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Abstract

Policy optimization methods remain a powerful
workhorse in empirical Reinforcement Learning
(RL), with a focus on neural policies that can
easily reason over complex and continuous state
and/or action spaces. Theoretical understanding
of strategic exploration in policy-based methods
with non-linear function approximation, however,
is largely missing. In this paper, we address
this question by designing ENIAC, an actor-critic
method that allows non-linear function approxi-
mation in the critic. We show that under certain
assumptions, e.g., a bounded eluder dimension
d for the critic class, the learner finds to a near-
optimal policy in O(poly(d)) exploration rounds.
The method is robust to model misspecification
and strictly extends existing works on linear func-
tion approximation. We also develop some com-
putational optimizations of our approach with
slightly worse statistical guarantees, and an em-
pirical adaptation building on existing deep RL
tools. We empirically evaluate this adaptation,
and show that it outperforms prior heuristics in-
spired by linear methods, establishing the value in
correctly reasoning about the agent’s uncertainty
under non-linear function approximation.

1. Introduction

The success of reinforcement learning (RL) in many empir-
ical domains largely relies on developing policy gradient
methods with deep neural networks (Schulman et al., 2015;
2017; Haarnoja et al., 2018). The techniques have a long
history in RL (Williams, 1992; Sutton et al., 1999; Konda &
Tsitsiklis, 2000). A number of theoretical results study their
convergence properties (Kakade & Langford, 2002; Scher-
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rer & Geist, 2014; Geist et al., 2019; Abbasi-Yadkori et al.,
2019; Agarwal et al., 2020c; Bhandari & Russo, 2019) when
the agent has access to a distribution over states which is
sufficiently exploratory, such as in a generative model. How-
ever, unlike their value- or model-based counterparts, the
number of policy-based approaches which actively explore
and provably find a near-optimal policy remains relatively
limited, and restricted to tabular (Shani et al., 2020) and
linear function approximation (Cai et al., 2020; Agarwal
et al., 2020a) settings. Given this gap between theory and
the empirical literature, it is natural to ask how we can de-
sign provably sample-efficient policy-based methods for RL
that allow the use of general function approximation, such
as via neural networks.

In this paper we design an actor-critic method with general
non-linear function approximation: Exploratory Non-linear
Incremental Actor Critic (ENIAC). Our method follows a
similar high-level framework as Agarwal et al. (2020a), but
with a very different bonus function in order to reason about
the uncertainty of our non-linear critic. In each iteration, we
use the bonus to learn an optimistic critic, so that optimizing
the actor with it results in exploration of the previously
unseen parts of the environment. Unlike Agarwal et al.
(2020a), we allow non-linear function approximation in
the critic, which further parameterizes a non-linear policy
class through Soft Policy Iteration (SPI) (Even-Dar et al.,
2009; Haarnoja et al., 2018; Geist et al., 2019; Abbasi-
Yadkori et al., 2019; Agarwal et al., 2020a) or Natural Policy
Gradient (NPG) (Kakade, 2001; Peters & Schaal, 2008;
Agarwal et al., 2020c) updates. Theoretically, we show that
if the critic function class has a bounded eluder dimension
(Russo & Van Roy, 2013) d, then our algorithm outputs a
near-optimal policy in poly(d) number of interactions, with
high probability, for both SPI and NPG methods.

Following the recent work on non-linear value-based meth-
ods by Wang et al. (2020), the bonus function is based on the
range of values (or the width function) predicted at a partic-
ular state-action pair by the critic function which accurately
predicts the observed returns. Hence, this function character-
izes how uncertain we are about a state-action pair given the
past observations. The value-based method in Wang et al.
(2020) relies on solving the value iteration problem using
the experience, which introduces dependence issues across
different stages of the algorithm. But, we directly use the
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width function as our exploration bonus and have a simpler
sub-sampling design that that in Wang et al. (2020). Under
mild assumptions, our bonus function can be computed in
a time polynomially depending on the size of the current
dataset. We also provide a heuristic method to compute the
bonus functions for neural networks. Furthermore, all our
results are robust to model misspecification and do not re-
quire an explicit specification about the transition dynamics
as used in Wang et al. (2020).

The technique for tracking the uncertainty of general non-
linear setting is especially established with careful design of
hyperparameters and is not a direct extension of the linear
case as in Agarwal et al. (2020a) whose uncertainty is easily
summarized using a covariance matrix and the potential
function argument to analyze the evolution of that bonus is
quite standard.

To further improve the efficiency, we develop variants of our
methods that require no bonus computation in the execution
of the actor. The key idea is to replace certain conditional
exploration steps triggered by the bonus with a small uni-
form exploration. Note that this uniform exploration is in
addition to the optimistic reasoning, thus different from
vanilla e-greedy methods. The bonus is later incorporated
while updating the critic, which is a significant optimization
in settings where the actor runs in real-time with resource
constrained hardware such as robotic platforms (Pan et al.,
2018), and plays well with existing asynchronous actor-
critic updates (Mnih et al., 2016).

