
KD3A: Unsupervised Multi-Source Decentralized Domain Adaptation via
Knowledge Distillation (Appendix)

Hao-zhe Feng 1 Zhaoyang You 1 Minghao Chen 1 Tianye Zhang 1 Minfeng Zhu 1

Fei Wu 1 Chao Wu 1 Wei Chen 1

1. Appendix A
Claim For the extended source domain DK+1

S =

{(XT
i ,pi)}

NT
i=1, training the related source model hK+1

S

with the knowledge distillation loss Lkd(XT
i , q

K+1
S ) =

DKL(pi‖qK+1
S (XT

i )) equals to optimizing the task risk
εDK+1

S
(h) = Pr(X,p)∼DK+1

S
[h(X) 6= argc maxpc].

Proof:

First, we prove that ∀c = 1, . . . , C,

|qK+1
S (XT

i ))c − pi,c| ≤
√

1

2
DKL(pi‖qK+1

S (XT
i )) (1)

The widely used Pinsker’s inequality states that, if P and
Q are two probability distributions on a measurable space
(X,Σ), then

δ(P,Q) ≤
√

1

2
DKL(P‖Q)

where

δ(P,Q) = sup{|P (A)−Q(A)||A ∈ Σ,

Σ is a measurable event.}

In our situation, we choose the event A as the probability of
classifying the input XT

i into class c, and the related proba-
bility under P,Q is pi,c and qK+1

S (XT
i ))c. With Pinsker’s

inequality, it is easy to prove (1). Since the inequality (1)
holds for all class c, minimizing the knowledge distillation
loss will make qK+1

S (XT
i ))→ pi, that is, εDK+1

S
(h)→ 0.

2. Appendix B
Proposition 1 (The generalization bound for knowledge
distillation). Let H be the model space and εDK+1

S
(h) be

the task risk of the new source domain DK+1
S based on
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knowledge distillation. Then for all hT ∈ H, we have:

εDT
(hT ) ≤ εDK+1

S
(hT ) +

1

2
dH∆H(DK+1

S ,DT )

+ min{λ1, sup
h∈H
|εDK+1

S
(h)− εDT

(h)|}
(2)

where λ1 is a constant for the task risk of the optimal model.

Proof:

Following the Theorem 2 in Ben-David et al. (2010), for
the source domain DK+1

S and the target domain DT , for all
hT ∈ H, we have

εDT
(hT ) ≤ εDK+1

S
(hT ) +

1

2
dH∆H(DK+1

S ,DT ) + λ1 (3)

where λ1 is constant of the optimal model on the source
domain and the target domain as λ1 = minh∈H εDK+1

S
(h) +

εDT
(h).

In addition, the following inequality also holds for all hT ∈
H:

εDT
(hT )− εDK+1

S
(hT ) ≤ sup

h∈H
|εDT

(h)− εDK+1
S

(h)| (4)

where suph∈H |εDT
(h)− εDK+1

S
(h)| is the upper bound of

the task risk gap between the target domain DT and the
extended domain DK+1

S . Notice DK+1
S shares the same

input space with DT since they all use {XT
i }

NT
i=1 as inputs.

Therefore, we have

dH∆H(DK+1
S ,DT ) = 0 (5)

Substituting (5) into (4), we have

εDT
(hT ) ≤ εDK+1

S
(hT )+

1

2
dH∆H(DK+1

S ,DT )+

sup
h∈H
|εDT

(h)−εDK+1
S

(h)|
(6)

Combining (3) and (6), we get the Proposition 1.

The learning bound with empirical risk error. Proposi-
tion 1 shows how to relate the extended source domain
DK+1
S and the target domain DT . Since we use the fi-

nite samples to empirically estimate the ε̂DK+1
S

(h) and
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d̂H(DK+1
S ,DT ) at the training time, We now proceed to

give a learning bound for empirical risk minimization using
NT sampled training data.

Following the learning bound Lemma 1,5 in Ben-David
et al. (2010), for all 0 < δ < 1, with probability at least
1− δ, we have:

εDK+1
S

(h) ≤ ε̂DK+1
S

(h) +

√
4

NT
(d log

2eNT
d

+ log
4

δ
)

dH∆H(DK+1
S ,DT ) ≤ d̂H∆H(DK+1

S ,DT )

+ 4

√
d log(2NT + log( 2

δ )

NT
(7)

where d is the VC-dimension of model spaceH.

