RL Exploration with Non-linear Policies

Algorithm 3 Value Estimators

1: Routine: V™-ESTIMATOR

2:  Input: starting state s.
Execute 7 from s; at any step ¢ with (s, a;), terminate with probability 1 — .
Return: V7 (s) = S'_, r(si, a;), where 59 = s.

: Routine: Q"-ESTIMATOR

Input: starting state-action (s, a).

Execute 7 from (s, a); at any step ¢ with (s¢, a;), terminate with probability 1 — -.
Return: Q™ (s,a) = >.'_, r(si, a;), where (s0, a0) = (s,a).
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Algorithm 4 d™ Sampler
1: Routine: d-SAMPLER
2:  Imput: v € A(S x A), .
Sample sg,ag ~ v;
Execute 7 from sg, ag; at any step ¢ with (s¢, a;), terminate with probability 1 — .
Return: (s, at).

Al

A. Omitted pseudocodes from main text

We give the pseudocodes for value estimators and visitation distribution sampler in Algorithms 3 and 4 respectively.
Combining them, we are able to generate samples for critic fit.

B. Proof Setup
B.1. Definition and Notation

We denote by M the original MDP and 7 an arbitrary fixed comparator policy (e.g., an optimal policy). Our target is to
show that after N epochs, ENIAC is able to output a policy whose value is larger than V™ minus some problem-dependent
constant. First we describe the construction of some auxiliary MDPs, which is conceptually similar to Agarwal et al. (2020a),
modulo the difference in the bonus functions.

For each epoch n € [IN], we consider three MDPs: the original MDP M, the bonus-added MDP My := (S, A, P,r+b",~),
and an auxiliary MDP M™. M" is defined as (S, AU {a'}, P",r", ), where a' is an extra action which is only available
for s ¢ K™ (recall that s € K™ if and only if ™ (s,a) = 0 for all a € A). For all (s,a) € S x A,

P"(:|s,a) = P(:|s,a), r"(s,a)=r(s,a)+b"(s,a).
For s ¢ K™,
P"(s|s,a’) =1, r"(s,al) = 1.
Basically, a' allows the agent to stay in a state s ¢ K" while accumulating maximum instant rewards.

Given M™", we further define 7" such that 7" (+|s) = 7(-[s) for s € K™ and 7" (at|s) = 1 for s ¢ ™. We denote by d o
the state-action distribution induced by 7" on M™ and d” the state-action distribution induced by 7 on M.

Additional Notations Given a policy 7, we denote by V}%., Q7.., and AJ,. the state-value, ()-value, and advantage function
of mon My» and V., Q7 4, and A% ., for the counterparts on M™. For the policy 77, i.e., the policy at the ty, iteration
in the ng, epoch of ENIAC, we further simplify the notation as Vi%,, Q.., and A, and also V{ .., Q" 1., and A’ ;...

Remark 2. Note that only 7" can take the action a' for s ¢ K". All policies {7} is not aware of a' and therefore,
Vi =Vign, Qb = Qlvyn, and A}, = Al ..
Based on the above definitions, we directly have the following two lemmas.
Lemma B.1. Consider any state s € K™, we have:
dpn (s,a) < d"(s,a), Va e A
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Proof. The proof follows that of Lemma B.1. in (Agarwal et al., 2020a). We present below for the readers’ convenience.

We prove by induction over the time steps along the horizon. Recall d g is the state-action distribution of 7" over M™ and
d™ is the state-action distribution of 7 on both My and M as they share the same dynamics. We use another subscript / to
indicate the step index, e.g., dp» 5, is the state-action distribution at the hy, step following 7™ on M™.

Starting at h = 0, if sg € K™, then 7" (+|sg) = 7(-|so) and we can easily get:
dMn)o(so,a) = dj (s0,a), Yac€ A.
Now we assume that at step h, for all s € K", it holds that
(ZMnJL(s,a) < di(s,a), Va € A.
Then, for step h + 1, by definition we have that for s € K™
dpn py1(s) = Z dpn (8", a')Pagn (s]s', a')
s’,a’l
= Z 1{s' € K"Ydpn p(s',a" ) Ppgn (5], a')
= > 1{s' € K"} n(s',d')P(s]$, a),
where the second line is due to that if s’ ¢ K", 7 will deterministically pick a' and Py (s|s’,al) = 0. On the other hand,
for dj; | (s, a), it holds that for s € K",

di1(s) =Y di(s,a)P(s]s',a’)

s’,a’

= Z 1{s' € K"}d}(s',a')P(s|s',a') + Z 1{s' ¢ K"}di(s',a')P(s]s',a’)

> Z 1{s' € K"}d}(s',a')P(s]s',a)

s’,a’
> 3" 1{s' € K"y (5,0 ) P(s]s' a') = dagn a1 (5).
Using the fact that 7 (-|s) = 7(+|s) for s € K™, we conclude that the inductive hypothesis holds at 2 + 1 as well. Using the
definition of the average state-action distribution, we conclude the proof. |

Lemma B.2. For any epochn € [N], we have
Vi > Vi

Proof. The result is straightforward since if following 7™ we run into some s ¢ K", then by definition, 7™ is able to collect
maximum instant rewards for all steps later. |

B.2. Proof Sketch

3 ..., 7N*1) and the comparator 7. To achieve

. . . . nt1 Zn . L - .
this, we use two intermediate quantities V7, " and Vi~ and build the following inequalities as bridges:

We intend to compare the values of the output policy 72, := Unif (72, 7

N N
1 n 1 n n n =M =M =
v = oS VT S A v = v = v - B VL =V
n=1 n=1
where A and B are two terms to be specified. If the above relations all hold, the desired result is natually induced. For these
inequalities, we observe that

1. The leftmost inequality is about the value differences of a sequence of policies (72, 73, ..., 7V 1) on two different

reward functions (with or without the bonus). Thus, it is bounded by the cumulative bonus, or equivalently, the expected
bonus over the state-action measure induced by these policies, which we use the eluder dimension of the approximation
function class to bound. We present this result for SPI-Sample, SPI-Compute, and NPG-Sample in Lemma C.1, C.5,
and D.2, respectively.



RL Exploration with Non-linear Policies

2. The rightmost inequality is proved in Lemma B.2.

3. To show the middle inequality, we analyze the convergence of actor-critic updates, leveraging properties of the
multiplicative weight updates for a regret bound following the analysis of Agarwal et al. (2020c).

In the sequel, we present sample complexity analysis for ENIAC-SPI-SAMPLE, ENIAC-SPI-COMPUTE, and ENIAC-
NPG-SAMPLE. ENIAC-NPG-COMPUTE can be easily adapted with minor changes of the assumptions. In particular, we
provide general results considering model misspecification and the theorems in the main body fall as special cases under
Assumption 4.1 or 4.4.

C. Analysis of ENIAC-SPI

In this section, we provide analysis for ENIAC-SPI-SAMPLE and ENIAC-SPI-COMPUTE. We start with stating the
assumptions which quantifies model misspecification.