We complement our theoretical analysis with empirical eval-
uation on a continuous control domain requiring non-linear
function approximation, and show the benefit of using a
bonus systematically derived for this setting over prior
heuristics from both theoretical and empirical literature.

Related Work The rich literature on exploration in RL
primarily deals with tabular (Kearns & Singh, 2002; Braf-
man & Tennenholtz, 2002; Jaksch et al., 2010; Jin et al.,
2018) and linear (Yang & Wang, 2020; Jin et al., 2020)
settings with value- or model-based methods. Recent pa-
pers (Shani et al., 2020; Cai et al., 2020; Agarwal et al.,
2020a) have developed policy-based methods also in the
same settings. Of these, our work directly builds upon that
of Agarwal et al. (2020a), extending it to non-linear settings.

For general non-linear function approximation, a series of
papers provide statistical guarantees under structural as-
sumptions (Jiang et al., 2017; Sun et al., 2019; Dann et al.,
2018), but these do not lend themselves to computationally
practical versions. Other works (Du et al., 2019; Misra et al.,
2020; Agarwal et al., 2020b) study various latent variable
models for non-linear function approximation in model-
based settings. The notion of eluder dimension (Russo &
Van Roy, 2013) used in our theory has been previously

used to study RL in deterministic settings (Wen & Van Roy,
2013). Most related to our work is the recent value-based
technique of Wang et al. (2020), which describes a UCB-
VI style algorithm with statistical guarantees scaling with
eluder dimension. In this paper, we instead study policy-
based methods, which provide better robustness to mis-
specification in theory and are more amenable to practical
implementation.

Notation Given a set .4, we denote by |.A4| its cardinality,
A(A) the set of all distributions over A4, and Unif (A) the
uniform distribution over .A. We use [n] for the integer set
{1,...,n}. Let a,b € R™. We denote by a'b the inner
product between @ and b and ||a||2 the Euclidean norm of a.
Given a matrix A, we use || A||5 for its spectral norm. Given
a function f : X — R and a finite dataset Z C X, we
define || f||z := \/)_,cz f(2)?. We abbreviate Kullback-
Leibler divergence to KL and use O for leading orders in
asymptotic upper bounds and O to hide the polylog factors.

2. Setting

Markov Decision Process In this paper, we focus on the
discounted Markov Decision Process (MDP) with an infinite
horizon. Each MDP is described as M := (S, A, P, r,7),
where S is a possibly infinite state space, A is a finite action
space, P : S x A — A(S) specifies a transition kernel,
r: S x A —[0,1] is a reward function, and v € (0,1) is
a discount factor. At each time step, the agent observes a
state s and selects an action a according to a policy ™ : § —
A(A). The environment then transitions to a new state s’
with probability P(s’|s, a) and the agent receives an instant
reward (s, a).

For a policy , its )-value function Q™ : S x A — Ris
defined as:

o0
Q7 (s,a,r):=FE" {thr(shatﬂso =s,a0 =al,
t=0
where the expectation is taken over the trajectory fol-
lowing 7. And the value function is V™(s,r) :=
Egmr(|s)[@7(s,a,7)]. From V™ and Q7, the advantage
functionof wis: A™(s,a,r) = Q™ (s,a,r)=V7(s,7),¥s €
S,a € A Weignore rinV, Q or A, if it is clear from the
context. Besides value, we also define the discounted state-
action distribution d7 (s, a) induced by 7 as:

dZ(s,a)=(1—7) Z'ytPr”(st = s,a; = a|sp = §),
t=0

where Pr” (s; = s,a; = al|sg = §) is the probability of
reaching (s, a) at the ty, step starting from § following .
Similarly, we define df ; (s, a) if the agent starts from state
s followed by action a and follows 7 thereafter. For any
distribution » € A(S x A), we denote by dJ(s,a) :=
E(s,a)~v [d?g’&)(s7 a)land dJ(s) ==, dl(s,a).
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Given an initial distribution p € A(S), we define V7 :=
Esonp[V™(s0)]. Similarly, if v € A(S x A), we define
VI = Esy,a0)~v @™ (50, a0)]. The goal of RL is to find
a policy in some policy space II such that its value with
respect to an initial distribution pg is maximized, i.e.,
maﬁrﬁlize V-
Without loss of generality, we consider the RL problems
starting from the unique initial state s¢ in the later context.
All the results straightforwardly apply to arbitrary pg.

