernel at step h,
and rh : S × A → [0, 1] is the reward function at step h.
We assume that the transitions {Ph} are unknown. For
simplicity we assume that the reward functions {rh} are
known and deterministic, as is common in existing works
(Ayoub et al., 2020; Yang & Wang, 2019; Zhou et al., 2020).

We interact with the episodic MDP as follows. In the begin-
ning of each episode k ∈ [K], the environment chooses an
arbitrary initial state sk1 ∈ S. Then in each step h ∈ [H],
we take an action akh ∈ A, receive a reward rh(skh, a

k
h)

and transition to the next state skh+1 ∈ S sampled from

Risk-Sensitive Reinforcement Learning with Function Approximation

Ph(· | skh, akh). Once we reach skH+1, the current episode ter-
minates and we advance to the next episode unless k = K.

2.2. Value functions, Bellman equations and regret

We assume that β is fixed prior to the learning process,
and for notational simplicity we omit it from quantities to
be introduced subsequently. In risk-sensitive RL with the
entropic risk measure, we aim to find a policy π = {πh :
S → A} so as to maximize the value function given by

V πh (s) :=
1

β
log
{
E
[
eβ

∑H
h′=h rh′ (sh′ ,πh′ (sh′))

∣∣∣ sh = s
]}

,

(2)
for all (h, s) ∈ [H]×S . In the above the expectation is taken
over πh and Ph. Under some mild regularity conditions,
there exists a greedy policy π∗ = {π∗h} which gives the op-
timal value V π

∗

h (s) = supπ V
π
h (s) for all (h, s) ∈ [H]× S

(Bäuerle & Rieder, 2014). In addition to the value function,
another key notion is the action-value function defined as

Qπh(s, a) :=
1

β
log
{
E
[
eβ

∑H
h′=h rh′ (sh′ ,ah′)

∣∣∣ sh=s

ah=a

]}
,

(3)
for all (h, s, a) ∈ [H]× S ×A.

The action-value function Qπh is associated with the value
function V πh via the so-called Bellman equation:

Qπh(s, a) = rh(s, a) +
1

β
log{Es′ [eβ·V

π
h+1(s′)]}, (4)

V πh (s) = Qπh(s, πh(s)), V πH+1(s) = 0,

which holds for all (h, s, a) ∈ [H]×S×A. Here, the expec-
tation Es′ is taken over Ph(·|s, a). Similarly, the Bellman
optimality equation is given by

Q∗h(s, a) = rh(s, a) +
1

β
log{Es′ [eβ·V

∗
h+1(s′)]}, (5)

V ∗h (s) = max
a∈A

Q∗h(s, a), V ∗H+1(s) = 0,

again for all (h, s, a) ∈ [H] × S × A. In the above, we
use the shorthand Q∗h := Qπ

∗

h for all h ∈ [H] and V ∗h is
similarly defined. The identity V ∗h (·) = maxa∈AQ

∗
h(·, a)

implies that the optimal π∗ is the greedy policy with respect
to the optimal action-value function {Q∗h}h∈[H].

During the learning process, the policy πk in each episode
k may be different from the optimal π∗. We quantify this
difference over all K episodes through the notion of regret,
defined as

Regret(K) :=
∑
k∈[K]

[
V ∗1 (sk1)− V π

k

1 (sk1)
]
. (6)

Since V ∗1 (s) ≥ V π1 (s) for any π and s ∈ S , the regret char-
acterizes the sub-optimality of {πk} relative to the optimal
π∗.

2.3. Function approximation

In this paper, we focus on linear and general function approx-
imation. We consider the following form of linear function
approximation, where each transition kernel admits a linear
form.

Assumption 1. We assume that the MDP is equipped with
a known feature function ψ : S × A × S → Rd such
that for any h ∈ [H], there exists a vector θh ∈ Rd with
‖θh‖2 ≤

√
d and the transition kernel is given by

Ph(s′ | s, a) = ψ(s, a, s′)>θh

for any (s, a, s′) ∈ S ×A× S . We also assume that∥∥∥∫
S
ψ(s, a, s′)f(s′)ds′

∥∥∥
2
≤
√
d sup
s′∈S
|f(s′)|,

for any (s, a) ∈ S ×A and function f : S → R.

This form of linear function approximation is also studied
in Ayoub et al. (2020); Cai et al. (2019); Zhou et al. (2020),
whose setting is equivalent to ours when β → 0. The setting
of Assumption 1 may be reduced to the tabular setting in
which ψ(s, a, s′) is a canonical basis vector in Rd with
d = |S|2 |A|, i.e., the (s, a, s′)-th entry of ψ(s, a, s′) is
equal to one and the other entries are equal to zero. It
also subsumes various settings of function approximation
including linear combinations of base models (Modi et al.,
2020) and the matrix bandit setting (Yang & Wang, 2019);
we refer readers to (Zhou et al., 2020) for more details on
the generality of Assumption 1.

Sometimes, the underlying model is so rich and complicated
that the assumption of linear kernels may be too restrictive.
We therefore also consider general function approximation,
for which we make the following general assumption.

Assumption 2. We assume that we have access to a function
set1 P such that the transition kernel Ph ∈ P for all h ∈
[H].

This setting is also considered in Ayoub et al. (2020). It is
not hard to see that Assumption 2 subsumes Assumption
1. Under Assumption 2, we may measure the complexity
of function sets using the notion of the eluder dimension.
To introduce the eluder dimension, we need to set forth the
concept of ε-independence.

Definition 1. For any ε > 0 and function set G whose
elements are in the domain X , we say that an x ∈ X is ε-
dependent on the set of elements Xn := {x1, x2, . . . , xn} ⊂
X with respect to G, if any pair of functions g, g′ ∈ G
satisfying

∑
i∈[n](g(xi) − g′(xi))

2 ≤ ε2 also satisfies
g(x) − g′(x) ≤ ε. We say that x is ε-independent of Xn

1Throughout the paper, we use function class and function set
interchangeably.

Risk-Sensitive Reinforcement Learning with Function Approximation

with respect to G if x is not ε-dependent on Xn with respect
to G.

Hence, ε-independence characterizes a notion of dissimi-
larity of a point x to the elements in subset Xn of function
set G. Now we are ready to formally define the eluder di-
mension, which quantifies the length of the longest possible
chain of dissimilar elements in a function set.

Definition 2. For any ε > 0 and function set G whose
elements are in the domain X , the ε-eluder dimension
dimE(G, ε) is defined as the length d′ of the longest se-
quence of elements in X such that, for some ε′ ≥ ε, every
element is ε′-independent of its predecessors.

The eluder dimension extends the concept of dimension in
linear spaces and generalizes to non-linear function spaces.
It is also related to the notions of Kolmogorov and VC
dimensions. We refer readers to Russo & Van Roy (2014)
for further details on the eluder dimension and its advantages
compared to other complexity measures.

Although we focus on function approximation of transition
kernels, a similar approach can be taken to apply function
approximation to reward functions and our regret guarantees
presented below remain valid, as argued in Yang & Wang
(2019).

3. Algorithms
To streamline the presentation of our algorithms, we first
introduce a meta algorithm in Algorithm 1, namely Meta
Risk-Sensitive Value Iteration (MetaRSVI), which is a high-
level framework including key features of value iteration
algorithms (Bradtke & Barto, 1996; Jin et al., 2019). It
consists of a value estimation step (Lines 3–6) and policy
execution step (Lines 8–11). In the value estimation step,
the algorithm estimates the optimal Q∗h by its iterates Qkh
based on historical data. We focus on greedy policies, and
in Line 5 the estimated value function V kh (·) is taken as
the maximum among {Qkh(·, a′)}a′∈A. The key machinery
of value estimation, known as Risk-Sensitive Temporal
Difference or RSTD, is abstracted out in Line 4; we will
provide concrete forms of this function for both linear and
general function approximation in the sections to follow.
In the policy execution step, the algorithm uses the policy
learned in the current episode (represented by Qkh) to collect
data for subsequent update procedures.

3.1. RSVI-L

We introduce Risk-Sensitive Value Iteration with Linear
function approximation, or RSVI-L, in Algorithm 2. This
algorithm is inspired by RSVI proposed in Fei et al. (2020)
under the tabular setting. In Line 6 the iterate wkh can be
interpreted as the solution of the following least-squares

Algorithm 1 MetaRSVI
Input: risk parameter β, number of episodes K

1: for episode k = 1, . . . ,K do
2: V kH+1(·)← 0
3: for step h = H,H − 1, . . . , 1 do
4: Qkh(·, ·)← RSTD(k, h, β, {V τh+1}τ∈[k])

5: V kh (·)← maxa′∈AQ
k
h(·, a′)

6: end for
7: Receive initial state sk1 from environment
8: for step h = 1, 2, . . . ,H do
9: Take action akh ← argmaxa′∈AQ

k
h(skh, a

′)
10: Receive next state skh+1

11: end for
12: end for

problem:

wkh ← argmin
w∈Rd

λ‖w‖22

+
∑

τ∈[k−1]

[(eβ·V
τ
h+1(sτh+1) − 1)− w>φτh(sτh, a

τ
h)]2,

(7)

= (Λkh)−1
∑

τ∈[k−1]

φτh(sτh, a
τ
h)(eβ·V

τ
h+1(sτh+1) − 1)

where the regression features {φτh}
k−1
τ=1 are constructed in

Line 4 and λ = (eβH − 1)2 is a regularization parameter.
The above regression procedure computes an estimate of θh,
the parameter of the unknown transition kernel Ph. Note
that the regression targets are proportional to a shifted ex-
ponential V-estimates {eβ·V

τ
h+1 − 1}; similar construction

is applied to the regression feature φkh in Line 4. This is a
distinctive property of Algorithm 2, which we will compare
and contrast with RSVI soon. To update Qkh in Line 7, we
perform backward induction

Qkh(·, ·)← rh(·, ·) +
1

β
log(qkh,L(·, ·)), (8)

where

qkh,L(·, ·)

:=

{
min{eβ(H−h),

〈
φkh(·, ·), wkh

〉
+ bkh(·, ·) + 1}, β > 0,

max{eβ(H−h),
〈
φkh(·, ·), wkh

〉
− bkh(·, ·) + 1}, β < 0.

