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Abstract
The display advertising industry has recently tran-
sitioned from second- to first-price auctions as its
primary mechanism for ad allocation and pricing.
In light of this, publishers need to re-evaluate and
optimize their auction parameters, notably reserve
prices. In this paper, we propose a gradient-based
algorithm to adaptively update and optimize re-
serve prices based on estimates of bidders’ respon-
siveness to experimental shocks in reserves. Our
key innovation is to draw on the inherent structure
of the revenue objective in order to reduce the vari-
ance of gradient estimates and improve conver-
gence rates in both theory and practice. We show
that revenue in a first-price auction can be use-
fully decomposed into a demand component and
a bidding component, and introduce techniques
to reduce the variance of each component. We
characterize the bias-variance trade-offs of these
techniques and validate the performance of our
proposed algorithm through experiments on syn-
thetic data and real display ad auctions data from
a major ad exchange.

1. Introduction
A reserve price in an auction specifies a minimum acceptable
winning bid, below which the item remains with the seller.
The reserve price may correspond to some outside offer, or
the value of the item to the seller itself, and more generally
may be set to maximize expected revenue (Myerson, 1981).
In a data-rich environment like online advertising auctions
it becomes possible to learn a revenue-optimal reserve price
over time, and there is a substantial literature on optimizing
reserve prices for second-price auctions, which have been
commonly used to allocate ad space (Paes Leme et al., 2016;
Mohri & Medina, 2016; Munoz & Vassilvitskii, 2017).

In this work we examine the problem of reserve price op-
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timization in first-price (i.e., pay-your-bid) auctions, mo-
tivated by the fact that all the major ad exchanges have
recently transitioned to this auction format as their main
ad allocation mechanism (Chen, 2017; Bigler, 2019). First-
price auctions have grown in favor because they are con-
sidered more transparent, in the sense that there is no un-
certainty in the final price upon winning (Benes, 2017).1

Unless restrictive assumptions are met, there is in theory
no revenue ranking between first- and second-price auc-
tions (Krishna, 2009), and there is no guarantee that reserve
prices optimized for second-price auctions will continue to
be effective in a first-price setting.

From a learning standpoint the shift from second- to first-
price auctions introduces several new challenges. In a
second-price auction, truthful bidding is a dominant strategy
no matter what the reserve. The bidders’ value distribu-
tions are therefore readily available, and bids stay static
(in principle) as the reserve is varied. In a first-price auc-
tion, in contrast, bidders have an incentive to shade their
values when placing their bids, and bid-shading strategies
can vary by bidder. The gain from setting a reserve price
now comes if (and only if) it induces higher bidding, so an
understanding of bidder responsiveness becomes crucial to
setting effective reserves.

Bid adjustments in response to a reserve price can occur at
different timescales. If a bidder observes that it wins too
few auctions because of the reserve price, it may increase
its bid in the long-term (in a matter of hours up to weeks).
Our focus here is on setting reserves prices by taking into
account immediate bidder responses to reserves. We assume
that each bidder has a fixed, unknown bidding function
b(r, v) that depends on its private value v and the observed
auction reserve r. This agrees with practice in display ad
auctions because the reserve r is normally sent out in the
‘bid request’ message to potential bidders (IAB, 2016). To
the extent that the bid function responds to r, first-price
reserves can show an immediate positive effect on revenue.

Our Results. We propose a gradient-based approach to
adaptively improve and optimize reserve prices, where we

1The full reasons for the transition are complex, and include the
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perturb current reserves upwards and downwards (e.g., by
10%) on random slices of traffic to obtain gradient estimates.

Our key innovation is to draw on the inherent structure of the
revenue objective in order to reduce the variance of gradient
estimates and improve convergence rates in both theory and
practice. We show that revenue in a first-price auction can
be usefully decomposed into two terms: a demand curve
component which depends only on the bidder’s value dis-
tribution; and a bidding component whose variance can be
reduced based on natural assumptions on bidding functions.

A demand curve is a simpler, more structured object than
the original revenue objective (e.g., it is downward-sloping),
so the demand component lends itself to parametric mod-
eling to reduce the variance. We offer two variance reduc-
tion techniques for the bidding component,2 referred to as
bid truncation and quantile truncation. Bid truncation can
strictly decrease variance with no additional bias assuming
the right bidding model (perfect response model), whereas
quantile truncation may introduce bias but is less sensitive
to assumptions on the bidding model. Indeed, the quantile
truncation variance reduction method works for a very gen-
eral class of bidding strategies that satisfy a diminishing
sensitivity property; this class includes best-response bid-
ding for m i.i.d bidders with uniform value distribution and
a near perfect response model defined in Section 2.