Function Class and Policy Space Let 7 := {f : S x
A — R} be a general function class. We denote by
IIr := {ny, f € F} apolicy space induced by applying
the softmax transform to functions in F, i.e.,

exp(f(s,a))
weaexp(f(s,a’))
For the ease of presentation, we assume there exists a func-
tion f € F such that, for all s, 7¢(+|s) is a uniform distribu-
tion! on A. Given F, we define its function-difference class
AF = {Af|Af =f—f" f,f € F} and the width
function on AF for any (s,a) € S X A as:

Af(s,a). (D
F
Our width is defined on AF instead of F, where the latter
is adopted in (Russo & Van Roy, 2013) and (Wang et al.,
2020). These two formulations are essentially equivalent.

mr(als) == 5

w(AF,s,a) := sup
AfEA

If F can be smoothly parameterized by 6 € R?, we further
introduce the (centered) fangent class of Fy as:

Gr =194 1 95(s,a) = UTVG logm g, (s,a),
ueU, fo € F},(2)
where U C R? is some bounded set. We define the function-

difference class AG and the width function w(AGx, s, a)
for G accordingly.

Next, given a function class F, we consider RL on the
induced policy space IIz. If F is non-smooth, we apply
SPI as the policy optimization routine while approximating
@-values with F; if F is smoothly parameterized by 6, we
can alternatively apply NPG for policy optimization and
use Gr to approximate advantage functions. The function-
difference classes will be used to design bonuses.

3. Algorithms

In this section, we describe our algorithm, Exploratory Non-
Linear Incremental Actor Critic (ENIAC), which takes a
function class F and interacts with an RL environment to
learn a good policy. The formal pseudo-code is presented in
Algorithm 1. We explain the high-level design and steps in
the algorithm in this section and present the main results in
the next section.

!This requirement is not strict, our algorithms and analysis
apply for any distribution that are supported on all actions.

Algorithm 1 Exploratory Non-Linear Incremental Actor
Critic (ENIAC)
1: Input: Function class F.

Hyperparameters: N, K, 3 > 0, « € (0,1).

For all s € S, initialize 71 (-|s) = Unif(A).

Initialize experience buffer Z° as an empty set.

forn =1to N do
Generate K samples: {s;, a;}5, ~dT;
Merge training set: Z" < Z" "1 U {s;,a;} K ;
Let pl, := Unif(dZ ..., d%");
Define a bonus function b™ using (12) or (13);
Update the policy using Algorithm 2: 71 « Policy
Update(p,,, b", o).

: end for

: Output: Unif(rmo, 73, . .
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Algorithm 2 Policy Update
1: Input: Fitting distribution p, bonus function b, .
Hyperparameters: 7' > 0, M > 0,7 > 0.
Initialize 7y using (3) or (4).
fort =0to7T — 1do
Generate M samples from p using (5) or (9);
Fit critic to the M samples using (6) or (10);
Actor update using (7), (8), or (11) to obtain ¢ 1;
end for
Output: Unif(mg, 71, . .
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3.1. High-level Framework

At a high-level, ENIAC solves a series of policy optimiza-
tion problems in a sequence of carefully designed MDPs.
Each MDP is based on the original MDP, but differs in the
choice of an initial state distribution and a reward bonus.
We use them to induce optimistic bias to encourage ex-
ploration. Through the steps of the algorithm, the initial
distribution gains coverage, while the bonus shrinks so that
good policies in the modified MDPs eventually yield good
policies in the original MDP as well.

A key challenge in large state spaces is to quantify the notion
of state coverage, which we define using the function class
F. We say a distribution po, provides a good coverage
if any function f € F that has a small prediction error on
data sampled from p., also has a small prediction error
under the state distribution d™ for any other policy 7. In
tabular settings, this requires p.oy to visit each state, while
coverage in the feature space suffices for linear MDPs (Jin
et al., 2020; Yang & Wang, 2020).

In ENIAC, we construct such a covering distribution peoy
iteratively, starting from the state distribution of a uniform
policy and augmenting it gradually as new policies visit
previously unexplored parts of the MDP. Concretely, we
maintain a policy cover {r!, 7%, ...}, which initially con-
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tains only a random policy, 7!, (Line 3 of Algorithm 1). At
iteration o the algorithm lets p{, be a uniform mixture of

{dSO» P SO}(hneS)

Having obtained the cover, we move on to induce the re-
ward bonus by collecting a dataset of trajectories from p,,
(line 6).> These collected trajectories are used to identify
a set " of state-action pairs covered by pZ,,: any func-
tions f, g € F that are close under py, also approximately
agree with each other for all s,a € ™. We then create a
reward bonus, b (Line 9, formally defined later), toward
encouraging explorations outside the set X".

Finally, taking p(., as the initial distribution and the bonus
augmented reward r + b™ as the reward function, we find
a policy 7 that approximately maximizes V. (r + b")
(line 10). It can be shown that this policy elther explores by
reaching new parts of the MDP or exploits toward identify-
ing a near optimal policy. We then add this policy to our
cover and proceed to the next epoch of the algorithm .

Within this high-level framework, different choices of the
policy update and corresponding bonus functions induce
different concrete variants of Algorithm 1. We describe
these choices below.