(9)

Here, qkh,L can be seen as an optimistic estimate for the

expected value of eβ·V
k
h+1 under the transition kernel Ph.

The quantity ±bkh takes the role of bonus to enable efficient
exploration for β > 0 and β < 0, respectively. Therefore,
Algorithm 2 follows the principle of Risk-Sensitive Opti-
mism in the Face of Uncertainty (RS-OFU) postulated in Fei

Risk-Sensitive Reinforcement Learning with Function Approximation

et al. (2020). Finally, the thresholding step in (9) ensures the
estimate Qkh to be on the same scale as the optimal action
values Q∗h entrywise.

Comparison with existing algorithms. We highlight
three major features of Algorithm 2 that differentiate it from
RSVI of (Fei et al., 2020) designed for the tabular setting as
well as risk-neutral algorithms with linear function approxi-
mation proposed in (Jin et al., 2019; Yang & Wang, 2019;
Cai et al., 2019).

First, Algorithm 2 applies carefully designed regularization
λ in the regression procedure (7), in contrast with existing
algorithms whose regularization is inappropriate for our
setting. One purpose of regularization λ is to keep the co-
variance matrix Λkh from being singular. Another important
role of λ is to regulate the error of qkh,L in estimating the

expectation of eβ·V
k
h+1 with respect to the true model (where

qkh,L is defined in (9)). The scale of the estimation error de-
pends on β and we therefore require λ to adapt to the full
range of risk sensitivity (both β > 0 and β < 0). As we will
explain later in Section 4.1, the choice of λ = (eβH − 1)2

manages to serve all of these purposes at once. This is in
sharp contrast with λ = 0 used in RSVI and the common
choice of λ = 1 in risk-neutral algorithms: setting λ = 0 as
in RSVI would cause the covariance Λkh to be singular (and
therefore destabilizing the algorithm), whereas the fixed
regularization λ = 1 in risk-neutral algorithms fails to adapt
to the estimation error of qkh,L that varies in β.

Second, Algorithm 2 has a distinct design of regression fea-
tures and targets, which can be seen as a result of debiasing
the regression step in RSVI. In particular, the regression
features of Algorithm 2 take the form of

φτh(·, ·) =

∫
S
ψ(·, ·, s′)(eβ·V

τ
h+1(s′) − 1)ds′

and satisfy ‖φτh(·, ·)‖2 ≈ |eβH − 1|
√
d, whereas those of

RSVI are given by

φ̃τh(·, ·) =

∫
S
ψ(·, ·, s′)eβ·V

τ
h+1(s′)ds′

whose norm is approximately eβH
√
d. To ensure stability

and efficiency of Algorithm 2, we would like Λkh to be well-
behaved, in the sense that the spectrums of φτh(·, ·)φτh(·, ·)>
and λId are close to each other; otherwise, a dominating
φτh(·, ·)φτh(·, ·)> would lead to a near-singular Λkh, while a
dominating λ would prevent the algorithm from efficient
learning. This means that, for all fixed β, we want to design
regression features to minimize the quantity

|Tr(φτh(·, ·)φτh(·, ·)> − λId)| = |‖φτh(·, ·)‖2 − λd|,

which can be interpreted as the bias of features {φτh} with
respect to λ. Given λ = (eβH − 1)2, the bias of features

Algorithm 2 RSVI-L
Input: risk parameter β, number of episodes K, regular-

ization λ, bonus multiplier γL
1: Run Algorithm 1 with RSTD therein overloaded by the

following subroutine:
2: procedure RSTD(k, h, β, {V τh+1}τ∈[k], γL, λ)
3: Λkh ←

∑
τ∈[k−1] φ

τ
h(sτh, a

τ
h)φτh(sτh, a

τ
h)> + λId

4: φkh(·, ·)←
∫
S ψ(·, ·, s′)(eβ·V

k
h+1(s′) − 1)ds′

5: bkh(·, ·)← γL[φkh(·, ·)>(Λkh)−1φkh(·, ·)]1/2
6: Compute wkh as in (7)
7: return Qkh(·, ·) as computed in (8)
8: end procedure

{φ̃τh} used in RSVI would be excessive, especially when |β|
is small (‖φ̃τh(·, ·)‖ →

√
d compared to λ→ 0, as |β| → 0),

which may cause Λkh to be near-singular. On the other hand,
the new feature design φτh in Algorithm 2 alleviates such
bias by ensuring that ‖φτh(·, ·)‖2 and λd are compatible.
Along with the choice of eβ·V

τ
h+1 − 1 as the regression

targets, we may think of the regression features and targets
in Algorithm 2 as debiasing those in RSVI. The relationship
between regression features/targets and regularization λ
demonstrates a synergistic interplay between the two in
Algorithm 2.

Third, Algorithm 2 applies debiasing to backward induc-
tion, whereas RSVI does not. Specifically, Algorithm 2 uses
〈φkh(·, ·), wkh〉+ 1 in its backward induction step (8), in con-
trast with 〈φkh(·, ·), wkh〉 used in RSVI. The new backward
induction step in Algorithm 2 can be considered as per-
forming a debiasing transformation on that of RSVI. This is
because, by the definition of φkh, the quantity 〈φkh(·, ·), wkh〉
estimates Es′ [eβ·V

k
h+1(s′)] − 1, rather than Es′ [eβ·V

k
h+1(s′)]

as suggested by the Bellman equation (4). Therefore, the de-
biasing transformation, i.e., adding 1 to 〈φkh(·, ·), wkh〉, helps
correct the bias of −1 and aligns the backward induction
step with the Bellman equation. We remark that the debias-
ing of backward induction is unique to Algorithm 2, due to
its novel design of regression features.

3.2. RSVI-G

Oftentimes, the linear transitions postulated in Assumption
1 may not be sufficient for modeling complicated dynamics
in the real world. We therefore need to consider more gen-
eral settings such as that of Assumption 2. To that end, we
present Risk-Sensitive Value Iteration with General func-
tion approximation (RSVI-G) in Algorithm 3. A key quan-
tity for Algorithm 3 is the squared error

Γτh(P, P ′) :=

[∫
S
P (s′ | sτh, aτh)eβ·V

τ
h+1(s′)ds′

Risk-Sensitive Reinforcement Learning with Function Approximation

−
∫
S
P ′(s′ | sτh, aτh)eβ·V

τ
h+1(s′)ds′

]2

,

(10)

which can be thought of as the difference in expected
eβ·V

τ
h+1 under two models P, P ′. In Algorithm 3, Line 3

computes an estimate P kh of the true model Ph by solving a
least-squares problem over the class of transition kernels P .
Specifically, we define P̂ τh (· | s, a) to be the delta function
centered at sτh+1 for all (s, a) ∈ S ×A. and we compute

P kh ← argmin
P∈P

k−1∑
τ=1

Γτh(P, P̂ τh). (11)

Given the quantity γG to be determined later, Line 4 then
constructs a confidence ball Pkh of radius γG around the
estimate P kh by

Pkh ←

{
P ∈ P :

k−1∑
τ=1

Γτh(P, P kh) ≤ γ2
G

}
. (12)

We then update Qkh by

Qkh(·, ·)← rh(·, ·) +
1

β
log(qkh,G(·, ·)), (13)

where

qkh,G(·, ·)

:=

{
maxP∈Pkh

∫
S P (s′ | ·, ·)eβ·V

k
h+1(s′)ds′, if β > 0,

minP∈Pkh

∫
S P (s′ | ·, ·)eβ·V

k
h+1(s′)ds′, if β < 0.

(14)

The maximization and minimization in (14) serve to main-
tain optimism for β > 0 and β < 0 respectively, following
the principle of RS-OFU. It is worth noting that both Lines
3 and 4 implicitly operate with the shifted exponential V-
functions: indeed, replacing eβ·V

τ
h+1 therein by eβ·V

τ
h+1 − 1

would not make any difference for the algorithm. Therefore,
this can be seen as implicitly debiasing the regression fea-
tures and targets in the tabular algorithm RSVI, in contrast
with the explicit debiasing transformations of Algorithm 2.

Comparing Algorithms 2 and 3. We remark that Algo-
rithms 2 and 3 are very different in nature. Algorithm 2
enforces optimism by adding bonus that comes with closed-
form expression, while Algorithm 3 constructs confidence
sets by solving quadratic programs and maintains optimism
by solving linear programs. It can be seen that Algorithm 2
has polynomial time and space complexities in d, K and H .
For Algorithm 3, it is unclear how the complexities scale
under Assumption 2, where the structure of P is unknown.
Nevertheless, under Assumption 1 in which the transition

Algorithm 3 RSVI-G
Input: risk parameter β, number of episodesK, confidence

width γG, function set P
1: Run Algorithm 1 with RSTD therein overloaded by the

following subroutine:
2: procedure RSTD(k, h, β, {V τh+1}τ∈[k], γG, P)
3: Compute P kh as in (11)
4: Compute Pkh as in (12)
5: return Qkh(·, ·) as computed in (13)
6: end procedure

kernels admit a linear form, Algorithm 3 also attains poly-
nomial time and space complexities. Although Algorithm
2 requires explicit debiasing, it enjoys faster runtime speed
and less memory consumption than Algorithm 3, since it
does not construct confidence sets by solving optimization
problems that may be computationally expensive, as done
in Algorithm 3. On the other hand, Algorithm 3 does not
require transition dynamics to be linear and therefore ap-
plies to more general settings. This represents a tradeoff in
efficiency and generality between Algorithms 2 and 3.