We evaluate our approach over synthetic data where bidder
values are drawn uniformly, and also over real bid distri-
butions collected from the logs of the major ad exchange.
Our experimental results confirm that the combination of
variance reduction on both objective components leads to
the fastest convergence rate. For the demand component,
a simple logistic model works well over the synthetic (i.e.,
uniform) data, but a flexible neural net is needed over the
semi-synthetic data. For the bidding component, we find
that quantile truncation is much more robust to assumptions
on the bidding model.

Related Work. This paper connects with the rich literature
on reserve price optimization for auctions, e.g., (Myerson,
1981; Riley et al., 1981). How to set optimal reserve prices
in second price auctions based on access to bidders’ histori-
cal bid data has been an increasingly popular research direc-
tion in machine learning, e.g., (Ostrovsky & Schwarz, 2011;
Mohri & Medina, 2016; Munoz & Vassilvitskii, 2017). An-
other related line of work uses no-regret learning in second
price auctions with partial information feedback to optimize
reserve prices, e.g., (Blum et al., 2003; Cesa-Bianchi et al.,
2015). All of the works cited so far rely on the fact that

2Variance reduction of the bidding component relies on the
insight that bids far above the reserves are little affected by them
(under natural bidding models), so these bids can be filtered out
when computing gradient estimates—changes in such bids are
likely due to noise rather than any effect of reserves.

the seller can directly learn the valuation distribution from
historical bid data, since the second price auction is truthful.

For first-price auctions, we have found little work on setting
optimal reserves for asymmetric bidders, since there are
no characterizations of equilibrium strategies for this case.
Results are only available for limited environments, such as
bidders with uniform valuation distributions (Krishna, 2009;
Matthews, 1995). Recently, there has been a line of work
regarding revenue optimization against strategic bidders in
repeated auctions, e.g., (Amin et al., 2013; Huang et al.,
2018; Drutsa, 2020). In this paper, instead of assuming
that bidders act strategically, we assume each bidder has
a fixed bidding function in response to reserves. This is
a common assumption in large market settings and in the
dynamic pricing literature (Mao et al., 2018).

The algorithms developed in this paper are related to the
literature on online convex optimization with bandit feed-
back (Flaxman et al., 2005; Hazan & Levy, 2014; Agarwal
et al., 2010; 2011). However, there are two key differences
with our work: (1) the revenue function in a first price auc-
tion is non-convex, and (2) the seller cannot obtain perfect
revenue feedback under perturbed reserves with just a sin-
gle query (i.e., auction)—the seller needs multiple queries
to achieve accurate estimates with high confidence. Our
algorithm is also related to zeroth-order stochastic gradi-
ent methods (Ghadimi & Lan, 2013; Balasubramanian &
Ghadimi, 2018; Ghadimi, 2019; Liu et al., 2018), which we
discuss in detail later in Section 3.

2. Preliminaries
We consider a setting where a seller sells a single item to a
set of m bidders via a first price auction. In such an auction,
the seller first sends out a reserve price r to all bidders. Each
bidder i then submits a bid bi. The bidder with the highest
bid larger than r wins the item and pays their bid; if no
bidder bids above r, the item goes unallocated. Note that the
type of reserve price we consider in this work is anonymous
in the sense that each bidder sees the same reserve price.

Each bidder i has a private valuation vi ∈ [0, 1] for the
item, where each value vi is drawn independently (but not
necessarily identically) from some unknown distribution
Fi.3 With a slight abuse of notation, we write bi(r, vi) to
denote the bid function of bidder i when the reserve price
is r and her value is vi. In a first-price auction, only the
highest bid matters for both allocation and pricing. Given
this property, we have the following reduction from multiple
bidders to a single “meta-bidder” in a first price auction.

Theorem 2.1. Let F be the distribution of
max(v1, v2, . . . , vm), where each vi is independently

3The normalization on the valuation domain is without loss of
generality: our analysis easily extends to any bounded valuation
setting.
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drawn from Fi, and let B(r) be the distribution of
max(b1(r, v1), b2(r, v2), . . . , bm(r, vm)). Then there exists
a bid function b(r, v) such that the distribution of b(r, v)
when v ∼ F is equal to the distribution B(r).

Proof. Let Br(b) be the CDF of B(r) and F (v) be the
CDF of F . Denote B−1r (x) = inf{b : u ≤ Br(x)} and
F−1(u) = inf{x : u ≤ F (x)} for any u ∈ [0, 1]. We
construct bidding strategy b(r, v),

b(r, v) = B−1r (F (v)). (1)

Then we have

Pv∼F (b(r, v) ≤ b) = Pv∼F
(
B−1r (F (v)) ≤ b

)
= Pv∼F

(
v ≤ F−1(Br(b))

)
= Br(b)

This guarantees that if v ∼ F , then b(r, v) ∼ B(r).