Assumption C.1 (Bounded Transfer Error). Given a target function g : S x A — R, we define the critic loss function
L(f;d,g)withd € A(S x A) as:
2
L(fa dvg) = IE(s,a)rvd |:(f(57 a) - g(s, a)) :| :

For the fixed comparator policy 7 (defined at the beginning of Section B.1), we define d(s,a) := dZ (s) o Unif(A). In
ENIAC-SPI (both sample and compute versions), for every epoch n € [N| and every iteration t inside epoch n, we assume
that

inf L(f;d, Qb —b™) < €pias,
/nf, (f;d,Qp ) < &

where F{' := argmin . = L(f; plt,, Qpn — b™) and €piqs > 0 is some problem-dependent constant.

€bias Measures both approximation error and distribution shift error. In later proof, we select a particular function in ft" e Fl
such that o

L(f{'d, Qpn — b") < 2ebas. (16)
We establish complexity results by comparing the empirical minimizer f;* of (6) with this optimal fitter ft”

Assumption C.2. For the same loss L as defined in Assumption C.1 and the fitter ft" we assume that there exists some
C > 1 and €y > 0 such that for any f € F,

B ampg, |(£(5:0) = J7(5,0) "] < € (LUf5 s Qb = ") = LT Pl @b = 1)) + 0
forn € [N]and0<t<T—1.
Remark 3. Under Assumption 4.1, Q% — b = E™ [r(s,a) + YQL.(s',a’)] € F. Thus, epias can take value 0 and
[ = QL. —b™. Further in Assumption C.2, we have
[(F(s,a) = Fi(5.@))°] = LU s Qb = 1"):
Thus, C can take value 1 and ¢y = 0. If Qf)n — b" is not realizable in F, €4 and €y could be strictly positive. Hence, the
above two assumptions are generalized version of the closedness condition considering model misspecification.

E(s,a)~or

cov

C.1. Sample Complexity of ENIAC-SPI-SAMPLE

We follow the proof steps in Section B.2 and first establish a bonus bound.
Lemma C.1 (SPI-SAMPLE: The Bound of Bonus). With probability at least 1 — N, it holds that

N 2 2 2
ni1 nt1 2¢= + 8KW*= + 8 ) N log(2/9)
LA Ve R : o [oeE0)
Z(Vb v ) = 1-y)BK d’mE(]:”B)+1—7 2K

n=1
Proof.

N N
STVET VT < B apeansi H(s,0) € K"H/(1 )

n=1 n

IN
)l

I
] =

]E(s,a)wd"Jrll{w(‘/—:.n’ s,a) > ﬂ}/(l - 7)3

3
Il
MR



RL Exploration with Non-linear Policies

where d"*! denotes the state-action distribution induced by 7"*! on M. We denote by D" the sampled dataset
{(s4,a;)}£, ~ d™ at the beginning of epoch n. Then Z® = Z"~1 U D". By Hoeffding’s inequality, with probabil-
ity at least 1 — 4,

Zn 1 £ log(2/6)
E(s,a)~d7l+11{w(f 7550‘) > /6} < E Z l{w(‘F 7550‘) > B} + T
(s,a)eDnt1
Taking the union bound, with probability at least 1 — NJ, we have
n+1 antl ~ N log 2/5)
ZVbn -V gK Z > Yw(F, )>5}+7 o (17)
n=1 n=1(s,a)eDn+1
Next we bound the first term in Equation ( 17) follow1ng a similar process as in (?)Proposition 3]russo2013eluder. We
simplify w(F",-,-) as w"(+,-) and label all samples in Z” in lexical order, e.g., (s7**, a?*!) denotes the ith sample in
D" 1. For every (s, ™), we define a sequence S"*;' which contains all samples generated before (s, a 1), ie.,
Sn_—&-l = ((s%,a%),...,(s}(,a}(),(sf,a%) (SKvaK) (5n+1 a?+1)7"-a(5?j117a?j11)) (18)
Next we show that,
N
S Y 1{w(sa) 2 B} < (262/ﬁ2 +8W2K/B% + 1) - dimg (F, B). (19)

n=1 (s,a)eDn+!
For n < N, if w™(s!™ al™) > j then (7", a*!) is B-dependent with respect to F on fewer than 8(¢)2/3% +

’L

32W?2K/B3? disjoint subsequences of S!"'. To see this, note that if w™(s!'*', a™") > B, there exists f,f € F

such that f — f € F™ and f(s7, ”H) — f(s! ™) > B. By definition, if (s]*', a!*") is B-dependent on
a subsequence ((s¢,,ar,),.. (stk,atk)) of S"*!, then Z 1(f(se,,a8,) — f(st],at]))2 > (2. It follows that, if

(st al ) is B- dependent on L disjoint subsequences of S”le then || f — f]? gt > L/3%, where we recall our notation

s = 2 By the definition of " and S™F} = 2™ U {(s" 1!, am'l ‘=1 we have
zeS y i—1 Sj J Jj=1
||f—i”sfjf < ||f—i| zn + ||f—i||{(8?+l7a;+l)}j;i <e+2WVi—1<e+ QW\/?,
where W is an upper bound of || f||.. Hence, L < 2¢2/3% + 8SW?2K /2.

Next, we show that in any state-action sequence ((s1,a1), ..., (Sr,ar)), there is some j < 7 such that the element (s;, a;)
is B-dependent with respect to F on at least 7/d — 1 disjoint subsequences of the subset ((s1,a1),...,(sj—1,a;-1)),
where d := dimg(F, 3). Here we assume that 7 > d since otherwise the claim is trivially true. To see this, for an
integer L safistying Ld + 1 < 7 < (L 4 1) - d, we will construct L disjoint subsequences S, ..., Sy one element at a
time. First, for each ¢ € [L] add (s;, a;) to the subsequence S;. Now, if (spt1, ar+1) is S-dependent on all subsequences
S1,...,SL,our claim is established. Otherwise, select a subsequence S; such that (sy41,ar+1) is S-independent of it and
append (sr11,ar+1) to S;. Repeat this process for elements with indices j > L + 1 until (s;, a;) is S-dependent on all
subsequences or j = 7. In the latter scenario, since 7 — 1 elements have already been put in subsequences, we have that
>~ 1S;| > L - d. However, by the definition of dimg (F, /3), since each element of a subsequence S is S-independent of its
predecessors, we must have |S;| < d,V;j € [L] and therefore, ) |S;| < L - d. In this case, (s., a,) must be S-dependent on
all subsequences.

Now consider the subsequence Sg := ((s]'*,al""),...,(s77,a}")) of SRT! which consists of all elements such that
Wy, ((Sn+1 a”“)) > (. With that being said, Sg consists of all sample points where large width occurs from epoch 1

to epoch N. The indices in Sj are in lexical order and (s’ 5;) 50y, ©7) denotes the ji element in Sg. As we have established,
each (s, a;”) is 3-dependent on fewer than 2¢? /3% + W2 / /3? disjoint subsequences of S;’_; (recall the definition in
Equatlon (18)) It follows that each (s;”, a;’) is f-dependent on fewer than 2¢? /3% + W2, /3?2 disjoint subsequences
of ((si'',ai"),..., (SZJ - aZJ ) C S, i.e., the elements in Sg before (s Z” , aznj) Combining this with the fact we
have established that there exists some (st, 7Y that is 3-dependent on at least 7/d — 1 disjoint subsequences of
((sfll,a:“), s (837 g T ), we have 7/d—1 < 2€¢% /32 +8W2K /3% Tt follows that 7 < (2€2/3%+8W2K/3?+1)-d,

which is Equation (19).