4. Main results
4.1. Regret bound for Algorithm 2

In this section, we present a regret bound for Algorithm 2.
Let us define the bonus multiplier in Algorithm 2 as

γL := cγ |eβH − 1|
√
d log(2dKH/δ), (15)

where cγ > 0 is an appropriate universal constant. We have
the following result.

Theorem 1. Let λ = (eβH−1)2 and γL of (15) be input to
Algorithm 2. Under Assumption 1, for any δ ∈ (0, 1], with
probability at least 1− δ, the regret of Algorithm 2 satisfies

Regret(K) .
e|β|H − 1

|β|
e|β|H

2
√
d2KH2 log2(2dKH/δ).

The proof is given in Appendix B. One may obtain a regret
bound for the tabular setting by taking d = |S|2 |A| in
Theorem 1, and the resulting bound matches that of Fei et al.
(2020, Theorem 1) up to polynomial factors of |S| and |A|.2
The bound is also nearly optimal for small |β| (with respect
to |β|, K and H) in view of the lower bound by Fei et al.
(2020, Theorem 3),

E [Regret(K)] &
e|β|H/2 − 1

|β|
√
K. (16)

2By inspecting the proof of Fei et al. (2020, Theorem
1), we see that they apply the bound (1/|β|)(exp(|β|H) −
1) exp(|β|H2) ≤ (1/|β|)(exp(C |β|H2)− 1) for some univer-
sal constant C > 0.

Risk-Sensitive Reinforcement Learning with Function Approximation

In addition, as β → 0, the setting of risk-sensitive RL tends
to that of standard risk-neutral RL. We have the following
corollary to Theorem 1 for that regime.

Corollary 1. Under the setting of Theorem 1 and when β →
0, with probability at least 1− δ, the regret of Algorithm 2
satisfies

Regret(K) .
√
d2KH4 log2(2dKH/δ).

The proof is given in Appendix C. The result in Corollary 1
matches that of the risk-neutral setting, e.g. Cai et al. (2019,
Theorem 3.1), up to logarithmic factors.

Roles of regularization and debiasing in analysis. Our
analysis of Theorem 1 shows that the dominating factor of
regret can be written in the form of (B1 + B2)D, where
B1 ≈

∑
k,h(qkh,L − Eeβ·V

k
h+1) is the sum of KH random

variables (given qkh,L defined in (9)), B2 is proportional to√
λ, and D is the sum of norms of regression features. By

a standard concentration inequality and the debiasing of
the backward induction step in Algorithm 2, we deduce
B1 ∝ |eβH − 1| and our choice of λ = (eβH − 1)2 puts
B2 on the same scale as B1. This argument is made formal
in Lemma 2. Moreover, we apply an elliptical potential
lemma (Lemma 6) to show that D ≤ log[(λ+K‖φ‖22)/λ],
where φ is a regression feature. Given λ in Theorem 1
and ‖φ‖ ∝ (eβH − 1)2 as a result of feature debiasing
in regression (7), we conclude that D . logK (ignoring
other model parameters in log). Putting together the above
results yields the regret bound in Theorem 1. As a passing
note, we remark that the regularization and debiasing are
novel characteristics of Algorithm 2 compared to existing
RL algorithms, and they play crucial roles in regret analysis.

4.2. Regret bound for Algorithm 3

To present the regret guarantee for Algorithm 3, we need
to set a few additional notations. Recall the function set P
from Assumption 2. For any P ∈ P , (s, a) ∈ S × A and
V : S → [0, H], we define the function set

Z := {zP : P ∈ P}, (17)

where

zP (s, a, V) :=

∫
S
P (s′ | s, a)|eβ·V (s′) − 1|ds′. (18)

For any P, P ′ ∈ P , we define ‖P − P ′‖∞,1 :=
sup(s,a)∈S×A ‖P (· | s, a) − P ′(· | s, a)‖1. To measure
the complexity of the set Z , we use the notion of eluder
dimension (Definition 2) and we let

dE := dimE(Z, |eβH − 1|/K)

be the (|eβH − 1|/K)-eluder dimension of function set Z .
In Algorithm 3, we set

γG := 10|eβH − 1|
√
ζ, (19)

where

ζ := log
(
H · N1/K(P, ‖ · ‖∞,1)/δ

)
+
√

log(4K2H/δ).
(20)

We are now ready to state our result for Algorithm 3.

Theorem 2. Let γG of (19) be input to Algorithm 3. Under
Assumption 2, for any δ ∈ (0, 1] and with probability at
least 1− δ, the regret of Algorithm 3 satisfies

Regret(K) .
e|β|H − 1

|β|
e|β|H

2

·
(
H min{dE ,K}+

√
dEKH2ζ

)
.

The proof is given in Appendix D. When K & dE , we have
H min{dE ,K} .

√
dEKH2ζ and therefore Theorem 2

yields

Regret(K) =
e|β|H − 1

|β|
e|β|H

2

Õ(
√
dEKH2).

Under Assumption 1, a special case of Assumption 2 where
the transition kernels in P take the linear form, we have
dE . d logK and log(N1/K(P, ‖ · ‖∞,1)) . d logK, im-
plying ζ . d log(KH/δ). Then for sufficiently largeK, the
regret bound of Theorem 2 matches that of Theorem 1 up
to a logarithmic factor. Furthermore, in the tabular setting,
we have dE = Õ(d) = Õ(|S|2|A|) and hence Theorem 2
is also nearly optimal compared to the lower bound (16).

Technical highlights. The key to the proof of Theorem
2 is to identify the amount of optimism maintained by the
confidence set (12). We show that this quantity is propor-
tional to |eβH −1|, thanks to the implicit debiasing property
of Algorithm 3. Despite the apparent differences between
Algorithms 2 and 3, we establish an analytic framework that
unifies the proofs of Theorems 1 and 2. Specifically, we
identify an optimism condition, under which any instance of
Algorithm 1 achieves a regret bound on the same order of its
optimism. We then show that both Algorithms 2 and 3 sat-
isfy the optimism condition and therefore attain the claimed
regret bounds. More details on this framework will be pro-
vided in Section 5 to follow. The flexibility of the framework
allows incorporating other types of function approximation
for future research, which could be of independent interest.

To the best of our knowledge, Theorems 1 and 2 are the first
sub-linear regret guarantees for risk-sensitive RL algorithms
with function approximation.

Risk-Sensitive Reinforcement Learning with Function Approximation

5. A unified theoretical framework
We present a unified analytic framework based on Algo-
rithm 1, and the results can be specialized to any of its
instance including Algorithm 2 and 3. We first identify a
risk-sensitive optimism condition, which certifies a certain
form of optimism that adapts to risk sensitivity. Under this
optimism condition, we prove a regret bound for Algorithm
1. Then in Appendix we instantiate the regret bound of
Algorithm 1 for Algorithms 2 and 3 under Assumptions 1
and 2, respectively, by showing that both algorithms satisfy
the aforementioned optimism condition.

5.1. Optimism condition

Recall the iterates {Qkh} in Algorithm 1. For each (k, h) ∈
[K]× [H] and (s, a) ∈ S ×A, we define

Q
k

h(s, a) := rh(s, a)+
1

β
log
{
Es′∼Ph(· | s,a)

[
eβ·V

k
h+1(s′)

]}
.

It can be seen that {Qkh} are the ideal counterparts of {Qkh}
that could be constructed if the transition kernels {Ph} were
known. We set forth a risk-sensitive optimism condition,
which is a central component of our unified framework.

Condition 1. For all (k, h, s, a) ∈ [K] × [H] × S × A,
we have Qkh(s, a) ∈ [0, H − h + 1], and there exist some
quantities mk

h(s, a) > 0, g ≥ 1 and universal constant
c > 0 such that

0 ≤ Qkh(s, a)−Qkh(s, a) ≤ c · e
|β|H − 1

|β|
· g ·mk

h(s, a).

Since Qkh is an optimistic estimate of the ideal quantity Q
k

h,
the difference Qkh−Q

k

h in Condition 1 may be thought of as
the level of optimism maintained by the algorithm for state-
action pair (s, a) in step h of episode k, with its upper bound
depending on risk sensitivity through the factor e|β|H−1

|β| .
Therefore, we say that Condition 1 is a risk-sensitive op-
timism condition and it serves as a quantification of the
RS-OFU principle. In the upper bound of the condition, the
actual values of g and mk

h may depend on function approxi-
mation and implementation of the abstract function RSTD.
An advantage of considering Condition 1 is that it helps dis-
entangle the complications of function approximation from
the regret analysis, and it is flexible to incorporate other
function approximation settings beyond Assumptions 1 and
2. In Appendices B and D, we show that Algorithms 2 and
3, respectively, satisfy this condition with high probability.

5.2. Unified regret bound

Let us recall that {(skh, akh)} are the state-action pairs vis-
ited by Algorithm 1. Below, we state a regret bound for
Algorithm 1 that unifies Theorems 1 and 2.

Theorem 3. Define

M := g
∑
k∈[K]

∑
h∈[H]

min{1,mk
h(skh, a

k
h)}

where g and {mk
h} are as given in Condition 1. On the

event of Condition 1, for any δ ∈ (0, 1], with probability at
least 1− δ the regret of Algorithm 1 satisfies

Regret(K) .
e|β|H − 1

|β|
e|β|H

2

M+e|β|H
2√

KH3 log(1/δ).

The proof is given in Appendix F. Although the actual
form of M depends on specific function approximation,
the derivation of Theorem 3 only requires the structure of
Algorithm 1, which is agnostic of function approximation.
In the above bound, the first term can be interpreted as the
total optimism maintained by Algorithm 1, and is in fact a
direct consequence of Condition 1. The second term is the
total drift of iterates {V kh } from the value functions {V πkh },
which is the result of a martingale analysis. The factor
e|β|H

2

shared by both terms is due to a local linearization of
the nonlinear objective (2) as well as a standard backward
induction analysis of H-horizon MDPs. When instantiating
Theorem 3 under Assumptions 1 and 2, our proof shows that
M = Õ(

√
K) so the first term would dominate in the regret

bound. Similar to M , the exponential factor e|β|H−1
|β| also

comes into the bound from Condition 1. It has been shown
as a distinctive feature of risk-sensitive RL algorithms that
represents a tradeoff between risk sensitivity and sample
complexity (Fei et al., 2020).