The above proposition implies that we can without loss
of generality focus on a single bidder setting, defined as
follows. Let v = maxi vi denote the maximum value; v is
drawn i.i.d. from an unknown distribution F across each
auction. We write b(r, v) to denote the maximum bid when
the reserve price is r and the maximum value is v, and B(r)
to denote the distribution of b(r, v) for a fixed r when v is
drawn according to F . (Note that the “meta-bidder” may
not be one of the n real bidders, since the maximum bid can
be from a bidder whose value is not maximum.)

The main goal of the seller considered in this work is to
learn the optimal reserve price r ∈ [0, 1] that maximizes
expected revenue:

Ev∼F [b(r, v) · I{b(r, v) ≥ r}] . (2)

Note that there is no reason for a bidder to bid a positive
value less than the reserve r: such a bid is guaranteed to
lose. Therefore, without loss of generality we can assume
that if b(r, v) < r, then b(r, v) = 0. This allows us to write
the revenue simply as:

µ(r) = Eb∼B(r) [b] = Ev∼F [b(r, v)] .

In this paper, we focus on maximizing the revenue function
µ(r) in the steady state, where b(·, ·) and F are unknown
but fixed. This assumption is reasonable in real display
ads system where changes to the valuation of an advertiser
happen much more gradually than shocks to the market
(changes in reserve price, new bidders entering, etc.) and
the number of auctions is very large.

Response Models

We begin by describing some general properties of bidding
functions that hold for any utility-maximizing bidders; see
(Matthews, 1995) for further discussion.

Definition 2.2. A bidding function b(r, v) satisfies the fol-
lowing properties: I. b(r, v) ≤ v for all v; II. b(r, v) ≥ r
for v ≥ r; III. b(r, v) = 0 for v < r; IV. b(r, v) is non-
decreasing in v for all r.

For the “meta-bidder”, properties I, II and III in Defini-
tion 2.2 hold trivially assuming that all individual bidders
are utility maximizing, and property IV holds based on our
construction given in Eq. (1). In this paper, we also inves-
tigate additional constraints on the response model which,
while not a consequence of utility-maximizing behavior, are
likely to hold in practice. One such constraint is the dimin-
ishing sensitivity in value of bid to reserve. This says that
meta-bidder with a larger value will change its bid less in
response to a change in reserves.

Definition 2.3 (Diminishing Sensitivity Property). If vH >
vL, then for δ > 0 and vL ≥ r + δ we have b(r + δ, vH)−
b(r, vH) ≤ b(r + δ, vL)− b(r, vL).

Indeed, this diminishing sensitivity property of bid to re-
serve holds in many scenarios. For example, if there are m
i.i.d bidders with uniform value distribution, the Bayesian
Nash Equilibrium (BNE) bidding strategy satisfies the di-
minishing sensitivity property. Other response models, such
as, no response model (see Appendix B), perfect response
model (Definition 2.5) or a mixture of these two models,
all satisfy the diminishing sensitivity property. Based on
our construction of b(r, v) in Eq. (1), we have the following
sufficient condition for the diminishing sensitivity property.

Proposition 2.4. Let Br(b) be the CDF of B(r). If
B−1r+δ(·)−B−1r (·) is a non-increasing function for any re-
serve r and δ > 0, then the bid function satisfies diminishing
sensitivity property.

In practice, one natural and concrete example of a response
model is a bidder that increases its bid to the reserve as long
as the reserve is below its value. We refer to this as the
perfect response model, formally defined as follows.

Definition 2.5. A perfect response bidding function takes
the form:

b(r, v) =

 b(0, v) if b(0, v) ≥ r
r if b(0, v) < r ≤ v
0 if v < r

Note that the perfect response model is based on the origi-
nal bid of the bidder under reserve price 0, namely b(0, v).
If b(0, v) is already above the reserve, then this bidder is
unaffected by the reserve. If the value v is larger than r
but the original bid is smaller than r, the bidder increases
its bid just enough to meet the reserve r. Finally, if the
value v is smaller than r, then the bidder submits a bid of 0
in accordance with Definition 2.2 (equivalently, the bidder
places an irrelevant bid below the reserve, or simply declines
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to bid). Note that the perfect response model satisfies the
diminishing sensitivity property.

In practice, bidders are unlikely to exactly follow the perfect
response model; for example, bidders will often increase
their bid to some amount strictly above the reserve r so as to
remain competitive with other bidders. For this reason, we
propose a relaxation of the perfect response model which
we call the ε-bounded response model: the bid is at most
ε greater than what it would have been under the perfect
response model if b(0, v) < r ≤ v (see also Definition A.6).
Note that the ε-bounded response model becomes the perfect
response model when ε = 0.