Combining all above results, with probability at least 1 — N,
N
nt1 nt1 2¢2 + 8KW? 2 N log(2/0
Z<‘/b7:;+_‘/7r+)ge+ +/6 Og(/)

(1—7)B2K Hdimp (7, 8) + = 2K
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Next we prove the last step in Section B.2. For notation brevity, we focus on a specific epoch n and drop the dependence on
n in the policy and critic functions. We define

E’én(s,a) = fi(s,a) +0"(s,a) — Boror, (1) [ ft(s,0") + 0" (s,a")], (20)
where f; is the output of the critic fit step at iteration ¢ in epoch n. It can be easily verified that EQNm(.|S)E}2n (s,a) = 0and
the SPI-SAMPLE update in Equation (7) is equivalent to

me41(+]8) o< me(+|s) exp (ngtn(& J1{s € K"}), Vs€S. (1)
E}i is indeed our approximation to the true advantage function Af,.. In the sequel, we show that the actor-critic convergence
is upper bounded by the approximation error which can further be controlled with sufficient samples under our assumptions.
Lemma C.2 (SPI-SAMPLE: Actor-Critic Convergence). In ENIAC-SPI-SAMPLE, let At be as defined in Equation (20)

and the stepsize n = %. For any epochn € [N], SPI-SAMPLE obtains a sequence of policies {m;} ;' such that
when comparing to 7" :

1 Tl =

f (V‘/(r/t'n, - Vbtn) - f (Vﬂ- n Vt n)

t=0 t=0
1 log( |A — n n
< ﬁ<8W Z (s,0)~dpin [ Apn(s,a) — Ajn(s,a))1{s € K }} )
t=0

Proof. The equality is mentioned in Remark 2. We first show that A% ;. (s,a’) < 0 for any s ¢ K. Since 7; uniformly
randomly selects an unfamiliar action with bonus 1/(1 — ) for s ¢ K", we have Vi .. (s) > 1/(1 — ). Thus,

Al (5,07 = Qln (s,a") = Vi (s) =1 — (1 —7) - Vig(s) <0, Vs ¢ K",
where Qf ;. (s,a") = 1+ ~V},.(s) (a' leads s to s). Based on the above result, we have

~n 1 ~
Vi — Vign = R Z dpn (8, 0) Al yn (s, a)
(s,a)

—_— Z dpagn(s,a) Alyn (s,0)1{s € K"} + % Z dpn (s,a) Al (s,a)1{s ¢ K"}

7 (sa) (50)
=1 Z dpin (5,0)Alyn (5,0)1{s € K"} + —de §)Alyn(s,a")1{s ¢ K"}
(s,)
7 t n
< ﬁ (Z:)dMn(s,a)AMn(s,a)l{s e K"}
=—— Y dumn(s,a)Apa(s,a)1{s € K"}
-7
(s,a)
1 -~ n n n
i (E(s,a)NdMn {Ain (s,a)l{s €K }} FE( oy |(Abn(s,0) = Apu(s,a))1{s € £ }} )

(22)

where the first line is by the performance difference lemma in Kakade (2003), the third line is due to that 7™ deterministically
picks a' for s ¢ K", and the fifth line follows that 7, never picks a' so for any action a € A we have A%, = A!,.

Next we establish an upper bound of the first term in Equation (22). Recall that in SPI-SAMPLE the policy update is
equivalent to (21). Thus, for s € K™, we have

KL (7" (s), m1(-[s)) — KL(7"(5), m(:]s)) = Eamsn( o) [=1A} (5, @) + log(2" (5))],

where z(s) := 3, m(a|s) exp(nAL, (s, a)). Since |Al, (s,a)| < 4W and when T > log(|A|), n < 1/(4W), we have
nAtl.(s,a) < 1. By the inequality that exp(:L‘) <l+z+z%forz <landlog(l+z)<afora > —1,

log(z2*(s)) < nzm Atn (5,a) + 160°W? = 169°W?2.
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Hence, for s € K™,
KL(7" (-5), 7051 (-15)) — KL(E([3), m0(15)) < 1Bz o[ Al (5, 0)] + 167702

log(|.A])
16W2T°

Adding both sides from ¢t = 0 to 7" — 1 and taking n =

T-1

D B aymdpnn [Abn (5,0)1{s € K"}

we get

71
- o

1 ~n ~n n

B [(KL(E" (]s), mo(ls)) — KL(E" (|s), mr(1s))) 1{s € K"}] + 1657w
<log(|A])/n + 16nTW? < 8W+/log(|A|)T,

where the inequality follows that 7o (-|s) = Unif(.A4). Lastly, combining with Equation (22), the regret on M" satisfies

H_
Il
<

T-1 T

~n 1 -~
g (Vi = Vign) < R (8W\/10g(|.A|)T—|— E E(s.a)mdpn [(Azn(s,a) — Ajn(s,a))1{s € IC”}] )
t=0 t=1

Next, we analyze the approximation error and build an upper bound on Af, — gin. Recall that A}, is the true advantage of
policy 7" in the bonus-added MDP and A}, is an approximation to A}, with the empirical minimizer f; as defined in (20).
We still focus on a specific epoch n and simplify the notation f;* as defined in (16) to f;.

Lemma C.3 (SPI-SAMPLE: Approximation Bound). At epoch n, assume forall0 <t <T — 1:

L(ft; p?ov? Qi” - bn) S L(ft*; p?mﬂ Qz"” - bn) + 65!6!!7 (23)
where €y, > 0 is to be determined in the next lemma, and let
€ = NK(C - €ga + €0 + 16Wer) + 8W?2log(N(F, €1)/8) - VNK, (24)

where € is used in bonus function (see Section 3.3) and C, €y are defined in Assumption C.2, and €1 > 0 denotes the function
cover radius which will be determined later. Under Assumption C.1 and C.2, we have that for every 0 <t < T — 1, with
probability at least 1 — 6,

E(S,G)N(ZMH (Aé" (57 a) - A\é" (57 a)) 1{3 € ’Cn} <4 V |A|€bias + 25

Proof. To analyze the difference between A}, and Ezt)w we introduce an intermediate variable AJ(s,a) := f; 4+ b —
Eq o, (1) [fi + 0], i.e., the approximated advantage generated by the selected best on-policy fit. Then

E(y ayedyn (A — Ab)1{s €K"Yy =B, i [(Atn CAD{s € K"} + (AT — AL)1{s € K"}].

For the first difference, we have
Eoaymdpen (Al = A7) 1{s € K7}
= E( i (@b = J7 =) U5 €K"Y~ By o) (@b — J7 = V)1 {s € K7}
< \/E(sva)%ny(@gn —fr—b)21{s e Kn} + \/ESNJMH7GNWt(,|S)(an —fr—bn)21{s € K}
< \/]E(s,a)Nd%(Qf,n —fi=b")?1{s e K"} + \/Esw%,awtus)( b — [ —0")21{s € K"}
= VE( i AR(als) - (Qh = fr =57 Us € K7} +[E(, oy [Imelals) - (Qf, — f7 —bm)?1{s € K7}

<4 V ‘A|€biasa

where the first inequality is by Cauchy-Schwarz, the second inequality is by Lemma B.1, and the last two lines follow
Assumption C.1 and the definition of f;.