6. Conclusion
This work investigates function approximation for risk-
sensitive RL with the entropic risk measure. We propose
two algorithms, RSVI-L and RSVI-G, under the settings
of linear and general function approximation, respectively.
We demonstrate that RSVI-L applies risk-adaptive regu-
larization and debiasing transformations in its regression
procedure, which correct the improper regularization and
regression biases in existing algorithms. On the other hand,
RSVI-G is shown to perform implicit debiasing, and applies
to more general settings compared to RSVI-L. Through a
unified analytic framework, we prove that both algorithms
achieve sub-linear regret in terms of the number of episodes.
This is the first work designing risk-sensitive RL algorithms
with function approximation that achieve sub-linear regret.

Acknowledgements
We thank the reviewers for their constructive feedback.
Z. Yang acknowledges Simons Institute (Theory of Re-
inforcement Learning). Z. Wang acknowledges National

Risk-Sensitive Reinforcement Learning with Function Approximation

Science Foundation (Awards 2048075, 2008827, 2015568,
1934931), Simons Institute (Theory of Reinforcement Learn-
ing), Amazon, J.P. Morgan, and Two Sigma for their sup-
ports.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. Advances in
Neural Information Processing Systems, 24:2312–2320,
2011.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L. F.
Model-based reinforcement learning with value-targeted
regression. arXiv preprint arXiv:2006.01107, 2020.

Bäuerle, N. and Rieder, U. More risk-sensitive Markov
decision processes. Mathematics of Operations Research,
39(1):105–120, 2014.

Borkar, V. S. A sensitivity formula for risk-sensitive cost
and the actor-critic algorithm. Systems & Control Letters,
44(5):339–346, 2001.

Borkar, V. S. Q-learning for risk-sensitive control. Mathe-
matics of Operations Research, 27(2):294–311, 2002.

Borkar, V. S. Learning algorithms for risk-sensitive control.
In Proceedings of the 19th International Symposium on
Mathematical Theory of Networks and Systems–MTNS,
pp. 55–60, 2010.

Borkar, V. S. and Meyn, S. P. Risk-sensitive optimal control
for Markov decision processes with monotone cost. Math-
ematics of Operations Research, 27(1):192–209, 2002.

Bradtke, S. J. and Barto, A. G. Linear least-squares algo-
rithms for temporal difference learning. Machine Learn-
ing, 22(1-3):33–57, 1996.

Braun, D. A., Nagengast, A. J., and Wolpert, D. Risk-
sensitivity in sensorimotor control. Frontiers in human
neuroscience, 5:1, 2011.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. Provably effi-
cient exploration in policy optimization. arXiv preprint
arXiv:1912.05830, 2019.

Cavazos-Cadena, R. and Hernández-Hernández, D. Dis-
counted approximations for risk-sensitive average criteria
in Markov decision chains with finite state space. Mathe-
matics of Operations Research, 36(1):133–146, 2011.

Coraluppi, S. P. and Marcus, S. I. Risk-sensitive, mini-
max, and mixed risk-neutral/minimax control of Markov
decision processes. In Stochastic Analysis, Control, Opti-
mization and Applications, pp. 21–40. Springer, 1999.

Di Masi, G. B. and Stettner, L. Risk-sensitive control
of discrete-time Markov processes with infinite horizon.
SIAM Journal on Control and Optimization, 38(1):61–78,
1999.

Di Masi, G. B. and Stettner, L. Infinite horizon risk sensitive
control of discrete time Markov processes with small risk.
Systems & Control Letters, 40(1):15–20, 2000.

Di Masi, G. B. and Stettner, Ł. Infinite horizon risk sen-
sitive control of discrete time Markov processes under
minorization property. SIAM Journal on Control and
Optimization, 46(1):231–252, 2007.

Fei, Y., Yang, Z., Chen, Y., Wang, Z., and Xie,
Q. Risk-sensitive reinforcement learning: Near-
optimal risk-sample tradeoff in regret. arXiv preprint
arXiv:2006.13827, 2020.

Fleming, W. H. and McEneaney, W. M. Risk-sensitive
control on an infinite time horizon. SIAM Journal on
Control and Optimization, 33(6):1881–1915, 1995.

Hernández-Hernández, D. and Marcus, S. I. Risk sensitive
control of Markov processes in countable state space.
Systems & Control Letters, 29(3):147–155, 1996.

Howard, R. A. and Matheson, J. E. Risk-sensitive Markov
decision processes. Management Science, 18(7):356–369,
1972.

Jaśkiewicz, A. Average optimality for risk-sensitive control
with general state space. The Annals of Applied Probabil-
ity, 17(2):654–675, 2007.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. arXiv preprint arXiv:1907.05388, 2019.

Marcus, S. I., Fernández-Gaucherand, E., Hernández-
Hernandez, D., Coraluppi, S., and Fard, P. Risk sensitive
Markov decision processes. In Systems and Control in
the Twenty-first Century, pp. 263–279. Springer, 1997.

Mihatsch, O. and Neuneier, R. Risk-sensitive reinforcement
learning. Machine Learning, 49(2-3):267–290, 2002.

Modi, A., Jiang, N., Tewari, A., and Singh, S. Sample
complexity of reinforcement learning using linearly com-
bined model ensembles. In International Conference
on Artificial Intelligence and Statistics, pp. 2010–2020,
2020.

Nagengast, A. J., Braun, D. A., and Wolpert, D. M. Risk-
sensitive optimal feedback control accounts for sensori-
motor behavior under uncertainty. PLoS Comput Biol, 6
(7):e1000857, 2010.

Risk-Sensitive Reinforcement Learning with Function Approximation

Niv, Y., Edlund, J. A., Dayan, P., and O’Doherty, J. P. Neu-
ral prediction errors reveal a risk-sensitive reinforcement-
learning process in the human brain. Journal of Neuro-
science, 32(2):551–562, 2012.

Osogami, T. Robustness and risk-sensitivity in Markov
decision processes. In Advances in Neural Information
Processing Systems, pp. 233–241, 2012.

Patek, S. D. On terminating Markov decision processes
with a risk-averse objective function. Automatica, 37(9):
1379–1386, 2001.

Russo, D. and Van Roy, B. Learning to optimize via poste-
rior sampling. Mathematics of Operations Research, 39
(4):1221–1243, 2014.

Shen, Y., Stannat, W., and Obermayer, K. Risk-sensitive
Markov control processes. SIAM Journal on Control and
Optimization, 51(5):3652–3672, 2013.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K. Risk-
sensitive reinforcement learning. Neural Computation,
26(7):1298–1328, 2014.

Wang, R., Salakhutdinov, R., and Yang, L. F. Provably effi-
cient reinforcement learning with general value function
approximation. arXiv preprint arXiv:2005.10804, 2020.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy,
A. Optimism in reinforcement learning with gener-
alized linear function approximation. arXiv preprint
arXiv:1912.04136, 2019.

Whittle, P. Risk-sensitive Optimal Control, volume 20. Wi-
ley New York, 1990.

Yang, L. F. and Wang, M. Reinforcement learning in feature
space: Matrix bandit, kernels, and regret bound. arXiv
preprint arXiv:1905.10389, 2019.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforce-
ment learning for discounted mdps with feature mapping.
arXiv preprint arXiv:2006.13165, 2020.

Supplementary Material for “Risk-Sensitive Reinforcement Learning With
Function Approximation: A Debiasing Approach”

A. Preliminaries
Let us fix a tuple (k, h, s, a) ∈ [K]× [H]× S ×A. For Algorithm 1 (which subsumes both Algorithms 2 and 3), define

qkh,2(s, a) := Es′∼Ph(· | s,a)[e
β·V kh+1(s′)]. (21)

For any q′ > 0, define

Gkh,1(q′(s, a)) :=
1

β
log{q′(s, a)} − 1

β
log{qkh,2(s, a)}. (22)

We restate Condition 1 as follows.
Condition 2 (Restatement of Condition 1). For all (k, h, s, a) ∈ [K]× [H]×S×A, assumeQkh(s, a) ∈ [0, H] in Algorithm
1, then there exist some quantities g ≥ 1, mk

h(s, a) > 0, qkh,1(s, a) ≥ min{1, eβ(H−h)} and universal constant c1 > 0 such
that Gkh,1(qkh,1(s, a)) = Qkh(s, a)− 1

β log{qkh,2(s, a)}, and

0 ≤ Gkh,1(qkh,1(s, a)) ≤ c1 ·
e|β|H − 1

|β|
· g ·mk

h(s, a).

In the above, qkh,1(s, a) is a quantity depending on function approximation, and will be defined later in Appendices B and D.

It can be seen that Gkh,1(qkh,1(s, a)) = Qkh(s, a)−Qkh(s, a), where Q
k

h is defined in Section 4.

To obtain regret bounds for Algorithms 2 and 3, we need to specify quantities g and mk
h in Condition 2. The next result lays

out the requirement on qkh,1 and qkh,2 for us to identify g and mk
h.

Lemma 1. If for each (k, h, s, a) ∈ [K]× [H]× S ×A,

1. there exists some quantities g ≥ 1, mk
h(s, a) > 0, qkh,1(s, a) ≥ min{1, eβ(H−h)} and universal constant c1 ≥ 1 such

that Gkh,1(qkh,1(s, a)) = Qkh(s, a)− 1
β log{qkh,2(s, a)};

2. 0 ≤ qkh,1(s, a)− qkh,2(s, a) ≤ c1
∣∣eβH − 1

∣∣ g ·mk
h(s, a) for β > 0;

3. 0 ≤ qkh,2(s, a)− qkh,1(s, a) ≤ c1
∣∣eβH − 1

∣∣ g ·mk
h(s, a) for β < 0,

then Condition 2 holds with the aforementioned c1, g, mk
h and qkh,1.