Remark. We believe the perfect response bidding strategy
is a reasonable response model in practice, however, this pa-
per is not specific to this model. Indeed, our gradient-based
algorithm works for all response models, and the quantile
truncation variance reduction method proposed in section 4
holds for any bidding strategy satisfying diminishing sensi-
tivity property. For the special case of the perfect response
model, we design a bid truncation variance reduction (in sec-
tion 4) tailored to this model which significantly improves
convergence theoretically and empirically.

3. Gradient Descent Framework
The first-price auction setting introduces several challenges
for setting reserve prices. First, the seller cannot observe
true bidder values because truthful bidding is not a dominant
strategy in a first-price auction. Second, how the bidders
will react to different reserves is unknown to the seller—the
only information that the seller receives is bids drawn from
distribution B(r) when the seller sets a reserve price r.

One natural idea, and the approach we take in this paper, is
to optimize the reserve price via gradient descent. Gradi-
ent descent is only guaranteed to converge to the optimal
reserve when our objective is convex (or at least, unimodal),
which is not necessarily true for an arbitrary revenue func-
tion. However, gradient descent has a number of practical
advantages for reserve price optimization, including:

1. Gradient descent allows us to incorporate prior infor-
mation we may have about the location of a good re-
serve price (possibly significantly reducing the overall
search cost).

2. The adaptivity of gradient descent allows us to quickly
converge to a local optimum and follow this optimum
if it changes over time, significantly saving on search
cost (over global methods such as grid search).

3. In practice, many revenue curves have a unique local
optimum (see Section 5), so gradient descent is likely
to converge to the optimal reserve.

Algorithm 1 Zeroth-order stochastic projected gradient
framework for reserve optimization.

Input: Initial reserve r1 ∈ (0, 1), and variables to be
fixed later: total number of iterations T , perturbation size
βt, learning rate αt.
Output: Reserve prices r2, r3, . . . , rT+1.
for t = 1, 2, . . . , T do

Set a reserve price of r+t = (1 + βt)rt in nt auctions.
Set a reserve price of r−t = (1− βt)rt in nt auctions.
Construct an estimate Ĝt of the gradient of revenue at
rt, based on the feedback of experiments.
Update reserve: rt+1 = Π(rt + αtĜt), where

Π(x) = arg min
z∈(0,1)

|z − x|.

end for

More specifically, since the seller has no direct access to the
gradients (i.e, first-order information) of µ(r), we consider
approaches that fit in the framework of zeroth-order stochas-
tic optimization. Our framework, summarized in Algorithm
1, proceeds in rounds. In round t where the current reserve
is rt, the seller selects a perturbation size βt and randomly
sets the reserve price to either (1 + βt)rt or (1− βt)rt on
separate slices of experiment traffic, until it has received nt
samples from both B((1 + βt)rt) and B((1− βt)rt). The
seller then uses these 2nt samples to estimate the gradient
Ĝt of the revenue curve µ(r) at rt and updates the reserve
price based on this gradient estimate using learning rate
(step size) αt.

We assume that we have access to a fixed total number of
samples N =

∑T
t=1 nt (the number of iterations T is a

variable that will be fixed later). There is then a trade-off
between nt (i.e, the number of samples per iteration) and T
(the number of iterations available to optimize the reserve
price).

Zeroth-order stochastic gradient descent is a well-studied
problem (Ghadimi & Lan, 2013; Balasubramanian &
Ghadimi, 2018; Ghadimi, 2019; Liu et al., 2018). In this pa-
per, we focus on taking advantage of the structure of b(r, v)
to construct good discrete gradient estimates Ĝt, as this
aspect is specific to the problem of reserve price optimiza-
tion. Specifically, we tackle the following problem which
we term the discrete gradient problem:
• Input: n samples X+

1 , · · · , X+
n drawn i.i.d from

B(r+) and n samples X ,
1 · · · , X−n drawn i.i.d from

B(r−), for known r+ > r−.

• Output: An estimator Ĝ for the discrete deriva-
tive (µ(r+)− µ(r−))/(r+ − r−). This estimator has
bias Bias(Ĝ) and variance Var(Ĝ), where Bias(Ĝ) =∣∣∣E[Ĝ]− µ(r+)−µ(r−)

r+−r−

∣∣∣.
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Solutions to the discrete gradient problem with small bias
and variance directly translate into faster convergence rates
for our gradient descent. We provide a detailed convergence
result in Theorem A.2 in Appendix A.1. We summarize this
result informally as follows.