3.2. Policy Optimization

In this section, we describe our policy optimization ap-
proach, given a policy cover p and a reward bonus b. We
drop the dependence on epoch n for brevity, and recall that
the goal is to optimize V7 (r + b). We present two differ-
ent actor critic style optimization approaches: Soft Policy
Iteration (SPI) and Natural Policy Gradient (NPG), which
offer differing tradeoffs in generality and practical imple-
mentation. SPI is amenable to arbitrary class F, while NPG
requires second-order smoothness. On the other hand, NPG
induces fully convex critic objective for any class F, and
is closer to popular optimization methods like TRPO, PPO
and SAC. Our presentation of both these methods is adapted
from (Agarwal et al., 2020c), and we describe the overall
outline of these approaches in Algorithm 2, with the specific
update rules included in the rest of this section.

For each approach, we provide a sample-friendly version
and a computation-friendly version for updating the policy.
The two versions of updating methods only differ in the
initialization and actor updating steps. The computation-
friendly version provides a policy that can be executed ef-
ficiently while being played. The sample-friendly version
requires to compute the bonus function during policy exe-
cution but saves samples up to poly(].A4|) factors. We now
describe these procedures in more details.

2In the Algorithm 1, only 7™ is rolled out as the samples can
be combined with historical data to form samples from pg,,. .

3.2.1. POLICY INITIALIZATION

For both SPI and NPG approaches, we use the following
methods to initialize the policy.

Sample-friendly initialization. Given bonus b, we define
K :={(s,a) | b(s,a) = 0}. We abuse the notation s € K
if b(s,a) =0, Ya € A. We initialize the policy as follows.

| Unif(A) s €K
mo(t[s) = {Unif({a e A:(s,a) ¢ K}) ow. ©)

Here the policy selects actions uniformly for states where
all actions have been well-explored under p and only plays
actions that are not well-covered in other states. Note that
such a policy can be represented by b and a function f € F.

Computation-friendly initialization. The computation-
friendly method does not recompute the set /C and initialize
the policy to be purely random, i.e.,

mo(+|s) = Unif(A), Vs € S. (4)

3.2.2. SPI PoLicY UPDATE

For each iteration, ¢, we first generate M (some parameter to
be determined) ()-value samples with the input distribution
p as the initial distribution:

{Si;ain (Slva'wr_'_b)}z 1 (siva'i) ~ P, (5)

where @7” is an unbiased estimator of Q™* (see, e.g., Algo-
rithm 3 in the Appendix). Then we fit a critic to the above
samples by setting f; as a solution of :

M
~ 2
minimize Y~ (Q™ (si, a;, 7 +b) — b(si, a;) — f(si,a:))".
inimize 2 (Q™ (s, @i, 7+ b) — b(si, ai) — f(si,a;))

(6)

Here we offset the fitting with the initial bonus to main-
tain consistency with linear function approximation results,
where a non-linear bonus introduces an approximation er-
ror (Jin et al., 2020; Agarwal et al., 2020a). Note that for
the SPI, we do not require f to be differentiable.

Based on the critic, we update the actor to a new policy.
There are two update versions: one is more sample-efficient,
the other is more computational-convenient.

Sample-friendly version. For this version, we only update
the policy on states s € K since our critic is unreliable else-
where. For s ¢ IC, we keep exploring previously unknown
actions by simply sticking to the initial policy. Then the
policy update rule is:

mi(als) o mi(als) exp (nfi(s,a)1{s € K}), (7)
where > 0 is a step size to be specified. Note that
since b(s,a) = 0 for s € K, Equation (7) is equivalent to
Tee1(als) o mi(als) exp (n(fi(s, @) + b(s, a))1{s € K})
where the initial bonus is added back.
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Computation-friendly version. For this version, we re-
move the indicator function while allowing some probability
of uniform exploration:

7T£+1(a|5) o< 7y (als) exp (nft(s,a)),
T (c]s) = (1 — @) - mpyq + - Unif(A).  (8)

Above, {7} } is an auxiliary sequence of policies initialized
as mp and o > 0. Note that for s € K, since b(s,a) = 0 we
still have m,  (als) oc mj(als) exp (n(fi(s,a) + b(s, a))),
i.e., the offset initial bonus is added back. Thus, compared
with Equation (7), Equation (8) differs at: 1. a-probability
random exploration for s € C; 2. update policy for s ¢
K with a possibly not correct value (if b(s,a) # 0) but
guarantees at least c-probability random exploration. Such
a change creates a polynomial scaling with |.A| in the sample
complexity but saves us from computing bonuses during
policy execution which is required by the sample-friendly
version.

3.2.3. NPG PoLicy UPDATE

NPG update shares the same structure as that for SPI. Recall
that now the function class F is smoothly parameterized by
6. At each iteration ¢, we first generate M (some param-
eter to be determined) advantage samples from the input
distribution p,

{ShaiuA\ﬂ—t(s’i?ahr—’_b)}i\ila (Sivai) ~ P (9)
where A™ is an unbiased estimator of A™ (using Algo-
rithm 3). We define by (s, a) := b(s,a) — Eqr,(.|5)[b(s, a)]
as a centered version of the original bonus and g;(s, a) :=
Vg log Ty, (s,a) to be the tangent features at ;. We then
fit a critic to the bonus offset target A — b, by setting u;
as a solution of:

M
inimi A™ iy Wiy b_B iy Ui)—
mlr&ler{{nzeg( (8iy i, 7+ b) — be(s4,a;)

2
uTgt(si, ai)) . (10)
Compared to SPI, a big advantage is that the above critic
objective is a linear regression problem, for which any off-
the-shelf solver can be used, even with a large number of

samples in high dimensions.