Proof. Let us fix a (k, h, s, a) ∈ [K] × [H] × S × A, and we use the shorthands q1 = qkh,1(s, a), q2 = qkh,2(s, a), G1 =

Gkh,1(qkh,1(s, a)). We first consider the case of β > 0. By the definition of G1 in (22), the assumption 0 ≤ q1 − q2 implies
that G1 ≥ 0. Moreover, Lemma 12 and Fact 1(a) (with g0 = 1, x = q1 and y = q2) together imply

G1 ≤
1

β
(q1 − q2).

Invoking the upper bound on q1 − q2 for β > 0 in the assumption completes the proof for the case.

Now we consider β < 0. By the definition of G1 in (22), the assumption 0 ≤ q2 − q1 implies that G1 ≥ 0. Furthermore, by
Lemma 12 and Fact 1(a) (with g0 = eβH , x = q2 and y = q1), we further have

G1 =
1

|β|
(log q2 − log q1) ≤ e−βH

|β|
(q2 − q1).

Invoking the upper bound on q2− q1 and the fact that
∣∣eβH − 1

∣∣ = 1− eβH for β < 0 completes the proof for the case.

Risk-Sensitive Reinforcement Learning with Function Approximation

For notational simplicity, we suppress the dependency on (k, h, s, a) when it is clear from the context.

B. Proof of Theorem 1
For now, let us assume that Theorem 3 holds, and we defer its proof to Appendix F. Given the result of Theorem 3, we may
restate Theorem 1 as follows.

Theorem 4. Let γL of (15) and λ = (eβH − 1)2 be input to Algorithm 2, and M be as defined in Theorem 3. Under
Assumption 1, for any δ ∈ (0, 1], with probability at least 1 − δ, Condition 2 holds for Algorithm 2 so that M .
[d2KH2 log2(2dKH/δ)]1/2. Therefore, Theorem 3 implies that the regret of Algorithm 2 satisfies

Regret(K) .
e|β|H − 1

|β|
e|β|H

2
√
d2KH2 log2(2dKH/δ).

Therefore, to prove Theorem 1, it suffices to prove that Algorithm 2 satisfies Condition 2.

It can be seen that Line 7 in Algorithm 2 and the initial condition V kH+1(s, a) = 0 in Algorithm 1 ensure that Qkh(s, a) ∈
[0, H − h+ 1] for all (k, h, s, a) ∈ [K]× [H]× S ×A. We let λ = (eβH − 1)2 and γL set as in (15) for Algorithm 2. We
define

q+
1 = qk,+h,1 (s, a) :=

{〈
φkh(s, a), wkh

〉
+ 1 + bkh(s, a), if β > 0,〈

φkh(s, a), wkh
〉

+ 1− bkh(s, a), if β < 0;
(23)

q1 = qkh,1(s, a) :=

{
min{eβ(H−h), q+

1 }, if β > 0,

max{eβ(H−h), q+
1 }, if β < 0.

(24)

Indeed, q1 defined above is equivalent to qkh,L defined in (9). It can also be verified that G1(q1) = Qkh(s, a)− 1
β log{q2},

where G1(·) is defined in (22) and q2 is defined in (21). We have the following result which shows that Algorithm 2 satisfies
Condition 2 (a restatement of Condition 1) with high probability.

Lemma 2. Under Assumption 1, for any δ ∈ (0, 1], with probability at least 1− δ, Condition 2 holds for Algorithm 2 with

c1 ≥ 1, g =
√
d log(2dKH/δ). mk

h(s, a) =
√
φkh(s, a)>(Λkh)−1φkh(s, a) and q1 as defined in (24).

Proof. Let us fix a tuple (k, h, s, a) ∈ [K]× [H]× S ×A. Then, we have

φkh(s, a)>wkh + 1 = φkh(s, a)>(Λkh)−1

 ∑
τ∈[k−1]

φτh(sτh, a
τ
h) · [eβ·V

τ
h+1(sτh+1) − 1]

+ 1 (25)

by Line 6 of Algorithm 2, and

Es′∼Ph(· | s,a)e
β·V kh+1(s′)

= Es′∼Ph(· | s,a)(e
β·V kh+1(s′) − 1) + 1

=

∫
S
ψ(s, a, s′)>θh(eβ·V

k
h+1(s′) − 1)ds′ + 1

= φkh(s, a)>θh + 1

= φkh(s, a)>(Λkh)−1Λkhθh + 1

= φkh(s, a)>(Λkh)−1

 ∑
τ∈[k−1]

φτh(sτh, a
τ
h)φτh(sτh, a

τ
h)>θh + λ · θh

+ 1

= φkh(s, a)>(Λkh)−1

 ∑
τ∈[k−1]

φτh(sτh, a
τ
h) · Es′∼Ph(· | sτh,a

τ
h)[e

β·V τh+1(s′) − 1] + λ · θh

+ 1, (26)

Risk-Sensitive Reinforcement Learning with Function Approximation

where the first step follows from Assumption 1, the second step holds by Line 4 of Algorithm 2, the third step holds since
Λkh is positive definite by construction, the fourth step holds by Line 3 of Algorithm 2, and the last step holds since

φτh(s, a)>θh =

∫
S
ψ(s, a, s′)>θh · (eβ·V

τ
h+1(s′) − 1)ds′ = Es′∼Ph(· | s,a)[e

β·V τh+1(s′) − 1]

for τ ∈ [K], which is due to Assumption 1. Now we consider the cases β > 0 and β < 0 separately.

Case β > 0. Recall q+
1 defined in (23) and q2 in (21). To control G1, we can compute∣∣q+

1 − q2 − bkh(s, a)
∣∣

=
∣∣∣φkh(s, a)>wkh + 1− Es′∼Ph(· | s,a)e

β·V kh+1(s′)
∣∣∣

=

∣∣∣∣∣φkh(s, a)>(Λkh)−1

 ∑
τ∈[k−1]

φτh(sτh, a
τ
h) ·

(
eβ·V

τ
h+1(sτh+1) − Es′∼Ph(· | sτh,a

τ
h)[e

β·V τh+1(s′)]
)

︸ ︷︷ ︸
S1

− λ · φkh(s, a)>(Λkh)−1θh︸ ︷︷ ︸
S2

∣∣∣∣∣ ≤ |S1|+ |S2| , (27)

where the first step holds by the definitions of q+
1 and q2, and the second step is implied by (25) and (26). We control each

of S1 and S2. For S1, we have

|S1| ≤

∥∥∥∥∥ ∑
τ∈[k−1]

φτh(sτh, a
τ
h) · (eβ·V

τ
h+1(sτh+1) − Es′∼Ph(· | sτh,a

τ
h)e

β·V τh+1(s′))

∥∥∥∥∥
(Λkh)−1

‖φkh(s, a)‖(Λkh)−1

by the Cauchy-Schwarz inequality. On the event of Lemma 4, we further have

|S1| ≤ c
∣∣eβH − 1

∣∣√d log(2dKH/δ) · ‖φkh(s, a)‖(Λkh)−1

for some universal constant c > 0. Now for S2, we have

|S2| ≤ λ · ‖φkh(s, a)‖(Λkh)−1 · ‖θh‖(Λkh)−1

≤
√
λ · ‖φkh(s, a)‖(Λkh)−1 · ‖θh‖2

≤
√
λd · ‖φkh(s, a)‖(Λkh)−1 ,

where the first step holds by the Cauchy-Schwarz inequality, the second step holds since Λkh � λ · Id, and the last step holds
by Assumption 1 that ‖θh‖2 ≤

√
d. Plugging the bounds on S1 and S2 into (27), and using the fact that λ = (eβH − 1)2

and the definition of bkh, we have ∣∣∣φτh(s, a)>wkh + 1− Es′∼Ph(· | s,a)e
β·V kh+1

∣∣∣ ≤ bkh(s, a).

We choose cγ = c+ 1 in the definition of bkh(s, a) in Line 5 of Algorithm 2, and we have

0 ≤ q+
1 − q2 ≤ 2cγ︸︷︷︸

c1

·
∣∣eβH − 1

∣∣√d log(2dKH/δ)︸ ︷︷ ︸
g

· ‖φkh(s, a)‖(Λkh)−1︸ ︷︷ ︸
mkh(s,a)

. (28)

Since (28) implies q+
1 ≥ q2 and Lemma 12 implies q2 ≤ eβ(H−h), we can infer that q1 ≥ q2 from the definition of

q1 = min{eβ(H−h), q+
1 } in (24). Then we have 0 ≤ q1 − q2 ≤ q+

1 − q2. By Lemma 12, we also have q1 ≥ q2 ≥ 1.

Case β < 0. Similar to the case of β > 0, we have∣∣q2 − q+
1 − bkh(s, a)

∣∣ ≤ c · ∣∣eβH − 1
∣∣√d log(2dKH/δ) · ‖φkh(s, a)‖(Λkh)−1 .

Risk-Sensitive Reinforcement Learning with Function Approximation

If we choose cγ = c+ 1 in the definition of bkh(s, a) in Line 5 of Algorithm 2, the above equation implies

0 ≤ q2 − q+
1 ≤ 2cγ︸︷︷︸

c1

·
∣∣eβH − 1

∣∣√d log(2dKH/δ)︸ ︷︷ ︸
g

· ‖φkh(s, a)‖(Λkh)−1︸ ︷︷ ︸
mkh(s,a)

. (29)

Therefore, using the same reasoning as in the case of β > 0, we have 0 ≤ q2 − q1 ≤ q2 − q+
1 . Also, by the definition of q1

in (24), we have q1 ≥ eβ(H−h).