Theorem 3.1 (Informal Restatement of Theorem A.2). If
for all t, Bias(Ĝt) ≤ B and Var(Ĝt) ≤ V then for ap-
propriate choices of αt and nt (and fixing βt = δ/2rt),
Algorithm 1 satisfies

min
t∈[T ]

|PtC |2 = Õ
(
T−1/2 + δ2 +B2 + V + (T/N)2

)
.

Here PtC can be thought of as the true gradient at round t
(see Definition A.1 in Appendix).

Intuitively, we want to design an estimator and choose our
parameters αt, βt, nt, so as to trade off between δ, B, and
V . In the following sections, we show how to do this for a
variety of bidder response models. The choices of αt, βt, nt
are summarized in the full version of the main theorem
(Theorem A.2), in Appendix A.1. In this paper, we focus on
convergence rate results since the revenue curve may not be
concave (w.r.t. reserve). Analyzing the revenue guarantee
of the algorithm is an interesting future direction.

Naive Gradient Estimation

The simplest method for estimating the discrete gradient
is to take the difference between the average revenue from
bids from B(r+) and the average revenue from bids from
B(r−). More formally, we compute discrete gradient as,

Ĝ =

∑n
i=1X

+
i −

∑n
i=1X

−
i

n(r+ − r−) . (3)

We show that Ĝ has the following properties.

Theorem 3.2. Assume that r+ − r− = δ, then Bias(Ĝ) =
0,Var(Ĝ) ≤ 1

2δ2n .

This leads to the following convergence rate via Theorem
3.1.

Corollary 3.1. Using this estimator Ĝ, and setting T =
N1/2 and δ = Θ(N−1/8), Algorithm 1 achieves conver-
gence, mint∈[T ] |PtC |2 ≤ Õ

(
N−1/4

)
.

Although there are no matching lower bounds, this is the
best known asymptotic convergence rate for zeroth-order
optimization over a non-convex objective (Ghadimi & Lan,
2013; Balasubramanian & Ghadimi, 2018). The naive gra-
dient estimation approach has the advantage that it works
regardless of response model, is simple to compute (it uses
only revenue information and not individual bids), and leads
to an unbiased estimator for the discrete derivative. The dis-
advantage is that the variance of this estimator can be large
(especially as we take δ small). In the following section, we

show how to address this by taking into account the inherent
structure of the revenue objective based on an underlying
bidder response model.

4. Variance Reduced Gradient Estimation
In this section, we first introduce another representation
of the revenue formula by decomposing it into a demand
component and a bidding component. We then propose
techniques to reduce the variance of the discrete gradient of
each component.

4.1. Revenue Decomposition

We can decompose the revenue µ(r) in the following way.

Theorem 4.1. We have that

µ(r) = Ev∼F [max(b(r, v)− r, 0)] + r Pr
v∼F

[v ≥ r]. (4)

Define E(r) = Ev∼F [max(b(r, v) − r, 0)] and D(r) =
Prv∼F [v ≥ r], so that µ(r) = E(r) + rD(r). These two
terms capture two different aspects of bidder behavior which
contribute to revenue. The function D(r) amounts to a “de-
mand curve” which gives the proportion of values that clear
the reserve r, and therefore the proportion of auctions that
are bid on at r. If the auction were just a simple posted-
price auction (i.e., the winner is charged the quoted price
r), then the demand component rD(r) would be the associ-
ated revenue. However, in a first-price auction the winning
bidder pays its bid, not the reserve. Therefore the bidding
component E(r) captures the excess contribution from bids
greater than the reserve.

To construct a good estimator Ĝ for the discrete gradi-
ent of µ(r), it suffices to construct good estimators ĜE
and ĜD for the discrete gradients of E(r) and rD(r)
respectively, and then output Ĝ = ĜE + ĜD. Note
that Bias(Ĝ) ≤ Bias(ĜE) + Bias(ĜD) and Var(Ĝ) ≤
2(Var(ĜD) + Var(ĜE)), so it suffices to bound the bias
and variance of each component separately.

4.2. Estimating the Demand Component Gradient

We begin by discussing how to estimate the gradient ĜD
of the demand component of revenue. As in Section 3, it is
possible to form a naive unbiased estimate of the demand
component via the estimator D̂(r) = 1

n

∑n
i=1 I(Xi ≥ r).

The variance of the resulting unbiased estimator ĜD is then
bounded by (see Theorem A.5), Var(ĜD) ≤ (r+)2

2δ2n . Note
that for small r, the variance guarantee here is significantly
better than the variance guarantee in Theorem 3.2. Thus, in
instances where the optimal reserve is small (and hence we
mostly test small r+), combining this naive estimator with
better estimators for ĜE (like the ones we explore in the
next section) can already lead to better convergence rates
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overall.