For the second difference,
E (o aymdpen (Af — Api)1{s € K"}

=E (g aymdpen FE = FOUHs €K"Y =B g0 amm, (1) (T = fi)1{s € K"} (25)
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Next we show that Af, := (fF — f;) € F". Recall that F* := {Af € AF | |Af|lz» < €}. We only need to
show that ||A ft|| zn < €. To achieve this, we plan to utilize the fact that f; is trained with samples generated from

P, = Unif (d’STO , ’STO Ve d;“g ) while 2" is sequentially constructed with samples from d7_, ,»1 € [n]. However, such a
correlation does not guarantee a trivial concentration bound. We need to deal with the subtle randomness dependency
therein: 1. 7’ depends on 7li=1] thus the samples in Z™ are not independent; 2. Z™ determines F n, F" defines the bonus
b", and A f; is obtained based on b™. So A f; and Z™ are not independent. Nevertheless, we carefully leverage function
cover on AF to establish a martingale convergence on every anchor function in the cover set, then transform to a bound on

the realization A f;.

Let C(AF, 2¢;) be a cover set of AF. Then forevery Af € AF, there existsa Ag € C(AF, 2¢;) such that [[A f —Agl|o <
2¢1. We rank the samples in Z™ in lexical order, i.e., (si, at ) is the kg, sample generated following d;r; at the beginning of
the iy, epoch. There are in total n/ samples in Z™. For every Ag € C(AF, 2¢1), we define nK corresponding random
variables:

(6,k)

We rank {X i k)} in lexical order and upon which, we define a martingale:

XAg : (Ag(slwak)) _E(s@)wdg; [(Ag(s,a))QL i€ [n]7k € [K]

(i,k)
A :
Yoo =0, Yih = >, X3, i€l kelK].
(#,k")=(1,1)
Then by single-sided Azuma-Hoeffding’s inequality, with probability at least 1 — §, for all Ag € C(AF, 2¢;), it holds that
N(AF,2¢ N(F, e
YS9 < \/ 32W4 . K -log (%) < \/ 64W4 - nK - log (%) 26)

where the right inequality is by Lemma E.1. Next, we transform to A f;. Since there exists a Ag € C(AF, 2¢1) such that
IAf: — Aglloo < 2€1, we have that for all ¢ € [n] and k € [K],

|(Afe(sk, ai))? = (Ag(si, ap))?|
= |Afi(s), ag) — Ag(sy, ap)l - [Afi(s), ai) + Ag(sy, ap))| < 8Wer

and
B ayazt [(Afi(5,0)%) = By e [(Bg(s, )]
< E(S’Q)ngé |[Afi(s,a) — Ag(s,a)| - |Afi(s,a) + Ag(s,a)] < 8Wey
Therefore,
Yol = Do (Bfi(shai)? —E( g ari [(Afi(s,a))%] @7
(i,k)=(1,1)
(n7K) . .
< Y (Ag(sh ) B gy egr [(Ag(s,0))°) + 0 - 16Wey
(i,k)=(1,1) "
= V(%) + 1K - 16We.
Note that
Yoo = 1Af]Z ZK By [(Af)?] = [AfillZn — nK - By, [(Af)°] (28)

1=1

Combining (26), (27), and (28), we have that

./\/'(]:,61))'

[Afil|Zn <K -Epn [(Af)?] +nK - 16Wey + \/64W4 -nK -log ( 3

By Assumption C.2,
Engv[(Aft)z] = L(s a)NpZ}W[(ft ft)z] < C - (L(ft; peos ta)n —0") — L(f{'; Peovs Qin —b")) +€o
S C * Egtat + €0-

By the choice of €, ||Af;||%. < €? with probability at least 1 — &. Thus, Af; € F" and for all (s,a) € K", |f7(s,a) —
fi(s,a)] < S. Plugging into (25), we have (25) < 2. The desired result is obtained. |
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Next, we give an explicit form of e, as defined in Equation (23).

Lemma C.4. Following the same notation as in Lemma C.3, it holds with probability at least 1 — § that

t t 500C - W* - log (X220
L(ft;p?ov? Qb" - bn) - L(ft*’ p?ow Qb" - bn) < M

where C, € are defined in Assumption C.2, and €3 > 0 denotes the function cover radius which will be determined later.

+13W72. €3 + €q,

Proof. First note that in the loss function, the expectation has a nested structure: the outer expectation is taken over
(s,a) ~ pZ, and the inner conditional expectation is @} (s, @) = E™[3"77 v (r(sp, an) +b™(sn, an))|(s0, a0) = (s,a)]
given a sample of (s,a) ~ p% . To simplify the notation, we use z to denote (s, a), y|x for an unbiased sample of
Q' (s,a) — b"(s,a), and v for pZ , the marginal distribution over z, then the loss function can be recast as

Eonw[(fe(2) = Elyl2])?] := L(fe; pioy: Qb — b")

Eon [(ff () = Ely|2])?] := L(f}5 ploys Qi — ).
In particular, f; can be rewritten as

M
fi € af}g;énfin ;(f(xi) — i)

where (z;,y;) are drawn i.i.d.: z; is generated following the marginal distribution » and y; is generated conditioned on x;.
For any function f, we have:

Exy((fe(z) = y)?]
= Eoy[(fe(2) — Elyl2])*] + Eu y [(Elylo] — 9)°] + 2Eq 4 [(fe(2) — Elylo]) (Elylz] — )]
= Euyl(fe(2) — Elyla])?] + oy [(Elylz] — 1)),
where the last step follows from the cross term being zero. Thus we can rewrite the generalization error as
E.[(fi(x) — Elyl2])?] — Eo[(f; (z) — Elyl2])?) (29)
= Ez,y(ft(x) - y)2 - Ez,y(ft* (1’) - y)Q'
Next, we establish a concentration bound on f;. Since f; depends on the training set {(z;, v;)}*,, as in Assumption C.3, we
use a function cover on F for a uniform convergence argument. We denote by .%;" the o-algebra generated by randomness

before epoch 7 iteration ¢. Recall that f; € argmin ¢ = L(f; ploy, Q. — 0™). Conditioning on .7/, pir,., Qf. — b", and
fi are all deterministic. For any f € F, we define

Zi(f) = (fzi) =) = (fi (@) —9:)®, i€ [M]
Then Z1(f), ..., Zn(f) are i.i.d. random variables and
VIZi(f) | 7{'] < E[Zi(f)* | )]

=5 () -2 - U - w?) 1 57|
=E[(f@:) = £@))" - (F) + f7 (@) = 23)" | #7
< 36W-El(f(0i) = f; (@) | 77

< 36W*- (C-E[Zi(f) | F{'] + eo),

where the last inequality is by Assumption C.2 and Equation (29). Next, we apply Bernstein’s inequality on the function
cover C(F, €2) and take the union bound. Specifically, with probability at least 1 — J, for all g € C(F, €2),

[E——

3 \/ 2V(Zilg) | Z) log ME2 12w log M)
- M M

\/ T2WA(C - E[Zi(g) | F + o) -log MT2) 194 - jog MTuc2)
= M * M '
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For f;, there exists g € C(F, €3) such that || f; — g]|co < €2 and
1Zi(fe) = Zi(9)] = |(fe(zi) — i) — (9(@:) — v:)?]
= |fil@:) — g(xi)| - | foe(@:) + g(x:) — 2u:| < 6W ey
Therefore, with probability at least 1 — 9,

EZi(f) | 7] - Zi([1)

=[-
_Mz

1

-
I

1
M

<\/72W4(C-]E[Zi( 9)

<E[Zi(g) | #{'] - Zi(g) + 12W?¢;

M:

i
—

F + €o) log N(F €2) N 12W*log Ni(];“)
M M

+ 12 %6,

+ 12 %,.