The proof is completed by invoking Lemma 1 and recalling the identity ‖φkh(s, a)‖(Λkh)−1 =
√
φkh(s, a)>(Λkh)−1φkh(s, a).

Next, we give a bound for the quantity
∑
k∈[K]

∑
h∈[H] min{1,mk

h(skh, a
k
h)}.

Lemma 3. Under Assumption 1, let {mk
h(s, a)} be as defined in Lemma 2 and we have∑

k∈[K]

∑
h∈[H]

min{1,mk
h(skh, a

k
h)} ≤

√
2dKH2ι,

where ι = log(2dK/δ).

Proof. We have ∑
k∈[K]

∑
h∈[H]

min{1,mk
h(skh, a

k
h)}

≤
∑
h∈[H]

√
K

√∑
k∈[K]

min{1, φkh(skh, a
k
h)>(Λkh)−1φkh(skh, a

k
h)}

≤ H
√

2dKι.

where the first step holds by the Cauchy-Schwarz inequality, and the last step holds by Lemma 6.

Recall the definition of M from Theorem 3, and now its upper bound can be determined by combining Lemmas 2 and 3.
Therefore, the proof of Theorem 4 (and hence Theorem 1) is completed.

B.1. Auxiliary lemmas

We first present a concentration result.

Lemma 4. Let λ = (eβH − 1)2 in Algorithm 2. There exists a universal constant c > 0 such that for any δ ∈ (0, 1] and
(k, h) ∈ [K]× [H], with probability 1− δ, we have∥∥∥∥∥ ∑

τ∈[k−1]

φτh(sτh, a
τ
h) · (eβ·V

τ
h+1(sτh+1) − Es′∼Ph(· | sτh,a

τ
h)e

β·V τh+1(s′))

∥∥∥∥∥
(Λkh)−1

≤ c
∣∣eβH − 1

∣∣√d log(2dKH/δ)

Proof. We begin by defining the filtration. For any (k, h) ∈ [K]× [H], we define Fkh,1 as the σ-algebra generated by the
following state-action sequence:

{(sτi , aτi)}(τ,i)∈[k−1]×[H] ∪ {(ski , aki)}i∈[h],

and we let Fkh,2 be the σ-algebra generated by

{(sτi , aτi)}(τ,i)∈[k−1]×[H] ∪ {(ski , aki)}i∈[h] ∪ {skh+1},

where we define skH+1 to be the null state for any k ∈ [K]. By the definition of the filtration and the Markov property, we
have

E
[
eβ·V

τ
h+1(sτh+1) | Fτh,1

]
= Es′∼Ph(· | sτh,a

τ
h)e

β·V τh+1(s′).

Risk-Sensitive Reinforcement Learning with Function Approximation

Let us define
$τ
h := eβ·V

τ
h+1(sτh+1) − Es′∼Ph(· | sτh,a

τ
h)e

β·V τh+1(s′).

Note that, conditioning on Fτh,1, the random variable $τ
h is zero-mean

∣∣eβH − 1
∣∣-sub-Gaussian, since V τh+1(sτh+1) ∈ [0, H].

It can also be seen that $τ
h is Fτh,2-measurable since Fτh,1 ⊂ Fτh,2 for τ ∈ [k − 1]. Hence, for any fixed h ∈ [H], we may

apply the concentration bound for self-normalized martingales in Abbasi-Yadkori et al. (2011, Lemma 9) to get∥∥∥∥∥ ∑
τ∈[k−1]

φτh(sτh, a
τ
h)$τ

h

∥∥∥∥∥
2

(Λkh)−1

≤ c2(eβH − 1)2
[
log(det(Λkh)1/2 det(λId)

−1/2) + log(H/δ)
]
.

with probability at least 1− δ/H . We have
det(Λkh) ≤ ‖Λkh‖d2

and we can compute

‖Λkh‖2 = ‖λId +
∑

τ∈[k−1]

φτh(sτh, a
τ
h)φτh(sτh, a

τ
h)>‖2

≤ λ+
∑

τ∈[k−1]

‖φτh(sτh, a
τ
h)‖22

≤ λ+Kd(eβH − 1)2,

where the last step follows from Assumption 1 and the definition

φτh(·, ·) =

∫
S
ψ(·, ·, s′)(eβ·V

τ
h+1(s′) − 1)ds′.

Therefore, we have
det(Λkh) ≤

[
λ+Kd(eβH − 1)2

]d
.

It is not hard to see that
det(λId) = λd.

Since we have chosen λ = (eβH − 1)2, by a union bound over h ∈ [H] we conclude∥∥∥∥∥ ∑
τ∈[k−1]

φτh(sτh, a
τ
h)$τ

h

∥∥∥∥∥
2

(Λkh)−1

≤ c2(eβH − 1)2

[
d

2
log

(
λ+Kd(eβH − 1)2

λ

)
+ log(H/δ)

]
≤ c2(eβH − 1)2d log(2dKH/δ)

with probability 1− δ.

The next few lemmas can help control the sum of the terms {φkh(skh, a
k
h)>(Λkh)−1φkh(skh, a

k
h)}.

Lemma 5. Let {φj}j≥1 be a sequence in Rd. Let Λ0 ∈ Rd×d be a positive-definite matrix and Λt := Λ0 +
∑
j∈[t−1] φjφ

>
j .

Then for any t ∈ Z>0, we have ∑
j∈[t]

min{1, φ>j Λ−1
j φj} ≤ 2 log

[
det(Λt+1)

det(Λ1)

]
.

Proof. The proof follows that of Abbasi-Yadkori et al. (2011, Lemma 11)

Lemma 6. Let λ = (eβH − 1)2 in Algorithm 2. For any h ∈ [H], we have∑
k∈[K]

min{1, φkh(skh, a
k
h)>(Λkh)−1φkh(skh, a

k
h)} ≤ 2dι,

where ι = log(2dK/δ).

Risk-Sensitive Reinforcement Learning with Function Approximation

Proof. By construction of Algorithm 2, we may define Λ0
h := λId so we have

Λkh = Λ0
h +

∑
τ∈[k−1]

φτh(sτh, a
τ
h)φτh(sτh, a

τ
h)>.

Since ‖φkh(skh, a
k
h)‖2 ≤

√
d
∣∣eβH − 1

∣∣ for all (k, h) ∈ [K]× [H] as implied by Assumption 1, we have for any h ∈ [H] that

ΛK+1
h =

∑
k∈[K]

φkh(skh, a
k
h)φkh(skh, a

k
h)> + λId � (dK|eβH − 1|2 + λ)Id.

Given λ =
∣∣eβH − 1

∣∣2, we have for any h ∈ [H] that

log

[
det(ΛK+1

h)

det(Λ1
h)

]
≤ d log

[
dK

∣∣eβH − 1
∣∣2 + λ

λ

]
≤ d log[dK + 1]

≤ dι.

We now apply Lemma 5 to get

∑
k∈[K]

min{1, φkh(skh, a
k
h)>(Λkh)−1φkh(skh, a

k
h)} ≤ 2 log

[
det(ΛK+1

h)

det(Λ1
h)

]
≤ 2dι,

as desired.

C. Proof of Corollary 1

The result follows from Theorem 1, as well as the fact that e
|β|H−1
|β| → H and e|β|H

2 → 1 as β → 0.

D. Proof of Theorem 2
We assume that Theorem 3 holds for now and defer its proof to Appendix F. Thanks to the result of Theorem 3, we have the
following restatement of Theorem 2.

Theorem 5. Let γG of (19) be input to Algorithm 3 and M be as defined in Theorem 3. Under Assumption 2, for any
δ ∈ (0, 1], with probability at least 1− δ, Condition 2 holds for Algorithm 2 so that M . H min{dE ,K}+

√
dEKH2ζ.

Therefore, Theorem 3 implies that the regret of Algorithm 3 satisfies

Regret(K) .
e|β|H − 1

|β|
e|β|H

2
(
H min{dE ,K}+

√
dEKH2ζ

)
.

Given the above theorem, it remains to show that Algorithm 3 satisfies Condition 2.

It can be seen that Line 5 in Algorithm 3 and the initial condition V kH+1(s, a) = 0 in Algorithm 1 ensure that Qkh(s, a) ∈
[0, H − h+ 1] for all (k, h, s, a) ∈ [K]× [H]×S ×A. We fix a tuple (k, h, s, a) ∈ [K]× [H]×S ×A. Recall that γG is
as defined in (19). For Algorithm 3, we let

q1 = qkh,1(s, a) :=

{
maxP∈Pkh

∫
S P (s′ | s, a)eβ·V

k
h+1(s′)ds′, if β > 0,

minP∈Pkh

∫
S P (s′ | s, a)eβ·V

k
h+1(s′)ds′, if β < 0,

(30)

which is equivalent to qkh,G(s, a) defined in (14). Recall the definitions of zp and Z in (17). We have the result below, which
verifies Condition 2 (a restatement of Condition 1) for Algorithm 3 under the general function approximation.

Lemma 7. Under Assumption 2, for any δ ∈ (0, 1] the following holds with probability at least 1 − δ. For
all (k, h, s, a) ∈ [K] × [H] × S × A, Condition 2 holds for Algorithm 3 with c1 = 1, g = 1, mk

h(s, a) =
1

|eβH−1|

[
maxP∈Pkh zP (s, a, V kh+1)−minP∈Pkh zP (s, a, V kh+1)

]
and q1 as defined in (30).

Risk-Sensitive Reinforcement Learning with Function Approximation

Proof. It is not hard to see that by the definition of q1 in (30), we have

q1 ∈ [min{1, eβ(H−h)},max{1, eβ(H−h)}].

Recall the definitions of q2 in (21) and G1(·) in (22); it holds that G1(q1) = Qkh − 1
β log{q2}. On the event of Lemma 10,

we have Ph ∈ Pkh .