Combining (2) and (7), we get the generalization bound for
knowledge distillation with the empirical learning error as
follows:

εDT
(hT ) ≤ ε̂DK+1

S
(h) +

1

2
d̂H∆H(DK+1

S ,DT ) + C1 (8)

where C1 is a constant as

C1 = min{

λ1 +

√
4

NT
(d log

2eNT
d

+ log
4

δ
) + 4

√
d log(2NT + log( 2

δ )

NT
,

sup
h∈H
|εDT

(h)− ε̂DK+1
S

(h)|+
√

4

NT
(d log

2eNT
d

+ log
4

δ
).

}
(9)

3. Appendix C
Proposition 2 The KD3A bound is a tighter bound than
the original bound, if the task risk gap between the knowl-
edge distillation domain DK+1

S and the target domain DT
is smaller than the following upper-bound for all source
domain k ∈ {1, · · · ,K}, that is, εDK+1

S
(h) should satisfy:

sup
h∈H
|εDK+1

S
(h)− εDT

(h)| ≤ inf
h∈H
|εDK+1

S
(h)− εDk

S
(h)|

+
1

2
dH∆H(DkS ,DT ) + λkS

(10)

Proof:

Following the Theorem 2 in Ben-David et al. (2010), for
each source domain DkS and for all hT ∈ H, we have

εDT
(hT ) ≤ εDk

S
(hT ) +

1

2
dH∆H(DkS ,DT ) + λkS (11)

where λkS = minh∈H εDk
S
(h) + εDT

(h) is the optimal task
risk of DkS and DT .

The original bound states that for all hT ∈ H, we have

εDT
(h) ≤

K∑
k=1

αk

(
εDk

S
(h) +

1

2
dH∆H(DkS ,DT )

)
+ λ0

(12)
where λ0 = minh∈H

∑K
k=1 αkεDk

S
(h) + εDT

(h) and we
have the following relations between λ0 and λkS :

λ0 = min
h∈H

K∑
k=1

αkεDk
S
(h) + εDT

(h)

≥
K∑
k=1

αk(min
h∈H

εDk
S
(h) + εDT

(h))

=

K∑
k=1

αkλ
k
S

(13)

With (11− 13), the original bound (12) can be considered
as the weighted combination of the source domains. In addi-
tion, the KD3A bound is also the combination of the original
bound (12) and the knowledge distillation bound (2). Then
we get that the KD3A bound is a tighter bound than the
original bound if the knowledge distillation bound (2) is
tighter than the single source bound (11) for each source
domain DkS , that is, for all source domain k ∈ {1, · · · ,K}
and all hT ∈ H, the knowledge distillation bound should
satisfy:

εDK+1
S

(hT ) +
1

2
dH∆H(DK+1

S ,DT )

+ min{λ1, sup
h∈H
|εDK+1

S
(h)− εDT

(h)|}

≤ εDk
S
(hT ) +

1

2
dH∆H(DkS ,DT ) + λkS

(14)

Since dH∆H(DK+1
S ,DT ) = 0 and λ1 is a constant, the task

risk gap suph∈H |εDK+1
S

(h) − εDT
(h)| should satisfy the

following condition for all hT ∈ H, that is:

sup
h∈H
|εDK+1

S
(h)− εDT

(h)| ≤ εDk
S
(hT )− εDK+1

S
(hT )

+
1

2
dH∆H(DkS ,DT ) + λkS

(15)

Since condition (15) holds for all hT ∈ H, we have the
tighter bound condition as

sup
h∈H
|εDK+1

S
(h)− εDT

(h)| ≤ inf
h∈H
|εDK+1

S
(h)− εDk

S
(h)|

+
1

2
dH∆H(DkS ,DT ) + λkS

(16)
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Layer Configuration
1 2D Convolution with kernel size 5*5 and output feature channels 64
2 BatchNorm, ReLU, MaxPool
3 2D Convolution with kernel size 5*5 and output feature channels 64
4 BatchNorm, ReLU, MaxPool
5 2D Convolution with kernel size 5*5 and output feature channels 128
6 BatchNorm, ReLU
7 Fully connection layer with output channels 10
8 Softmax

Table 1. The 3-layers CNN backbone for Digit-5.

Parameters Benchmark Datasets
Amazon Review Digit-5 Office-Caltech10 DomainNet

Data Augmentation None Mixup (α = 0.2)
Backbone 3-layers MLP 3-layers CNN Resnet101 (pretrained = True)
Optimizer SGD with momentum = 0.9

Learning rate schedule From 0.05 to 0.001 with cosine decay From 0.005 to 0.0001 with cosine decay
Batchsize 50 100 32 50

Total epochs 40
Communication rounds r=1

Confidence gate From 0.9 to 0.95 From 0.8 to 0.95

Table 2. Implementation details of our KD3A on four benchmark datasets: Amazon Revoew, Digit-5, Office-Caltech10 and DomainNet.