With the critic, we update the actor to generate a new policy
as below.

Sample-friendly version. Similar to the sample-friendly
version of SPI, we only update the policy on s € K as:

Or41 = O + nuy,
Tis1(als) o< exp(fo,., (s,0)1{s € K}), (A1)
where 7 > 0 is a step size to be specified.

We omit the details of the computation-friendly version,
which is obtained similar to the counterpart in SPI.

3.3. Bonus Function

In this section, we describe the bonus computation given a
dataset Z" generated from some covering distribution pcey -
As described in previous subsections, the bonus assigns
value 0 to state-action pairs that are well-covered by pcov
and a large value elsewhere. To measure the coverage, we
use a width function (defined in Equation (1)) dependent
on Z™. The bonus differs slightly for the SPI and NPG
updates since SPI uses F for critic fit while NPG use G r.
Specifically, for the sample-friendly version, we take the
following bonus function

b(s,a) = 1{w(F",s,a) > B} - ﬁ (12)

where for SPI,

Fr={Af e AF|||Af]lz» <€}
and for NPG,

Fr:={Ag € AGx | |Ag|lz» < €}
with Gz being the tangent class defined in Equation (2).
Here j3, € are positive parameters to be determined. For the
computation-friendly version, we scale up the bonus by a
factor of | A|/«a to encourage more exploration, i.e.,

= |A]
n = n > .

b (s,a) := H{w(F",s,a) > B} 1—)a
Remark 1. The bonus can be computed efficiently by reduc-
ing the width computation to regression (Foster et al., 2018).
We can additionally improve the computational efficiency
using the sensitivity sampling technique developed in Wang
et al. (2020), which significantly subsamples the dataset Z.
We omit the details for brevity. For neural networks, we
provide a heuristic to approximate the bonus in Section 5.

13)

3.4. Algorithm Name Conventions

Since Algorithm 1 provides different options for sub-
routines, we specify different names for them as below.

* ENIAC-SPI-SAMPLE (ENIAC with sample-friendly SPI
update): initialize with (3), collect data with (5), fit critic
using (6), and update actor using (7);

* ENIAC-SPI-COMPUTE (ENIAC with computation-
friendly SPI update): initialize with (4), collect data with
(5), fit critic using (6), and update actor using (8);

* ENIAC-NPG-SAMPLE (ENIAC with sample-friendly
NPG update): initialize with (3), collect data with (9), fit
critic using (10), and update actor using (11);

* ENITAC-NPG-COMPUTE (ENIAC with computation-
friendly NPG update): initialize with (4), collect data
with (9), fit critic using (10), and update actor using a
similar fashion as (8) modified from (11).

4. Theory

In this section, we provide convergence results of ENIAC
with both the SPI and NPG options in the update rule. We
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only present the main theorems and defer all proofs to the
Appendix. We use superscript n for the n-th epoch in Algo-
rithm 1 and the subscript ¢ for the ¢-th iteration in Algorithm
2. For example, 7{" is the output policy of the ¢-th iteration
in the n-th epoch.

The sample complexities of our algorithms depend on the
complexity of the function class for critic fit (and also the
policy, implicitly). To measure the latter, we adopt the no-
tion of eluder dimension which is first introduced in (Russo
& Van Roy, 2013).

Definition 1 (Eluder Dimension). Given a class F, ¢ > 0,
and Z = {(s;,a;)}_1 be a sequence of state-action pairs.

* A state-action pair (s,a) is e-dependent on Z with re-
spect to F if any f, f' € F satisfying ||f — f'||lz =
\/Z(S,’a,)ez(f(s’,a’) — f'(s',a"))? < € also satisfy
|f<8,a) - f’(s,a)| <e

* An (s,a) is e-independent of Z with respect to F if (s, a)
is not e-dependent on Z.

* The e-eluder dimension dimg(F, €) of a function class F
is the length of the longest sequence of elements in S x A
such that, for some € > €, every element is €' -independent
of its predecessors.

It is well known (Russo & Van Roy, 2013) that if f(z) =
g(wT z), where z € R?, and g is a smooth and strongly
monotone link function, then the eluder dimension of F is
O(d), where the additional constants depend on the proper-
ties of g. In particular, it is at most d for linear functions,
and hence provides a strict generalization of results for lin-
ear function approximation. One can find more low eluder
dimension examples from theories of invertible functions,
non-linear regression, as well as roots of system of equa-
tions.

Based on this measure, we now present our main results
for the SPI and NPG in the following subsections. For the
sake of presentation, we provide the complexity bounds for
ENIAC-SPI-SAMPLE and ENIAC-NPG-SAMPLE. The
analysis for the rest of the algorithm options is similar and
will be provided in the Appendix.