Case β > 0. By definitions of q1 and q2 and the fact that Ph ∈ Pkh , we have q1 ≥ q2. We can also derive

q1 − q2 = max
P∈Pkh

∫
S
P (s′ | s, a)eβ·V

k
h+1(s′)ds′ −

∫
S
Ph(s′ | s, a)eβ·V

k
h+1(s′)ds′

≤ max
P∈Pkh

∫
S
P (s′ | s, a)eβ·V

k
h+1(s′)ds′ − min

P∈Pkh

∫
S
P (s′ | s, a)eβ·V

k
h+1(s′)ds′

= max
P∈Pkh

∫
S
P (s′ | s, a)(eβ·V

k
h+1(s′) − 1)ds′ − min

P∈Pkh

∫
S
P (s′ | s, a)(eβ·V

k
h+1(s′) − 1)ds′

=
∣∣eβH − 1

∣∣ g ·mk
h(s, a),

where the second step holds since Ph ∈ Pkh , and the third step holds since
∫
S P (s′ | s, a)ds′ = 1.

Case β < 0. By definitions of q1 and q2 and the fact that Ph ∈ Pkh , we may deduce that q1 ≤ q2. Also, we have

q2 − q1 =

∫
S
Ph(s′ | s, a)eβ·V

k
h+1(s′)ds′ − min

P∈Pkh

∫
S
P (s′ | s, a)eβ·V

k
h+1(s′)ds′

≤ max
P∈Pkh

∫
S
P (s′ | s, a)eβ·V

k
h+1(s′)ds′ − min

P∈Pkh

∫
S
P (s′ | s, a)eβ·V

k
h+1(s′)ds′

= − min
P∈Pkh

∫
S
P (s′ | s, a)(−eβ·V

k
h+1(s′))ds′ − (−1) max

P∈Pkh

∫
S
P (s′ | s, a)(−eβ·V

k
h+1(s′))ds′

= max
P∈Pkh

∫
S
P (s′ | s, a)(1− eβ·V

k
h+1(s′))ds′ − min

P∈Pkh

∫
S
P (s′ | s, a)(1− eβ·V

k
h+1(s′))ds′

=
∣∣eβH − 1

∣∣ g ·mk
h(s, a),

where the second step holds since Ph ∈ Pkh , and the fourth step holds since
∫
S P (s′ | s, a)ds′ = 1.

Finally, invoking Lemma 1 completes the proof.

The following lemma controls
∑
k∈[K]

∑
h∈[H] min{1,mk

h(skh, a
k
h)}.

Lemma 8. Let d := dimE(Z,
∣∣eβH − 1

∣∣ /K). Under Assumption 2, for any δ ∈ (0, 1], let {mk
h(s, a)} be as defined in

Lemma 7 and ζ be as defined in (20), then with probability at least 1− δ, we have∑
k∈[K]

∑
h∈[H]

min{1,mk
h(skh, a

k
h)} ≤ 2H min{d,K}+ 20H

√
dKζ.

Proof. Since min
{

1,mk
h(skh, a

k
h)
}
≤ mk

h(skh, a
k
h) for all (k, h) ∈ [K]× [H]. For each fixed h ∈ [H], by Lemma 11, we

have ∑
k∈[K]

min{1,mk
h(skh, a

k
h)} ≤ 1

|eβH − 1|

[∣∣eβH − 1
∣∣+
∣∣eβH − 1

∣∣ ·min{d,K}+ 5
√
γ2dK

]
≤ 1

|eβH − 1|

[
2
∣∣eβH − 1

∣∣ ·min{d,K}+ 5
√
γ2dK

]
= 2 ·min{d,K}+

5

|eβH − 1|
√
γ2dK

≤ 2 ·min{d,K}+ 20

√
dK

[
log
(
N1/K(P, ‖ · ‖∞,1) ·H/δ

)
+
√

log(4K2H/δ)
]
,

Risk-Sensitive Reinforcement Learning with Function Approximation

where the last step holds since γG = γ where γ is given in Lemma 10. Summing both sides of the above equations over
h ∈ [H] results in the desired bound.

Recall the definition of M from Theorem 3, and now its upper bound can be determined by combining Lemmas 7 and 8.
Therefore, the proof of Theorem 5 (and hence Theorem 2) is completed.

D.1. Auxiliary lemmas

Let Z be a set of [0, D]-valued functions for some number D > 0. We define {(Xτ , Yτ)}τ∈[t] be a series of random
variables such that each Xτ is in the domain of the elements of function set Z , and each Yτ ∈ R. Let F = {Fτ}τ≥1

be a set of filtrations such that for all τ ≥ 1, the random variables {X1, Y1, . . . , Xτ−1, Yτ−1, Xτ} is Fτ−1-measurable.
Furthermore, we assume there exists a function z∗ ∈ Z such that E[Yτ | Fτ−1] = z∗(Xτ). For any ε > 0, we denote by
Nε(Z, ‖ · ‖∞) the ε-covering number of Z with respect to the supremum norm ‖z1 − z2‖∞ = supx |z1(x)− z2(x)|. We
define

ẑt := argmin
z∈Z

∑
τ∈[t]

(z(Xτ)− Yτ)2,

and for γ ≥ 0, let

Zt(γ) :=

z ∈ Z :
∑
τ∈[t]

(z(Xτ)− ẑt(Xτ))2 ≤ γ2

 .

We record a concentration result.

Lemma 9. Suppose that for any τ ≥ 1, the random variable Yτ − z∗(Xτ) is conditionally σ-sub-Gaussian given filtration
Fτ−1. Let

γ2
t (δ, ε) := 8σ2 log

(
Nε(Z, ‖ · ‖∞)/δ

)
+ 4εt

(
D +

√
σ2 log(4t(t+ 1)/δ)

)
.

Then for any ε > 0 and δ ∈ (0, 1], with probability at least 1− δ we have z∗ ∈ Zt(γt(δ, ε)).

Proof. The proof can be adapted from that of Russo & Van Roy (2014, Proposition 6).

In the following, we use the shorthand γ := γG, where γG is defined in (19) and used in Line 4 of Algorithm 3.

Lemma 10. For any δ ∈ (0, 1] and

γ2 = 10
∣∣eβH − 1

∣∣2 [log
(
N1/K(P, ‖ · ‖∞,1) ·H/δ

)
+
√

log(4K2H/δ)
]
,

then for all (k, h) ∈ [K]× [H] we have Ph ∈ Pkh with probability at least 1− δ.

Proof. We first note that for any (k, h) ∈ [K]× [H], Line 3 in Algorithm 3 can be equivalently written as

P kh ← argmin
P∈P

∑
τ∈[k−1]

((eβ·V
τ
h+1(sτh+1) − 1)−

∫
S
P (s′ | sτh, aτh) · (eβ·V

τ
h+1(s′) − 1)ds′)2,

since
∫
S P (s′ | sτh, aτh)ds′ = 1. Recall the definition of zP in (17). For any (k, h) ∈ [K] × [H], we set Z = Z ,

Yk = eβ·V
k
h+1(skh+1)−1, Xk = (skh, a

k
h, V

k
h+1) and z∗ = zPh . Then, we have that Yτ −z∗(Xτ) is conditionally (

∣∣eβH − 1
∣∣)-

sub-Gaussian for τ ∈ [k − 1] given a properly defined filtration. By the definition of Pkh , we have Zk(γ) = {zP : P ∈ Pkh}.
By definition of γ, we have

γ ≥ γk−1(δ/H,
∣∣eβH − 1

∣∣ /K)

for all k ∈ [K], where γt(·, ·) is as defined in Lemma 9. By Lemma 9 with D = σ =
∣∣eβH − 1

∣∣ and ε =
∣∣eβH − 1

∣∣ /K,
with probability at least 1− δ/H and for all k ∈ [K], we have

z∗ ∈ Zk(γk−1(δ/H,
∣∣eβH − 1

∣∣ /K)) ⊂ Zk(γ),

Risk-Sensitive Reinforcement Learning with Function Approximation

thus implying Ph ∈ Pkh . Applying the union bound over h ∈ [H], we have that Ph ∈ Pkh with probability at least 1−δ. Now
we show that Nε(Z, ‖ · ‖∞) ≤ Nε/|eβH−1|(P, ‖ · ‖∞,1) for any ε > 0. Let V := {V : S → [0, H]}. For any P, P ′ ∈ P
and their corresponding zP , zP ′ ∈ Z , we can compute

‖zP − zP ′‖∞ = sup
(s,a,V)∈S×A×V

∣∣∣∣∫
S
P (s′ | s, a)(eβ·V (s′) − 1)ds′ −

∫
S
P ′(s′ | s, a)(eβ·V (s′) − 1)ds′

∣∣∣∣
≤
∣∣eβH − 1

∣∣ · sup
(s,a)∈S×A

∫
S
|P (s′ | s, a)− P ′(s′ | s, a)|ds′

=
∣∣eβH − 1

∣∣ · ‖P − P ′‖∞,1,
as desired.

We have the following result on the eluder dimension.

Lemma 11. Let Z = Z and d = dimE(Z,
∣∣eβH − 1

∣∣ /K). For any K ≥ 1, β ∈ R and γ̄ > 0, we have∑
k∈[K]

sup
z,z′∈Zk(γ)

|z(xk)− z′(xk)| ≤
∣∣eβH − 1

∣∣+
∣∣eβH − 1

∣∣ ·min{d,K}+ 4
√
γ̄2dK.

Proof. This result is an adaptation of Russo & Van Roy (2014, Lemma 5) with C =
∣∣eβH − 1

∣∣ therein.