4. Appendix D: Representation Invariant
Bounds For KD3A.

One reviewer argues that the generalization bound in propo-
sition 1 is not rigorous since the optimization process
may change the value of λ. The optimal joint risk λ
between source and target domain is defined as λ :=
minh∈H εS(h) + εT (h). λ is based on the hypothesis space
H and is usually intractable to compute. Considering the
fixed model backbones are used in in practice (where the
hypothesis spaceH is implicitly determined), we follow pre-
vious works (i.e. Theorem 1 in Long et al. (2015) and The-
orem 2 in Zhao et al. (2018)) and consider λ as a constant.
However, we agree with the fact proposed in Zhao et al.
(2019) (Section 4.1) that optimizing theH−divergence can
learn domain invariant representations, but can also change
the representation space. This may change the value of λ.
As such, we take the suggestions of the reviewer and replace
the original bound with the new bound in Zhao et al. (2019),
which utilizes the H̃−divergence and the constant term C.
With this upper bound, we propose a new version for our
Proposition 1, Theorem 2 and Proposition 2 as follows:

Proposition 1. DenotingC1 := min{EDK+1
S

[|fK+1
S −fT |],

EDT
[|fK+1
S − fT |]}, we have

εDT
(hT ) ≤ εDK+1

S
(hT ) + dH̃(DK+1

S ,DT )

+ min{C1, sup
h∈H
|εDK+1

S
(h)− εDT

(h)|}

Clipart Infograph Painting Avg
KD3A† 69.7±0.67 21.2±0.35 58.8±0.66 48.8
KD3A 72.5±0.62 23.4±0.43 60.9±0.71 51.1

Quickdraw Real Sketch
KD3A† 15.1±0.21 70.4±0.54 57.9±0.41 48.8
KD3A 16.4±0.28 72.7±0.55 60.6±0.32 51.1

Table 3. The ablation study for data-augmentation strategies on
DomainNet.†: Methods trained without data-augmentation.

Theorem 2. Denoting C2 :=
∑K+1
k=1 αCFk min{EDk

S
[|fkS −

fT |], EDT
[|fkS − fT |]}, we have

εDT
(hT ) ≤

K+1∑
k=1

αCF
k

(
εDk

S
(hT ) + dH̃(DkS ,DT )

)
+ C2

Proposition 2. Denoting CkS := min{EDk
S
[|fkS − fT |],

EDT
[|fkS − fT |]}, ∀k, the tighter condition should satisfy

sup
h∈H
|εDK+1

S
(h)− εDT

(h)| ≤ inf
h∈H
|εDK+1

S
(h)− εDk

S
(h)|

+dH̃(DkS ,DT ) + CkS

The proof in Appendix A-C can directly apply to the new
bounds. Moreover, KD3A also works on the above new
bounds since the H̃−divergence can be optimized by mini-
mizing the Batchnorm-MMD distance.
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Methods mt mm sv syn usps Avg

Oracle 99.5±0.08 95.4±0.15 92.3±0.14 98.7±0.04 99.2±0.09 97.0

Source-only 92.3±0.91 63.7±0.83 71.5±0.75 83.4±0.79 90.71±0.54 80.3

MDAN 97.2±0.98 75.7±0.83 82.2±0.82 85.2±0.58 93.3±0.48 86.7

M3SDA 98.4±0.68 72.8±1.13 81.3±0.86 89.6±0.56 96.2±0.81 87.7

CMSS 99.0±0.08 75.3±0.57 88.4±0.54 93.7±0.21 97.7±0.13 90.8

DSBN∗ 97.2 71.6 77.9 88.7 96.1 86.3

FADA 91.4±0.7 62.5±0.7 50.5±0.3 71.8±0.5 91.7±1 73.6

FADA∗ 92.5 64.5 72.1 82.8 91.7 80.8

SHOT 98.2±0.37 80.2±0.41 84.5±0.32 91.1±0.23 97.1±0.28 90.2

KD3A† 99.1±0.15 86.9±0.11 82.2±0.26 89.2±0.19 98.4±0.11 91.2

KD3A 99.2±0.12 87.3±0.23 85.6±0.17 89.4±0.28 98.5±0.25 92.0

Table 4. UMDA accuracy (%) on the Digit-5. *: The best results recorded in our re-implementation. †: Methods trained without
data-augmentation. Our model KD3A achieves 92.0% accuracy and outperforms all other baselines.

Methods Books DVDs Elec. Kitchen Avg.
Source-only 74.4 79.2 73.5 71.4 74.6

MDAN 78.6 80.7 85.4 86.3 82.8
FADA 78.1 82.7 77.4 77.5 78.9
KD3A 79.0 80.6 85.6 86.9 83.1

Table 5. The UMDA performance on Amazon Review dataset.