4.1. Main Results for ENIAC-SPI

At a high-level, there are two main sources of suboptimality.
First is the error in the critic fitting, which further consists of
both the estimation error due to fitting with finite samples,
as well as an approximation error due to approximating the
@ function from a restricted function class F. Second, we
have the suboptimality of the policy in solving the induced
optimistic MDPs at each step. The latter is handled using
standard arguments from the policy optimization literature
(e.g. (Abbasi-Yadkori et al., 2019; Agarwal et al., 2020c)),

while the former necessitates certain assumptions on the
representability of the class F. To this end, we begin with a
closedness assumption on JF. For brevity, given a policy 7
we denote by

T"f(s,a) :=E"[r(s,a) +vf(s',d)[s,a].  (14)
Assumption 4.1 (F-closedness). For all 1 € {§ —
A(A)}andg : S x A— |0, ﬁ] we have T™g € F.
Assumption 4.1 is a policy evaluation analog of a similar
assumption in (Wang et al., 2020). For linear f, the assump-
tion always holds if the MDP is a linear MDP (Jin et al.,
2020) under the same features. We also impose regularity
and finite cover assumptions on F.

Assumption 4.2. max(1/(1 —7),supser || flloc) < W.
Assumption 4.3 (e-cover). For any ¢ > 0, there exists
an e-cover C(F,e) C F with size |C(F,¢e)| < N(F,e)
such that for any f € F, there exists ' € C(F,¢€) with
[f = flle <€

With the above assumptions, we have the following sample
complexity result for ENIAC-SPI-SAMPLE.

Theorem 4.1 (Sample Complexity of ENIAC-SPI-SAM-
PLE). Let 6 € (0,1) and e € (0,1/(1 — ~)). Suppose
Assumptions 4.1, 4.2, and 4.3 hold. With proper hyperpa-
rameters, ENIAC-SPI-SAMPLE returns a policy m satisfying
V™ > V™ — ¢ with probability at least 1 — § after taking
at most

(WS- (dimp(F,8))” - (log(N(F,)))’

o i )
samples, where [ = (1 — 7v)/2 and ¢ =
pOly(&, v, 1/I/Va 1/dlmE(f7 ﬂ))3

One of the technical challenges of proving this theorem is
to establish an eluder dimension upper bound on the sum of
the error sequence. Unlike that in (Russo & Van Roy, 2013)
and (Wang et al., 2020), who apply the eluder dimension
argument directly to a sequence of data points, we prove
a new bound that applies to the sum of expectations over
a sequence of distributions. This bound is then carefully
combined with the augmented MDP argument in (Agarwal
et al., 2020a) to establish our exploration guarantee. The
proof details are displayed in Appendix C. We now make a
few remarks about the result.

Linear case. When f(s,a) = ul¢(s,a) with
u,p(s,a) € RE, dimg(F,3) = O(d). Our result
improves that of (Agarwal et al., 2020a) by using Bernstein
concentration inequality to bound the generalization error.
If Hoeffding inequality is used instead, our complexity
will match that of (Agarwal et al., 2020a), thereby strictly
generalizing their work to the non-linear setting.

3The formal definition of € can be found in Theorem C.1
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Model misspecification Like the linear case, ENIAC-SPI
(both SAMPLE and COMPUTE) is robust to the failure
of Assumption 4.1. In Appendix C, we provide a bounded
transfer error assumption, similar to that of Agarwal et al.
(2020a), under which our guarantees hold up to an approx-
imation error term. Informally, this condition demands
that for any policy 7, the best value function estimator f;*
computed from on-policy samples also achieves a small
approximation error for Q™ under the distribution d;f;. A
formal version is presented in the Appendix.

Comparison to value-based methods. Like the compar-
ison between LSVI-UCB and PC-PG in the linear case, our
results have a poorer scaling with problem and accuracy
parameters than the related work of Wang et al. (2020).
However, they are robust to a milder notion of model mis-
specification as stated above and readily lend themselves to
practical implementations as our experiments demonstrate.

Sample complexity of ENIAC-SPI-COMPUTE. As re-
marked earlier, a key computational bottleneck in our ap-
proach is the need to compute the bonus while executing
our policies. In Appendix C.2 we analyze ENIAC-SPI-
COMPUTE, which avoids this overhead and admits a
(W AR - (dimg(F. 8))° - (log W(F. <))

( eto(1 — )10 )
sample complexity under the same assumptions. The worse
sample complexity of ENIAC-SPI-COMPUTE arises from:
1. the uniform sampling over all actions instead of targeted
randomization only over unknown actions for exploration;
2. a-probability uniform exploration even on known states.