To obtain even better estimators, we can leverage the follow-
ing two facts about the demand function. First, the demand
function only depends on the value distribution F of the
bidders, and not their specific bidding behavior. Since we
expect value to be relatively stable in comparison to bid-
ding behavior, this means that we can reasonably use data
from previous rounds to learn the demand function and in-
form calculation of ĜD (whereas the naive gradient update
only uses data from the current round). Second, we expect
the demand function D(r) to be simpler and more nicely
structured than the full revenue function µ(r)—for exam-
ple, D(r) is weakly decreasing in r—and therefore more
amenable to parametric modeling. Formally speaking, we
can estimate D(r) with a parametric function fθ(r), and
using this approximation to estimate the gradient ĜD. Sup-
pose that we have access to additional historical data S with
which we can fit our parametric class to D(r); let θ̂ be the
resulting learned parameter. This learned demand function
gives rise to the following estimator ĜD:

ĜD =
r+fθ̂(r

+)− r−fθ̂(r
−)

r+ − r−
(5)

Note that this decreases overall variance, the variance of
ĜD is 0 because the randomness of ĜD only comes from
historical samples S, which are independent of the sam-
ples obtained in the current round, at the cost of a possible
increase in bias (due to inaccuracy in estimating D(r)).

4.3. Estimating the Bidding Component Gradient

In this section we propose a variance reduction method to
achieve a better estimator for ĜE for a variety of bidder
models.
Variance reduction via bid truncation. We first con-
sider the special case of the perfect response (and more
generally, the ε-bounded response) bidding model. In the
perfect response model, if you were going to bid b > r+

when the reserve was r+, you will bid the same bid b when
the reserve is r−. This means that large bids (bids larger
than r+) do not contribute in expectation to µ(r+)−µ(r−),
but they do add noise to our gradient estimation. By filtering
these out, we can reduce the variance of our estimator while
keeping our estimator unbiased.

Since we only apply this filtering when estimating the
bidding component E(r) but not the demand component
rD(r), we must be careful when implementing this. Note
that a large bid b > r+ contributes b − r+ to E(r+) and
b − r− to E(r−), and therefore r+ − r− to E(r+) −
E(r−). We can therefore construct an unbiased estima-
tor for E(r+) − E(r−) by computing the contribution of
unfiltered bids (b < r+) from both B(r+) or B(r−) and
then adding r+ − r− for each filtered bid in B(r−) (or
equivalently, each filtered bid in B(r+); under perfect re-

sponse, the fraction of filtered bids is equal in both models
in expectation). Note that every bid from B(r+) is either
filtered or has excess 0, so we can write this gradient ĜE
entirely in terms of bids from B(r−). Formally, we define
truncated bid Y −i as

Y −i =

{
max(X−i − r

−, 0) if X−i ≤ r
+

(r+ − r−) otherwise

Our estimate for the gradient of E(r) is then given by

ĜE = −
∑n
i=1 Y

−
i

n(r+ − r−)
(6)

Since any bid in an ε-bounded model only differs from one
in the perfect response model by at most ε, we can apply
this same estimator to an ε-bounded response model. The
following theorem characterizes the bias and variance of the
estimator for the ε-bounded response model.

Theorem 4.2. Assume that r+ − r− = δ, then the estima-
tor ĜE in Eq. (6) for ε-bounded response model, satisfies:
Bias(ĜE) = 2ε

δ ,Var(ĜE) ≤ 1
4n .

Note that the bias of estimator ĜE is 0 for the perfect re-
sponse model. The complete proof is given in Appendix A.5.
Combining the above results for ĜE and ĜD, we have the
following improved convergence result for the ε-bounded
response model.

Corollary 4.1. Suppose Bias(ĜD) ≤ εD/δ. Using the
estimator ĜE proposed in Eq. (6) for the ε-bounded re-
sponse model, setting T = N2/3 and δ = Θ(

√
ε+ εD),

Algorithm 1 achieves convergence, mint∈[T ] |PtC |2 ≤
Õ
(
ε+ εD +N−1/3

)
.

For perfect response bidding models, the above convergence
rate is strictly faster than the convergence rate of naive es-
timator in Corollary 3.1 (state-of-the-art convergence rate
for zeroth-order stochastic gradient descent), but with ad-
ditional bias coming from demand estimation. However,
we show this bias has practically negligible effect on the
revenue in our experiments.

Variance reduction via quantile truncation. In Eq. (6),
we reduced the variance of ĜE by truncating all bids at
the fixed threshold of t = r+. In general, this does not
quite work: for bidder response models that are far from
perfect response, this truncation can introduce a very large
bias. Here we demonstrate one technique for constructing
good estimators ĜE as long as the bidding function b(r, v)
possesses diminishing sensitivity in value to reserve.