\/72W4(C ElZi(f,) | F) + 60W2es + c) log YE2) 19774 Jog M(Toe2)
= M * M

Since f; is an empirical minimizer, we have 77 Zf\il Zi(ft) <0. Thus,

i i + 12 %,.

Solving the above inequality with quadratic formula and using v/a + b < \/a + v/b, Viab < a/2 + b/2 fora > 0,b > 0,
we obtain

N (F,e N (F,e
) | F S\/72W4( E[Zi(f:) | FP] + 6CW2es + ¢p) log 2222 +12W410g%

500C - W* - log 2Z:c2)
BlZi(f) | 7] < T 13 et

Since the right-hand side is a constant, through taking another expectation, we have

500C - W4 - log A7xc2)
B(Z(f,)] < T 13 et

Notice that E[Z;(fi)] = L(ft; pltys Qb — b™) — L(f}; plky, QF — b™). The desired result is obtained. [

Combining all previous lemmas, we have the following theorem which states the detailed sample complexity of ENIAC-SPI-
SAMPLE (a detailed version of Theorem 4.1)

Theorem C.1 (Main Result: Sample Complexity of ENIAC-SPI-SAMPLE). Let ¢ € (0,1) and e € (0,1/(1 —~)). With
Assumptions C.1, C.2, 4.2, and 4.3, we set the hyperparameters as:

g =) o G2 logl Al 82W2 - dimp(F.6) _ [los(A]
2 e(l-9)2 7 T Sy 7 16W2T
o — (1 — )33 I 128W2 - dimp(F, ) - (log(%)f -log(%)
L7 128W - dimg (F, B)’ 3(1—7)? ;
S o i 1y A000C2 W dimp(F, B) log (NI X))
110C - W2 - dimp(F, )’ 3(1—7)? ’

and € sansﬁes Equation (24) correspondingly. Then with probability at least 1 — 6, for the average policy &, := 72, :=

Unif(72,..., 7V, we have
4 |A|€bias ].GCdlmE (.F, ﬂ)
T~ T8 T a3
1—vy e2(1—1)
for any comparator T with total number of samples:
@(CQWS (dimp(F, 8))* - (log(N(F, e’)))2)
ef(1—n)® ’

N ~
Ve > VT - — 9

where ¢ = min(ep, €3).
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Proof. By Lemma C.1, we have that with probability at least 1 — N¢,

N
p s ]17;1 %’L"“Qiﬁfggj\]}ﬂz -dimp(F, 8) + 1 i - logf]é‘sl). (30)
By Lemma C.2, C.3, and B.2, we have that for every n € [N], with probability at least 1 — 27°4;,
Vet > v ﬁ(sw % + 4/ [ Alevs + 25). 31
Combining inequalities (30) and (31), we have with probability at least 1 — 3NT'6;,
+8W k’g(T|“4)+4\/M+2ﬁ). (32)

We plug in the value of €2 in Equation (24) with the bound on €, in Lemma C.4 and choose hyperparameters such that
every term in (32) (except for the ones with € or epiys) is bounded by e. Finally, we set 6 = 6/(3NT) and € = min(eq, €3).
In total, the sample complexity is

_,C2WS - (dimg(F, 8))> - N(F.e)))?
N(K+TM):O(CW C (;(’f)zv)(slog( £ ) ).
m

Corollary 1. [f Assumption 4.1 holds, with proper hyperparameters, the average policy T2, := Unif (7?2, ..., 7V+1) of
ENIAC-SPI-SAMPLE achieves V ™ > V™ — ¢ with probability at least 1 — & and the sample complexity is
. 2 2
@<W8 - (dimg(F,B))" - (log(N(F,€))) )
S0 |

Proof. The result is straightforward as mentioned in Remark 3 that under Assumption 4.1, €y, = 0, C = 1,and g = 0. W

C.2. Sample Complexity of ENIAC-SPI-COMPUTE

In this section, we prove the result for ENIAC-SPI-COMPUTE. SPI-COMPUTE only differs from SPI-SAMPLE at two
places: the value of the bonus and the actor update rule. These differences cause changes in the bonus bound result and
the convergence analysis while Lemma C.3 and C.4 still hold with the same definition of A}, as in (20). In the sequel, we
present the bonus bound and the convergence result for SPI-COMPUTE.

Lemma C.5 (SPI-COMPUTE: The Bound of Bonus). With probability at least 1 — N6,
NIA] [log(2/6)

N
nt1 ni1 ‘.A| 262 + SW2K =+ ,82 .
Vi —VT < . - d F, .
2V S T—a R R T P TS
The proof is similar to Lemma C.1. We only need to revise the bonus value from ﬁ to (1‘_“43)(1.

As for the actor-critic convergence, we focus on a specific epoch n and still define
A’én(s,a) = fi(s,a) +0"(s,a) — Boror, (1) [ (s, 0") + 0" (s,a")]. (33)

-~

It is easy to verify that E, ., () [Af,] = 0 and for s € K", the actor update in SPI-COMPUTE is equivalent to
w11 (als) o< wy(als) exp (1A} (s,)), Tea1 = (1= )7)y; + aUnif(A)
since b"(s,-) = 0 for s € K™. As before, we use Ayn (s, a) to approximate the true advantage of 7j* on Mpy». Then we
have the following result.
Lemma C.6 (SPI-COMPUTE: Actor-Critic Convergence). In ENIAC-SPI-COMPUTE, let A, be as defined in Equation

(33, n= lfﬁgé‘vé"T), and o = 1+1\/T' For any epoch n € [N], SPI-COMPUTE obtains a sequence of policies {m;}{_o'

such that when comparing to 7":
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1 T—1 1 T—1
7 2 Vi = Vi) = 7 2 Vi = Vi)
t=0 t=0
1 log(JA]) 1 < -
= (12W S Z (E(smN o (Abe(s,0) = Alu(s,0))1s € ;cn})_

Proof of Lemma C.6. Similar to the reasoning in Lemma C.2, we first have that A’ ... (s,a') < 0 for any s ¢ K". To see
this, note that for s ¢ K, there exists an action with bonus b" = |A|/((1 — )a) and m, has probability at least a/|A|

selects that action. Therefore, V. (s) > 1/(1 — v) and
Al (5,07) = Qlyn (s,a") = Vin(s) =1 = (1 —7) - Vin(s) <0, Vs ¢ K"