4.2. Main Results for ENIAC-NPG

The results for ENIAC-NPG are qualitatively similar to
those for ENIAC-SPI. However, there are differences in
details as we fit the advantage function using the tangent
class Gr now, and this also necessitates some changes to
the underlying assumptions regarding closure for Bellman
operators and other regularity assumptions. We start with
the former, and recall the definition of the tangent class
Gr in Equation (2). For a particular function f € F, we
further use Gy C G to denote the subset of linear functions
induced by the features Vg log 7y, .

Assumption 4.4 (G¢-closedness). For any f € F, let
my(als) o< exp(f(s,a)). For any measurable set K €
S x Aand g Sx A — [O,ﬁ], we have
Trixg —EBar, [TT*g] € Gy, where Ty i (+|s) = ms(+|s)
if forall a € A (s,a) € K; otherwise, msx(-|s) =
Unif({a|(s,a) ¢ K}). The operator T is defined in Equa-
tion (14).

One may notice that the policy 7 ¢ x complies with our actor
update in (11) since b = 0 for s € K. We also impose

regularity and finite cover assumptions on G r as below.

Assumption 4.5. We assume that ||ulls < B for all
uw € U C RY and fy is twice differentiable for all
fo € F, and further satisfies: || follco < W, ||V foll2

G and |[V3fella < A We denote by D =
max(BG,1/(1 —7)).

IN

Assumption 4.6 (¢-cover). For the function class G, for
any € > 0, there exists an e-cover C(Gr, €) C Gr with size
IC(GF,€)| < N(GF,¢€) such that for any g € G, there
exists g € C(Gr,e) with ||g — ¢’ < €

We provide the sample complexity guarantee for ENIAC-
NPG-SAMPLE as below.

Theorem 4.2 (Sample Complexity of ENIAC-NPG-SAM-
PLE). Let 6 € (0,1) and e € (0,1/(1 — ~)). Suppose
Assumptions 4.4, 4.5, and 4.6 hold. With proper hyperpa-
rameters, ENIAC-NPG-SAMPLE returns a policy T satis-
fying V™ > V™" — ¢ with probability at least 1 — & after
taking at most

2

X (DG(D2 + AB?) (dimg(Gr, B))
)8

(log(N (GF,€')))’
© e8(1—~ )

samples, where S = €1 — 7v)/2 and ¢ =
pOly(E, s 1/D7 1/dlmE (g]:? 6))4

Notice that the differences between Theorems 4.1 and 4.2
only arise in the function class complexity terms and the
regularity parameters, where the NPG version pays the com-
plexity of the tangent class instead of the class F as in
the SPI case. NPG, however, offers algorithmic benefits
as remarked before, and the result here extends to a more
general form under a bounded transfer error condition that
we present in Appendix D. As with the algorithms, the theo-
rems essentially coincide in the linear case. One interesting
question for further investigation is the relationship between
the eluder dimensions of the classes F and G, which might
inform statistical preferences between the two approaches.

5. Experiments

We conduct experiments to testify the effectiveness of
ENIAC. Specifically, we aim to show that

1. ENIAC is competent to solve RL exploration.

2. Compared with PC-PG which uses linear feature for
bonus design, the idea of width in ENIAC performs
better when using complex neural networks.

Check our code at https://github.com/FlorenceFeng/ENIAC.

4The formal definition of € can be found in Theorem D.1.
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5.1. Implementation of ENIAC

We implement ENIAC using PPO (Schulman et al., 2017)
as the policy update routine and use fully-connected neural
networks (FCNN) to parameterize actors and critics. As for
the width functions, recall that w™ (s, a) is defined as:

fr,l}?gg-' f(s,a) - f/(57a)7 s.t. Hf - f/”Z” <e (15)

To approximate this value in a more stable and efficient
manner, we make several revisions to (15):

1. we fix f/ and only train f;

2. due to 1., we change the objective from f — f’ to
(f — f')? for symmetry;

3. we do not retrain f for every query point (s,a) but
gather a batch of query points Z; and train in a finite-
sum formulation.

We initialize f as a neural network with the same structure
as the critic network (possibly different weights and biases)
and initialize f’ as a copy of f. Then we fix f’ and train f
by maximizing:

S AMf(sia) - f(s,)* /125

(s,a)€EZF
- Y () = £ ) 12
(s’,a)eZ™
- Z Al(f(&a)*f/(sva))/‘zgh
(s,a)ezg

where the last term is added to avoid a zero gradient (since f
and f’ are identical initially). We generate Z(, by using the
current policy-cover as the initial distribution then rolling
out with ™. The training loss can be roughly regarded as a
Lagrangian form of (15) with regularization. The intuition is
that we want the functions to be close on frequently visited
area (the second term) and to be as far as possible on the
query part (the first term). After training for several steps
of stochastic gradient descent, we freeze both f and f’ and
return | f(s,a) — f'(s,a)| as w™(s, a). During the experi-
ments, we set bonus as 0.5 - — (5:4

maxzn w"

More details can be found in Appendix F.

without thresholding.

We remark that in practice width training can be fairly flexi-
ble and customized for different environments. For example,
one can design alternative loss functions as long as they fol-
low the intuition; f and f’ can be initialized differently; Z5
can be generated with various distributions as long as it has
a relatively wide coverage.