Instead of truncating in bid space, we will instead want to
truncate in value space to reduce the variance. Specifically,
instead of throwing out all bids larger than some threshold
t, we will instead throw out all bids whose corresponding
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values are larger than some threshold t. This has the nice
property that we can write the bias of our resulting estimator
ĜE as Bias(ĜE) = 1

r+−r−
∫ 1

t
(b(r+, v)− b(r−, v))dF(v).

The final key observation is that, even though we cannot
directly truncate by values, since b(r, v) is monotonically
increasing in v, quantiles of bids (e.g., of B(r+) and B(r−))
directly correspond to quantiles of values (of F). Instead
of setting a threshold t directly on the value, it is therefore
equivalent to truncate at a fixed quantile of the bid distribu-
tion.

To achieve this, we first sortX+
i andX−i in ascending order.

Then we compute ĜE as

ĜE =

∑qn
i=1 max(X+

i − r
+, 0)−

∑qn
i=1 max(X−i − r

−, 0)

n(r+ − r−)
− (1− q),

(7)
where q ∈ [0, 1] is the quantile threshold used to truncate
bids. The following theorem characterizes the bias and
variance of the above ĜE ,
Theorem 4.3. Let r+ − r− = δ, t = F−1(q), and
t̃ = F−1(q + n−2/3). Then the estimator ĜE in
Eq. (7) satisfies, Bias(ĜE) ≤ (1−q)(b(r+,t)−b(r−,t))

δ +

O(n−2/3),Var(ĜE) ≤ 2t̃2

nδ2 +O(n−5/3δ−2).

Unlike with bid truncation, with quantile truncation we
have a clear bias-variance tradeoff as we change q: larger
values of q decrease the bias (both by decreasing (1 − q)
and b(r+, t)− b(r−, t), which is decreasing due to dimin-
ishing sensitivity) but lead to larger variance. Since one
can estimate this bound on the bias (by approximating
b(r+, t)− b(r−, t) via Y +

qn − Y −qn), it is possible to choose
q to optimize this bias-variance tradeoff as one sees fit (for
example, to minimize B2 + V in Theorem 3.1). We show a
convergence rate result for this quantile truncation approach
in the following Corollary,

Corollary 4.2. Suppose Bias(ĜD) ≤ εD/δ. Using the
estimator ĜE proposed in Eq. (6) for the response model
with diminishing sensitivity property, for any fixed quantile
q, setting T = N2/3 and δ = Θ(

√
εD + 1− q), Algorithm

1 achieves convergence,

min
t∈[T ]

|Pt
C |2 ≤ Õ

(
εD + 1− q +

(
1 +
F−1(q +N−2/9)

εD + 1− q

)
N−

1
3

)

5. Experiments
We evaluate the performance of our algorithms on synthetic
and semi-synthetic data sets. Due to space limitations, we
present the complete experimental results in Appendix B.

5.1. Data Generation

The data generation process consists of two parts: a base
bid distribution specifying the distribution of maximum bid

when no reserve is set, and a response model describing
how a "meta-bidder" (see Section 2) with bid b (under no
reserve) would update its bid in response to a reserve of r.

Response models. We assume that in the absence of a re-
serve bidders bid a constant fraction γ of their value v (i.e.,
b = γv), which we refer to as linear shading. We consider
linear shading combined with perfect response and with
ε-bounded response, which we implement by adding a uni-
form [0, ε] random variable to the bid. We also examine
equilibrium bidding for m i.i.d. bidders with uniformly dis-
tributed valuation (Krishna, 2009): for each bidder i ∈ [m],
bi =

rm+(m−1)vmi
mvm−1

i

.

Synthetic data. In our synthetic data sets, the base (maxi-
mum) bid distribution is the uniform [0, 1] distribution for
perfect response model and ε-bounded response model. In
the simulations, we apply a constant shading factor of 0.4
for the perfect response model and ε-bounded response
model. For equilibrium bidding, we assume that each auc-
tion contains m = 2 bidders, thus the base (maximum)
bid distribution is the distribution of max{v12 ,

v2
2 }, where

v1, v2 ∼ U [0, 1].

Semi-synthetic data. For our semi-synthetic data sets, we
separately collected the empirical distributions of winning
bids over one day for 20 large publishers on a major display
ad exchange. Each distribution was filtered for outliers and
normalized to the interval [0, 1]. For this semi-synthetic
data we only test the perfect-response model and ε-bounded
response model, since there is no closed-form solution for
the equilibrium bidding strategy. We use 0.3 as the constant
shading factor for semi-synthetic data.