E. Preliminaries to proof of Theorem 3
Our setup follows and generalizes that in the proof of Fei et al. (2020, Theorem 1). We fix a tuple (k, h, s, a) ∈ [K]× [H]×
S ×A and a policy π. For Algorithm 1 (which subsumes both Algorithms 2 and 3), define

q2 = qkh,2(s, a) := Es′∼Ph(· | s,a)[e
β·V kh+1(s′)], (31)

which is the same definition as (21), and

q3 = qkh,3(s, a) := Es′∼Ph(· | s,a)[e
β·V πh+1(s′)]. (32)

In the above definitions, note that q2 and q3 depend on (k, h, s, a); we suppress such dependency for notational simplicity.
We have the following bounds on q2 and q3.

Lemma 12. We have q2, q3 ∈ [min{1, eβ(H−h)},max{1, eβ(H−h)}].

Proof. The result for q2 and q3 can be seen if we recall their definitions and the fact that eβ·V (·) ∈
[min{1, eβ(H−h)},max{1, eβ(H−h)}] for any V : S → [0, H − h].

For any q′ > 0, define

G1(q′) :=
1

β
log{q′} − 1

β
log{q2},

G2 :=
1

β
log{q2} −

1

β
log{q3}.

(33)

Note thatG1 in (33) shares the same definition as that in (22). Since q2, q3 > 0 by definition,G1(q′) andG2 are well-defined.
By the Bellman equation (4), for any π we have

Qπh(s, a) = rh(s, a) +
1

β
log
{
Es′∼Ph(· | s,a)e

β·V πh+1(s′)
}
.

Under Condition 2, it holds that

(Qkh −Qπh)(s, a) =
1

β
log{q1} −

1

β
log{q3} = G1 +G2, (34)

Risk-Sensitive Reinforcement Learning with Function Approximation

by the construction of Qkh in the algorithms, where we have let G1 := G1(q1). Condition 2 has unspecified quantities q1,
{mk

h} and g. The condition, along with those quantities therein, will be verified in Lemmas 2 and 7 under Assumptions 1
and 2, respectively.

For now let us focus on G2, and we need the following simple result to control it.

Fact 1. Consider x, y, b ∈ R such that x ≥ y.

(a) if y ≥ g0 for some g0 > 0, then log(x)− log(y) ≤ 1
g (x− y);

(b) Assume further that y ≥ 0. If b ≥ 0 and x ≤ u for some u > 0, then ebx − eby ≤ bebu(x − y); if b < 0, then
eby − ebx ≤ (−b)(x− y).

Proof. The results follow from Lipschitz continuity of the functions x 7→ log(x) and x 7→ ebx.

We next control G2, whose proof is agnostic of function approximation.

Lemma 13. For each (k, h, s, a) ∈ [K]× [H]× S ×A, if V kh+1(s′) ≥ V πh+1(s′) for all s′ ∈ S, then we have

0 ≤ G2 ≤ e|β|H · Es′∼Ph(· | s,a)[V
k
h+1(s′)− V πh+1(s′)].

Proof. Case β > 0. The assumption V kh+1(s′) ≥ V πh+1(s′) for all s′ ∈ S implies that q2 ≥ q3 (by the definitions of q2 and
q3 in (31) and (32)) and therefore G2 ≥ 0 by the definition (33). We also have

G2 ≤
1

β
(q2 − q3)

≤ e|β|HEs′∼Ph(· | s,a)[V
k
h+1(s′)− V πh+1(s′)],

where the first step holds by Fact 1(a) (with g0 = 1, x = q2, and y = q3) and the fact that q2 ≥ q3 ≥ 1 (implied by Lemma
12), and the second step holds by Fact 1(b) (with b = β, x = V kh+1(s), and y = V πh+1(s)) andH ≥ V kh+1(s) ≥ V πh+1(s) ≥ 0.

Case β < 0. The assumption V kh+1(s′) ≥ V πh+1(s′) for all s′ ∈ S implies that q2 ≤ q3 and therefore G2 ≥ 0 due to its
definition (33). We also have

G2 =
1

(−β)
(log{q3} − log{q2})

≤ e−βH

(−β)
(q3 − q2)

≤ e|β|HEs′∼Ph(· | s,a)[V
k
h+1(s′)− V πh+1(s′)],

where the second step holds by Fact 1(a) (with g0 = eβH , x = q3, and y = q2) and the fact that q3 ≥ q2 ≥ eβH

(suggested by Lemma 12), and the third step holds by Fact 1(b) (with b = β, x = V kh+1(s), and y = V πh+1(s)) and
V kh+1(s) ≥ V πh+1(s) ≥ 0.

With the help of Lemma (13), we can show the “optimism” of Qkh in the following sense.

Lemma 14. Suppose (34) holds with G1 ≥ 0. We have Qkh(s, a) ≥ Qπh(s, a) for all (k, h, s, a) ∈ [K]× [H]× S ×A.

Proof. For the purpose of the proof, we setQπH+1(s, a) = Q∗H+1(s, a) = 0 for all (s, a) ∈ S×A. We fix a tuple (k, s, a) ∈
[K]× S ×A and use strong induction on h. The base case for h = H + 1 is satisfied since (QkH+1 −QπH+1)(s, a) = 0 for
k ∈ [K] by definition. Now we fix an h ∈ [H] and assume that 0 ≤ (Qkh+1 −Qπh+1)(s, a). By the induction assumption we
have

V kh+1(s) = max
a′∈A

Qkh+1(s, a′) ≥ max
a′∈A

Qπh+1(s, a′) ≥ V πh+1(s). (35)

Applying (35) to Lemma 13 yields G2 ≥ 0. Since G1 ≥ 0 by assumption, it follows that (Qkh − Qπh)(s, a) ≥ 0 by (34).
The induction is completed and so is the proof.

Risk-Sensitive Reinforcement Learning with Function Approximation

Lemma 14 implies an immediate but important corollary.

Lemma 15. Suppose (34) holds with G1 ≥ 0. We have V kh (s) ≥ V πh (s) for all (k, h, s) ∈ [K]× [H]× S .

Proof. The result follows from Lemma 14 and Equation (35).

We now have all the keys to proving the unified regret bound in Theorem 3.

F. Proof of Theorem 3
We work on the event of Condition 2 (which is a restatement of Condition 1), where g and {mk

h} are defined. This means
(34) also holds. Define δkh := V kh (skh)− V πkh (skh), and ζkh+1 := Es′∼Ph(· | skh,a

k
h)[V

k
h+1(s′)− V πkh+1(s′)]− δkh+1. Let {mk

h}
be as defined in Condition 2. For any (k, h) ∈ [K]× [H], we have

δkh = (Qkh −Qπ
k

h)(skh, a
k
h)

≤ min{H, (Qkh −Qπ
k

h)(skh, a
k
h)} (36)

≤ min

{
H, c1 ·

e|β|H − 1

|β|
· g ·mk

h(skh, a
k
h)

}
+ e|β|H · Es′∼Ph(· | skh,a

k
h)[V

k
h+1(s′)− V π

k

h+1(s′)]

≤ c1 ·
e|β|H − 1

|β|
· g ·min{1,mk

h(skh, a
k
h)}+ e|β|H · Es′∼Ph(· | skh,a

k
h)[V

k
h+1(s′)− V π

k

h+1(s′)] (37)

= c1 ·
e|β|H − 1

|β|
· g ·min{1,mk

h(skh, a
k
h)}+ e|β|H(δkh+1 + ζkh+1). (38)

In the above equation, the first step holds by the construction of Algorithm 1 and the definition of V π
k

h in (4); the second
step is due to the fact that Qkh(·, ·) ≤ H and Qπ

k

h (·, ·) ≥ 0; the third step holds by (34) combined with Condition 2 and
Lemma 13; the fourth step holds since c1, g ≥ 1 and e|β|H−1

|β| ≥ H; the last step follows from the definitions of δkh and ζkh+1.

Recalling from Algorithm 1 and the Bellman equation (4) that V kH+1(s) = V π
k

H+1(s) = 0, as well as noting the fact that
δkh+1 + ζkh+1 ≥ 0 implied by Lemma 15, we can continue by expanding the recursion in Equation (38) and get

δk1 ≤
∑
h∈[H]

e|β|Hhζkh+1 + c1 ·
e|β|H − 1

|β|
·
∑
h∈[H]

e|β|H(h−1)g ·min{1,mk
h(skh, a

k
h)}. (39)

Therefore, we have

Regret(K) =
∑
k∈[K]

[
(V ∗1 − V π

k

1)(sk1)
]
≤
∑
k∈[K]

δk1

≤ e|β|H
2 ∑
k∈[K]

∑
h∈[H]

ζkh+1 + c1 ·
e|β|H − 1

|β|
· e|β|H

2

· g
∑
k∈[K]

∑
h∈[H]

min{1,mk
h(skh, a

k
h)}, (40)

where the second step holds by Lemma 15 with π therein set to the optimal policy, and in the last step we have applied (39)
along with the Holder inequality.

We proceed to control the first term in Equation (40). Since the construction of V kh is independent of the new observation skh
in episode k, we have that {ζkh+1} is a martingale difference sequence satisfying

∣∣ζkh∣∣ ≤ 2H for all (k, h) ∈ [K]× [H]. By
the Azuma-Hoeffding inequality, we have for any t > 0,∑

k∈[K]

∑
h∈[H]

ζkh+1 ≤ t,

with probability at least 1− e−t2/(2KH·4H2). Hence, with probability 1− δ/2, there holds∑
k∈[K]

∑
h∈[H]

ζkh+1 ≤
√

2H2T · log(2/δ). (41)

Risk-Sensitive Reinforcement Learning with Function Approximation

Finally, plugging (41) into (40) yields

Regret(K) ≤ e|β|H
2√

2H2T · log(2/δ) + c1 ·
e|β|H − 1

|β|
· e|β|H

2

· g
∑
k∈[K]

∑
h∈[H]

min{1,mk
h(skh, a

k
h)}.

We then rescale δ properly and finish the proof of Theorem 3.