Recall that 7" deterministically picks a' for s ¢ ™. Based on the above inequality, it holds that

L Z dpn (8,0) Al (s,0) < 1% Z dpn (s,a) Al (s,a)1{s € K"}

V_/?/ln - V/{/[n =
—5 5
(e:2) (s:0)
1 ~ . .
1.4 (Z:)dMn(s,a)Abn(s,a)l{s e K"} (34)

Next we restrict on s € K™ and establish the consecutive KL difference on {r;(-|s)}. Specifically, since for s € K",
i1 (+]5) o< mi(+]s) exp(n A (s, a)),
KL(7" (15), 7,4, (15)) = KL (13), 71(15)) = Eqzn 1oyl =n A (5,0) + log(=")],

where 2! := " 7}(als) exp(nAL, (s,a)). With the assumptions that | AL, (s,a)| < 4W and 5 < 1/(4W) when T >
log(|.A]), we have that n A}, (s,a) < 1. By the inequality that exp(x) < 1 + z + 22 for z < 1, we have that

log(z") < log(1 + 7722777'5 als) AL, (s, a) + 16n°W?)

Unif(A)y
—log (1+772(7rff|a o it ))'Atn(s,a)ﬂﬁn?vv?)

— 21172
—log( 7(1_Q|A|2Ab“ sa)+16nW>

AW o
<log(1+ U s 160*W?)
Wna

+ 160°W?2,

where the second line follows from that 7, = 7% — % and the last line follows that log(1 + z) < x for x > 0.

Hence, for s € K™,

~n ~n 4W &
KL(F" (Js), w11 (15)) = KL (13), 71(15)) < ~nBamrn [ A (5,0)] + T + 1672112,

Take o = Adding both sides from¢t = 0to T — 1, we get

1+\/:7
T-1 R
E (s ajmdnen [Abe (5,0)1{s € K]
t=0
1 : T 9
< B [(KLG" (), 13) = KLGE" (1s), 7 (15)) 1s € K} + AWVT + 1657

<log(lA])/n + 4WVT + 16nTW? < 12W/log(JA|)T
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Combining with Equation (34), the regret on M™ satisfies

T-1
S Vi — Vigw)
t=0

1 T—1 R T-1 N
< ﬁ ( Z E(s,a)NJMn [A;i"(‘gva)l{s € Kn}} + Z E(s,a)N(iMn {AZ" (87 a) - AZ"(& a))l{s € K:n}} )

t=0 t=0

1 T-1 R

< T4 (12W log (AT + Z Es,0)~dpen [(Af,n(&a) — Apa(s,0))1{s € ]Cn}] )
t=0

Since the definition of ﬁin is the same as the one for SPI-SAMPLE, Lemma C.3 and Lemma C.4 are directly applied. In
total, we have the following theorem for the sample complexity of ENIAC-SPI-COMPUTE.

Theorem C.2 (Main Result: Sample Complexity of ENIAC-SPI-COMPUTE). Let § € (0,1) and e € (0,1/(1 — ~)). With
Assumptions C.1, C.2, 4.2, and 4.3, we set the hyperparameters as:

B_quoT_lﬂw?bgm‘N>%Mwwmgmpumﬂfﬁ) ~ [log(JA])
2 T g2(l =2 T T et(1—9)* T\ tewerre
1 (1 =)'t (1 =)t

TR VT T 1536w Allog(JA]) - dime(F, B) T 1248CW3| Allog(|Al)dimp (F, )’
1o 1536 LAR (log(|AD)? - dimps(F, ) - (log(2T4790))? - 1og(SXT)

84(1 — 7)4 )
M= 48000C2W 5| Al log(|A|)dimg (F, 3) 10g(W)
et(l—)* ’

N
ave *

and e satisfies Equation (24) correspondingly. Then with probability at least 1 — 6, for the average policy ©
Unif (7?2, ..., 7V, we have

o5 i WAl 2000W - |Allog(|A)) - dims(F,8) _
-~ (1 =)
for any comparator T with total number of samples:
@(CZWH’ A2 - (dimg(F, ﬁ))2 - (log(N(F, e’)))Q)
£10(1 — 4)10 )
where ¢ = min(ey, €3).
Corollary 2. If Assumption 4.1 holds, with proper hyperparameters, the average policy 7Y, := Unif(72,... 7V *1) of

ENIAC-SPI-COMPUTE achieves V™o > V™ — ¢ with probability at least 1 — § and total number of samples:

(WO A2 - (dimp(F, B))° - (log(N(F, €)))”
o srl )

D. Analysis of ENIAC-NPG

In this section, we provide the sample complexity of ENIAC-NPG-SAMPLE. For ENIAC-NPG-COMPUTE, it can be
adapted from ENIAC-SPI-COMPUTE and ENIAC-NPG-SAMPLE.

The analysis of ENIAC-NPG-SAMPLE is in parallel to that of ENIAC-SPI-SAMPLE. As before, we provide a general
result which considers model misspecification and Theorem 4.2 falls as a special case under the closedness Assumption 4.4.

We simplify the notation as 7y for 7y, (a|s) := %. Then for epoch n iteration ¢ in ENIAC-NPG-SAMPLE,

2 (ls) = {Wwws» sexr
K Unif({a € A: (s,a) ¢ K™}), o.ww.

We state the following assumptions to quantify the misspecification error.



RL Exploration with Non-linear Policies

Assumption D.1 (Bounded Transfer Error). Given a target function g : S x A — R, we define the critic loss function
L(u;d, g, mp) withd € A(S x A) as:
L(u;d, g,m9) = E (s ay~a [(u' Vologm — g)?] .

For the fixed comparator policy T as mentioned in Section B.1, we define a state-action distribution CZ(S, a) = d?;ro (s)o
Unif(.A). In ENIAC-NPG-SAMPLE, for every epoch n € [N| and every iteration t inside epoch n, we assume that

. L7 At n
inf L(u;d, Ay — b, mor) < €pias,
wely

where U}' := argmin,, ¢, L(u; pl,, AL, — bl Tn ) and epiqs > 0 is a problem-dependent constant.

Recall that (A}, — b}')(s,a) = Q}.(s,a) — b™(s,a) — Eqrp(s) [@n (s, a) — b"(s,a)]. As before, we denote by @ a
particular vector in U} such that L(a}; c?, A}in — E;L, wezz) < 2épias. Note that we use Vg log mgn as the linear features for
critic fit at iteration ¢ epoch n, even though 7" is not the same as Top. Nevertheless, we show later that this choice of
features is sufficient for good critic fitting on the known states, where we measure our critic error.

Remark 4. Under the closedness condition Assumption 4.4,
Abn(s,a) — 0" (s,a) = Qpn(s,a) — b"(s,a) — Eq'orp (Qpn — b"(s,a))
=E™ [r(s,a) + Qi (s',a')] — Eao/mmp [E™ [r(s,a’) + Qb (5", a")]]
€ gfe? )
where the last step follows, since w;' can be described as myn xn under the notation of Assumption 4.4, whence the

containment of Gy, follows. Thus, there exists a vector w € U such that u'V lognys,, = A'én - everywhere. We can
t
then take €piqs as 0 and U3y = u. Assumption D.1 therefore is a generalized version of the closedness condition.