5.2. Methodology

Gradient descent algorithms. We examine five different
gradient descent algorithms: (I) Naive GD: naive gradient
descent using the gradient estimator in Eq. (3); (II) Naive
GD with bid truncation: gradient descent using the gradient
estimator in Eq. (6) for the bidding component, and a naive
estimate4 of the demand component; (III) Naive GD with
quantile truncation: gradient descent using the gradient
estimator in Eq. (7) for the bidding component, and naive
estimate of the demand component; (IV) Demand modeling
with bid truncation: Same as the second variant, but with a
parametric model of the demand curve to estimate demand
component of gradient; (V) Demand modeling with quantile
truncation: Same as the third variant, but with a parametric
model of the demand curve to estimate demand component
of gradient. The parameters used in these algorithms are
specified in Appendix B.

4We can form a naive unbiased estimator ĜD = D̂(r+)−D̂(r−)

r+−r− ,

where D̂(r+) = 1
n

∑
i I{x

+
i ≥ r

+} and similarly for D̂(r−).
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(a) Synthetic data with perfect response. (b) Synthetic data with equilibrium response. (c) Semi-synthetic data with perfect response.

Figure 1: Revenue as a function of round t for (a) synthetic data with perfect response, (b) synthetic data with equilibrium response, and
(c) semi-synthetic data with perfect response.

Demand curve estimation. To reduce variance following
the ideas of Section 4, we need a model ĜD for the demand
component of the discrete gradient. Instead of estimating
ĜD from historical data, we adaptively learn the demand
curve during the training process. Concretely, at each round
t, we observe new (reserve, demand) pairs from 2nt samples
and retrain our demand curve using all the samples observed
up to the current round. We use this trained demand curve
to compute ĜD based on (5). For the synthetic data, a
simple logistic regression can effectively learn the demand
curve. However, the semi-synthetic data required a more
flexible model so for this case we model demand using
a fully connected neural network with 1 hidden layer, 15
hidden nodes and ReLU activations.

Figure 2: Reserve price as a function of round t for synthetic data
with equilibrium response.

5.3. Evaluation

Effectiveness of gradient descent. First, we confirm that
gradient descent can effectively find optimal reserves in
our models. For each semi-synthetic model, we construct
the revenue curve as a function of reserve with assumed
response models. We find that 19 out of the 20 revenue
curves have a clear single local maximum (the remaining
curve has 2). In all cases (synthetic and semi-synthetic
models), the revenue learned by the naive gradient descent
algorithm is at least 95% of the revenue at the optimal
reserve, which indicates that gradient descent can efficiently
find the optimal reserve in these cases despite the lack of
convexity.

Effectiveness of variance reduction methods. We first

evaluate the performance of the quantile-based variance re-
duction method. We run the algorithm variants (I), (III) and
(V) under synthetic data and semi-synthetic data with multi-
ple bidder response models. Figures (1a) and (1c) show the
revenue achieved by the three algorithms over time under
the perfect response model. We find that quantile-based vari-
ance reduction leads to a more stable training process which
converges faster than naive gradient descent. Figure (1b)
evaluates the performance of the three algorithm variants un-
der synthetic data and an equilibrium response model, with
similar conclusions. Overall, quantile-based variance reduc-
tion outperforms naive gradient descent. Moreover, with the
addition of demand curve estimation, algorithm variant (V)
achieves better revenue and converges to an optimal reserve
faster than the other two algorithms, in agreement with our
theoretical guarantees.

We next consider variance reduction using bid truncation,
which is used in algorithm variants (II) and (IV). Bid trun-
cation is tailored to perfect response and performs very well
for this response model, in accordance with the theoreti-
cal guarantees, but quantile truncation is competitive and
often performs as well over the semi-synthetic data (see Ap-
pendix B for a detailed comparison). Under the equilibrium
response model, bid truncation can in fact hinder the train-
ing process and lead to a substantially suboptimal reserve
price (see Figure 2). In summary, quantile-based variance
reduction coupled with a good demand-curve estimation is
the method of choice to achieve good reserve prices under
a range of different bid distributions and bidder response
models.

6. Conclusions
In this paper, we propose a gradient-based algorithm to
adaptively update and optimize reserve prices in first price
auctions, based on estimates of bidders’ responsiveness
to experimental shocks in reserves. For a broad class of
bidder response strategies that satisfy a natural diminishing
sensitivity property, we obtain convergence rates that strictly
improve over state-of-the-art algorithms for zeroth-order
optimization (which do not take into account the specific
structure of the revenue objective). For future work, we
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plan to investigate other techniques for variance reduction
used in zeroth-order optimization, such as kernel methods,
and to obtain results for more general settings where value
distributions may drift over time.
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