5.2. Environment and Baselines

We test on a continuous control task which requires ex-
ploration: continuous control MountainCar® from OpenAl

>https://gym.openai.com/envs/MountainCarContinuous-v0/

Gym (Brockman et al., 2016). This environment has a 2-
dimensional continuous state space and a 1-dimensional
continuous action space [—1, 1]. The agent only receives a
large reward (+100) if it can reach the top of the hill and
small negative rewards for any action. A locally optimal
policy is to do nothing and avoid action costs. The length of
horizon is 100 and v = 0.99.

We compare five algorithms: ENIAC, vanilla PPO, PPO-
RND, PC-PG, and ZERO. All algorithms use PPO as their
policy update routine and the same FCNN for actors and
critics. The vanilla PPO has no bonus; PPO-RND uses
RND bonus (Burda et al., 2019) throughout training; PC-PG
iteratively constructs policy cover and uses linear features
(kernel-based) to compute bonus as in the implementation
of Agarwal et al. (2020a), which we follow here; ZERO
uses policy cover as in PC-PG and the bonus is all-zero.
For ENIAC, PC-PG, and ZERO, instead of adding bonuses
to rewards, we directly take the larger ones, i.e., the agent
receives max(r, b) during exploration®. In ENIAC, we use
uniform distribution to select policy from the cover set, i.e.,
Pry = Unif(d™,...,d™") as in the main algorithm; PC-
PG optimizes the selection distribution based on the policy
coverage (see (Agarwal et al., 2020a) for more details).

We evaluate all methods on varying depths of networks:
2-layer stands for (64, 64) hidden units, 4-layer for (64, 128,
128, 64), and 6-layer for (64, 64, 128, 128, 64, 64). Layers
are connected with ReLU non-linearities. Hyperparameters
for all methods are provided in Appendix F.

5.3. Results

In Figure 1, we see that ENIAC robustly achieves high
performance consistently in all cases. Both PC-PG and
ZERO perform well for depth 2, but as we increase the depth,
the heuristic kernel-based bonus and the 0-offset bonus do
not provide a good representation of the critic’s uncertainty
and its learning gets increasingly slower and unreliable.
PPO and PPO-RND perform poorly, consistent with the
results of Agarwal et al. (2020a). One can also regard the
excess layers as masks on the true states and turn them into
high-dimensional observations. When observations become
increasingly complicated, more non-linearity is required
for information processing and ENIAC is a more appealing
choice.

We visualize ENIAC’s policies in Figure 2, where we plot
the state visitations of the exploration policies from the
cover, as well as the exploitation policies trained using the
cover with just the external reward. We see that ENIAC
quickly attains exploration in the vicinity of the optimal
state, allowing the exploitation policy to become optimal.

SThis is simply for implementation convenience and does not
change the algorithm. One can also adjust bonus as max(r, b) — .
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Figure 1. Performance of different methods on MountainCar as we vary the netural network depth. The performances are evaluated
over 10 random seeds where lines are means and shades represent standard deviations. We stop training once the policy can obtain

rewards> 93.
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Figure 2. The MountainCar environment (left). Trajectories of exploration (middle) and exploitation (right) policies of ENIAC, with
colors denoting different epochs: orange for the first policy in the cover set, black for the second, and green for the third. Agent starts
from the centric area (near the yellow circle) and the black vertical line on the right represents goal positions.
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Figure 3. Bonus function comparison. [Left]: The trajectories of a chosen policy . [Middle]: the bonus function built by ENIAC upon the
policy. [Right]: The bonus built by PC-PG upon the policy. See text for details.

Since the bonus in our experiments is smaller than the max-
imum reward, the effect of the bonus dissipates once we
reach the optimal state. We also visualize typical land-
scapes of bonus functions in ENIAC and PC-PG in Figure 3.
Both bonuses grant small values on frequently visited area
and large values on scarsely visited part. But the bonus in
ENIAC changes more smoothly. This might inspire future
study on the shaping of bonuses.

6. Conclusion

In this paper, we present the first set of policy-based tech-
niques for RL with non-linear function approximation. Our
methods provide interesting tradeoffs between sample and
computational complexities, while also inspire an extremely
practical implementation. Empirically, our results demon-
strate the benefit of correctly reasoning about the learner’s
uncertainty under a non-linear function class, while prior
heuristics based on linear function approximation fail to

robustly work as we vary the function class. Overall, our
results open several interesting avenues of investigation for
both theoretical and empirical progress. In theory, it is quite
likely that our sample complexity results have scope for
a significant improvement. A key challenge here is to en-
able better sample reuse, typically done with bootstrapping
techniques for off-policy learning, while preserving the ro-
bustness to model misspecification that our theory exhibits.
Empirically, it would be worthwhile to scale these methods
to complex state and action spaces such as image-based
inputs, and evaluate them on more challenging exploration
tasks with a longer effective horizon.
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