5. Appendix E: The Implementation of
BatchNorm MMD

We have introduced the BatchNorm MMD with the follow-
ing loss:

L∑
l=1

K+1∑
k=1

αk
(
‖µ(πTl )− E(πkl )‖22 + ‖µ[πTl ]2 − E[πkl ]2‖22

)
(17)

However, directly optimizing the loss (17) requires to
traverse all Batchnorm layers, which is time-consuming.
Inspired by the suggestions of reviewers, we propose a
computation-efficient method containing two steps. First,
we directly derive the global optimal solution of µ(πTl ) for
loss (17), that is, ∀l, 1 ≤ l ≤ L, the optimal model hTop on
target domain DT should satisfy

µop(πTl ) =

K+1∑
k=1

αkE(πkl )

µop[πTl ]2 =

K+1∑
k=1

αkE[πkl ]2

(18)

Then we calculate the optimal solution from (18) as
{(µop(πTl ), µop[πTl ]2)}Ll=1, directly substitute this solution

into every Batchnorm layer of hT and use it as global model.
Although this computation-efficient implementation may
seem heuristic, we find it practically work and can achieve
the same performance as the original maximization step.

6. Appendix F
6.1. Implementation Details.

We perform UMDA on those datasets with multiple domains.
During experiments, we choose one domain as the target
domain, and use the remained domains as source domains.
Finally, we report the average UMDA results among all
domains. The code, with which the most important results
can be reproduced, is available at Github1. In this section,
we discuss the implementation details. Following previous
settings (Peng et al., 2019), we use a 3-layer MLP as back-
bone for Amazon Review, a 3-layer CNN for Digit-5 and the
ResNet101 pre-trained on ImageNet for Office-Caltech10
and DomainNet. The details of hyper-parameters are pro-
vided in Table 2 and the backbones and training epochs
are set to same in all method comparison experiments. In
training process, We use the SGD as optimizer and take the
cosine schedule to decay learning rate from high (0.05 for
Amazon Review and Digit5, and 0.005 for Office-Caltech10
and DomainNet) to zero.

Data augmentations. Data augmentations are important
in deep network training process. Since different datasets
require different augmentation strategies (e.g. rotate, scale,
and crop), which introduces extra hyper-parameters, we
use mixup (Zhang et al., 2017) as a unified augmentation

1github.com/FengHZ/KD3A
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Methods A C D W Avg

Oracle 99.7 98.4 99.8 99.7 99.4

Source-only 86.1 87.8 98.3 99.0 92.8

MDAN 98.9 98.6 91.8 95.4 96.1

M3SDA 94.5 92.2 99.2 99.5 96.4

CMSS 96.0 93.7 99.3 99.6 97.2

DSBN∗ 93.2 91.6 98.9 99.3 95.8

FADA 84.2±0.5 88.7±0.5 87.1±0.6 88.1±0.4 87.1

SHOT 96.4 96.2 98.5 99.7 97.7

KD3A† 96.0±0.07 95.2±0.08 97.9±0.11 99.6±0.03 97.2

KD3A 97.4±0.08 96.4±0.11 98.4±0.08 99.7±0.02 97.9

Table 6. UMDA accuracy (%) on the Office-Caltech10. *: The best results recorded in our re-implementation. †: Methods trained without
data-augmentation.

strategy and simply set the mix-parameter α = 0.2 in all ex-
periments. For fair comparison, we report the results on both
conditions, i.e. with/without data-augmentations. The re-
sults are shown in Table 3,4 and 6. The ablation study in data
augmentations indicates that mixup strategy can unify differ-
ent augmentation strategies on different doman adaptation
datasets with only one hyper-parameter. Moreover, KD3A
can achieve good results even without data-augmentation.

6.2. Results on Amazon Review, Digit-5 And
Office-caltech10.

In this section, we report the experiment results on Amazon
Review, Digit-5 and Office-Caltech10. Amazon Review
is a sentimental analysis dataset including four domains:
Books, DVDs, Electronics and Kitchen Appliances. Digit-
5 is a digit classification dataset including MNIST (mt),
MNISTM(mm), SVHN (sv), Synthetic (syn), and USPS
(up). Office-Caltech10 contains 10 object categories from
four domains, i.e. Amazon (A), Caltech (C), DSLR (D). and
Webcam (W). Note that results are directly cited from
published papers if we follow the same setting. The re-
sults on Table 5, 4 and 6 show that our KD3A outperforms
other UMDA methods and advanced decentralized UMDA
methods. Moreover, our KD3A provides better consensus
knowledge on the hard domains such as the MNISTM do-
main on the Digit-5, which outperforms other methods by a
large margin.
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