For NPG, the loss function L is convex in the parameters u since the features are fixed for every individual iteration. As a
result, we naturally have an inequality as in Assumption C.2 for SPI. We present it in the lemma below, which essentially
follows a similar result for the linear case in Agarwal et al. (2020a).

Lemma D.1. For the same loss function L as defined in Assumption D. 1, it holds that
n ~ T 2
E(s,a)~pn, {((Ut —a}) Volog oy ) }

n, n t m ~n, n t m
SL(ut ’pcowAb" - bt Dﬂ-g?) - L(ut 3 Peov> Apn — bt ’7‘-9?)'

Proof. For the left-hand side, we have that

E(s,a)~pz [((u?)—rve log mor — (@iy) ' Vg logwe?)z}

cov

_ 2 B 2
=E(s,a)~p2, [((U?)TVG log mop + b} — Atn) } —E(s.0)~pz, [((ﬂ?)Tve log mop + b7 — Atn) }

= 2E(s,a)~pp, K(U?)Tve log 7y — (@}') " Vg log 779;') : ((ﬂ?)Tve log moy + by — Atn)}
Since 3 is a minimizer. By first-order optimality condition, the cross term is greater or equal to 0. The desired result is
obtained. ]

D.1. Sample Complexity of ENIAC-NPG-SAMPLE

We follow the same steps as listed in B.2 and start with the bonus bound.
Lemma D.2 (NPG-SAMPLE: The Bound of Bonus). With probability at least 1 — N6,

N X L 2 2 2 2
vaﬁm oyt < 2¢ +32G*B*K + 8 N log(2/96)
n=1

The proof is similar to Lemma C.1. The only thing changed is the function approximation space. Thus we have dimg (Gr, 5)
instead of dimg(F, ) and ||g§ ||c < 2GB, Vgy € Gr.

Next, we establish the convergence result of NPG update. We focus on a specific episode n and for each iteration ¢, we
define

//l\in(s, a) = utTVfgt(s, a)+b" — EalNﬂst(.‘s)[u:Vfgt (s,a’) +b"(s,a)]. (35)
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Since 7 (+|s) = g, (+|s) for s € K™, EG/NM(.|S)[/A1£”(S, a')]=0fors e K"

From the algorithm we can see that At is indeed our approximation to the real advantages A?, . In contrary to ENIAC-SPI,
the actor update in ENIAC-NPG does not use At directly but by modifying the parameter 6. In the next lemma, we show
how to link the NPG update to a formula of /Tin and eventually are able to bound the policy sub-optimality with function
approximation error.

Lemma D.3 (NPG-SAMPLE: Convergence). In ENIAC-NPG-SAMPLE, let Atn be as defined in Equation (35) and

_ log(|A])
=\ @WeD*+ABT"
comparing to T:

For any epoch n € [N], NPG-SAMPLE obtains a sequence of policies {m; }1_" such that when

T-1

Fm 1 Fn
— V n ‘/2771 = T Z(VM" - V_/{/(n)
t=0
1 1og(JA))(16D2 + AB?) 1 w— . -,

< =7 (2\/ T + T ; E(s.a)mdpin [(Abn(s,a) — Ap(s,a))1{s € IC”}} .

Proof. For the same reason as in Lemma C.2, we have
~n 1 ~
Vit = Vi < i > dan(s,0) Al (s,a)1{s € K"} (36)

(s,a)
We focus on on s € K™, Then m¢(-|s) o< exp(fo, (s,-)) and b(s, -) = 0. It holds that

KL(7"(:|s), m41(:[s)) — KL(7"(-]s), m(-[s))
_ - s.a) — s.a Za exp(.f@url (S,CL))
= an‘n’"(-\s) [f9t+1 ( ) ) f@t( ) )] + IOg Za eXp(fet (8, a))

AB? > exp(fo,(s,a) +n-ul Vofs, +n*AB?/2)
< ~Eonincls 0w Vofo, —n? 5t loe D> exp(fet(s a))

= 1) Eain () [ A (8,0)] = 1+ B omy (|21 f Voo, (5,0")
+ log (Zm(s, a) exp (77 . /Ti (s,a)+n- ]Ea/Nﬂt(.|s)u2—V9f9t)> + n*AB>

= —Eqin(s) [nAbn(s a)] + log (Z 7i(als) exp (nAbn(S a))) +n?AB2.
where the inequality is by Taylor expansion and the regularity assumption 4.5:
fo, + (011 = 0:)"Vofo, — %||9t+1 = 0I5 < forss < foo + (Ber1 —60:) Vo fo, + %H@tﬂ = 0I3-
Since |A\tn(s, a)| <4D andn < 1/(4D) when T > log(|.A), T}A\Zn (s,a) < 1. By the inequality that exp(z) < 1+ x + 22

for z < 1, we have that
log ( Z me(als) exp (AL, (s, a)))

<log (1 + EaNm(,‘s)[nAbn (s,a)] + 16772D2) < 16n2D?.
Hence, for s € K™,
KL(7"(+|s), w1 (|s)) — KL(F"(:|s), m(|8)) < —=nEqmzn(.|s)[Afn (s, a)] + n*(16D* + AB?).
log(|-A[)

Adding both sides from ¢t = 0 to 7" — 1 and taking n = TeDztABn T We get
T—1 R
Z E(s,a)N&Mn |:AZ" (S’ a)l{s € K:n}}
t=0
1 ~n jad n
< B [(KL(E (1), 70([5)) ~ KL(F" (f3). mo(}5)))1{s € K)] + nT(16D + AB?)

<log(|A|)/n + nT(16D? + AB?) < 2y/log(|A|) - (16D2 + AB2) - T



RL Exploration with Non-linear Policies

Combining with Equation (36), the regret on M™ satisfies

T—1 ~
> (Vi = Vign)
t=0
1 T—1 1 T—1
< - - At n _ ~ t _ At n
< T 2 Bl [ A (5, a)1{s € K] + 3 ;E(S,MW [ Ab(s,0) = A (5,0)1{s € K]
1 T—1 N
< T (2\/10g(|A|)(16D2 + AB?)T + Z E(s.0)mdpn [(A;t)n (s,a) — Apn(s,a))1{s € /C"}} )
t=0

Next, we establish two lemmas to bound the difference between the true advantage A!, (s, a) and the approximation
Al (s,a).
Lemma D.4 (Approximation Bound). At epoch n, assume forall0 <t <T — 1,
L(up'; prays A — b7, o) < LA ply, A — bF, o7 ) + €gtar,
where €4, > 0 is to be determined later, and
¢? = NK (éyar + 16Dey) + 8D*log(N (G, €1)/0) - VNK, (37)

where € is used in bonus function design (see Section 3.3) and €1 is to be determined. Under Assumption D.1 and 4.5, we
have that for every 0 < t < T — 1, with probability at least 1 — (n + 1),

E(s,a)wJMn (A;J" (57 CL) - ‘Zt"(& CL)) <4 V |-A|€bias + 26
Lemma D.5. Following the same notation as in Lemma D.4, it holds with probability at least 1 — ¢ that
6D
500D* - dlog (62—5)
M

L(ug; p Al — 5?, 7T9'tn) — L(ag; pr. Ain — B;L, 71'9;1) < +13D? - €,

where d is the linear dimension of u.

The proofs of the above lemmas can be easily adapted from Lemma C.3 or Lemma C.4 by replacing f; with u, V fo,, ft"
with (@) "V f,, and F with G#. In particular, for Lemma D.5, since the linear feature is fixed for critic fit at iteration ¢
epoch n, the function cover is defined on the space G fop - By Lemma E.2, the covering number is therefore represented with
the linear dimension of u, d.

In the following, we present the detailed form of the sample complexity of NPG-SAMPLE.

Theorem D.1 (Main Result: Sample Complexity of ENIAC-NPG-SAMPLE). Let § € (0,1) ande € (0,1/(1 —~)). With
Assumptions D.1 and 4.5, we set the hyperparameters as:

g S=9) 64(D* + AB?) -log|A|  128B°G* - dimp(Gr, B) pe | loslA)
> 21—z 7 S0 =) ’ (16D + AB2)T
B € e ) o 32D - dimp(Gr, B) - (log(BNTALEz)))2 . jog(ONT)
' 7 128D - dimg (G, B)’ e3(1—n)3 ’
(1—)3 oy 200D - dimip (G, 5) - dlog(L2HT)
2T 10D2 - dimp(GF,B)’ e3(1—~)? ’

and € satisfies Equation (37) correspondingly. Then with probability at least 1 — 6, for the average policy wh, :=

Unif(7?,..., 7V, we have

5 4 ias

Viae > VT 4V/|Alevias 9e
L=y
for any comparator T with total number of samples:
@(D6(D2 +AB?) - (dimp(Gr. 8)” - (log(N (G, e')))Q)

e3(1—-7)°

where € = min(ey, €2) such that log(N (Gr,€')) = Q(d).

)
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The proof is similar to that of Theorem C.1. We also have the following result when the closedness assumption is satisfied.

Corollary 3. If Assumption 4.4 holds, with proper hyperparameters, the average policy T, := Unif (7?2, ..., 7V +1) of
ENIAC-NPG-SAMPLE achieves V ™« > V™ — ¢ with probability at least 1 — § and total number of samples:

@(Dﬁ(m + AB2) - (dimp(Gr, 8))° - (10g(N(Qf,e’)))2)
88(1 _ ,Y)S

Note that under Assumption 4.4, as mentioned in Remark 4, €pi,s = 0.

E. Auxiliary Lemmas

Lemma E.1. Given a function class F, for its covering number, we have N'(AF,¢) < N'(F,¢/2)2.

Proof. Let AC(F,e/2) := {f — f'|f, [ € C(F,€e/2)}. Then AC(F,¢/2) is an e-cover for AF and |AC(F,e/2)| <
IC(F,€/2)]> < N(F,e/2)% u

Lemma E.2. Given f € F, under the regularity Assumption 4.5, we have that the covering number of the linear class
Gy ={u'Vylogns,u €U C R f € F} achieves N(Gyg,€) < (%)d.

Proof. In order to construct a cover set of G¢ with radius ez, we need that for any v € U C R?, there exist a @, such that
|u"Vologms(s,a) — @' Vologms(s,a)|e < e€o.
where the infinity norm is taken over all (s,a) € S x A. By Cauchy-Schwarz inequality, we have
|u"Vologms — ' Vologmsllee = ||[(u — )" Velogms|lee < 2G||lu — iil|2.
Thus, it is enough to have ||u— ||z < e2/(2G), which is equivalent to cover a ball in R? with radius B (recall that ||u|| < B)
with small balls of radius e3/(2G). The latter has a covering number bounded by (@) ’ < (@> d7. |

€2 €2

F. Algorithm Hyperparameters

In this section, we present more details about the implementation in our experiments. All algorithms were based on the PPO
implementation of (Shangtong, 2018). The network structure is described in the main body and the last layer outputs the
parameters of a 1D Gaussian for action selection.

The width training process is presented in Algorithm 5. Recall that our training loss is

M (s,0) = f'(5,0))" f(s',a') = (5, a)) M (f(s,0) = f'(s,a)
> Py Py Al )

n n n
|ZQ| (s’,a’)eZm |Z ‘ (s,a)EZE)’ |ZQ|

(38)
(s,a)EZZ’é

To stabilize training, for each iteration we sample a minibatch D¢ from the query batch, then run several steps of stochastic
gradient descent with changing minibatches on Z™ while fixing D¢. The hyperparameters for width training are listed in
Table 1.

For PC-PG, we follow the same implementation as mentioned in (Agarwal et al., 2020a); for PPO-RND, the RND network
has the same architecture as the policy network, except that the last linear layer mapping hidden units to actions is
removed. We found that tuning the intrinsic reward coefficient was important for getting good performance for RND. The
hyperparameters for optimization are listed in Table 2 and 3.

"The covering number of Euclidean balls can be easily found in literature.
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Algorithm 5 Width Training in ENIAC

1: Input: Replay buffer Z", query batch Z7.
Initialize f with the same network structure as the critic.
Copy f as f and fix f’ during training.
fori=1toIdo
Sample a minibatch D, from Z7)
for j = 1to J do
Sample a minibatch D; from Z"
Do one step of gradient descent on f with loss in Equation (38) and D¢ and D;.
end for
end for
Output: w" := |f — f]

_
TYRRUN kD

Ju—

Table 1. ENIAC Width Training Hyperparameters
Hyperparameter ~ 2-layer 4-layer 6-layer

A 0.1 0.1 0.1
A1 0.01 0.01 0.01
[Zo| 20000 20000 20000
Learning Rate 0.001 0.001  0.0015
|D;| 160 160 160
|Dg| 20 20 10
Gradient Clippling 5.0 5.0 5.0
1 1000 1000 1000
J 10 10 10

Table 2. ENIAC/PC-PG Optimization Hyperparameters

Hyperparameter Values Considered 2-layer 4-layer 6-layer

Learning Rate e 3,5e 4 et Se~4 5e~4 5e~4

TGAE 0.95 0.95 0.95 0.95

Gradient Clippling 05,1,2,5 5.0 5.0 5.0
Entropy Bonus 0.01 0.01 0.01 0.01

PPO Ratio Clip 0.2 0.2 0.2 0.2

PPO Minibatch 160 160 160 160

PPO Optimization Epochs 5 5 5 5

e-greedy sampling 0, 0.01, 0.05 0.05 0.05 0.05

Table 3. PPO-RND Hyperparameters

Hyperparameter Values Considered 2-layer 4-layer 6-layer
Learning Rate e 3,5e 4 e e 4 e 4 e 4
TGAE 0.95 0.95 0.95 0.95
Gradient Clippling 5.0 5.0 5.0 5.0
Entropy Bonus 0.01 0.01 0.01 0.01
PPO Ratio Clip 0.2 0.2 0.2 0.2
PPO Minibatch 160 160 160 160
PPO Optimization Epochs 5 5 5 5
Intrinsic Reward Normalization true, false false false false

Intrinsic Reward Coefficient 0.5, 1, e, €2, €3, 53, e* 5e3 e3 e3




