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A. Dimension drop in GANs

Here we validate Lemma 1 and Lemma 2 empirically.
Specifically, we want to make the following two questions
clear.

1. Does the Jacobian rank decrease as the network gets
deeper?

2. Does the intrinsic dimension of feature space decrease
as the network gets deeper?

However, those two things are not easy to validate. Estimat-
ing the Jacobian rank of complicated function couplings and
estimating the dimension of complicated data manifolds are
open questions in data science. For that reason, we are only
able to conduct the estimation to those simple structures,
such as linear functions and manifolds produced by them.

In what follows, we conduct the estimation to the first eight
dense layers of StyleGAN2 on FFHQ. Those layers have
sufficiently simple structures for PCA, but also play vital
role in the network as discussed in (Karras et al., 2019b;a).

Each of the eight dense layers, denoted as Dense0,
Densel,. .. ,Dense7, is composed of a linear transformation
l;(x) = Wiz + b; and a LeakyRelu activation

T z >0
act(z) = { 0.2x x<0. 1

Thus the function coupling that maps input to the output of
the k-th layer is

Densey(x) = act(l) o - -+ o act(lp). (S2)

We conduct PCA to the Jacobian of each dense layer. The
results are reported in Fig. S1. We compute the number
of components that have strength larger than 1% of that of
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Table S1. Estimated rank of Jacobian.

Layer  Rank
Dense0 445
Densel 351
Dense2 276
Dense3 22
Dense4 174
Dense5 138
Dense6 110

Dense7 82

Table S2. Estimated rank of Weight matrices.

Layer Rank
Wo 445
Wi 447
Wy 449
W3 448
Wy 447
Ws 446
We 446
Wy 445

the maximum component. The results are reported in Tab.
S1. We can find that as layer gets deeper, the component
strengths gather towards the left components, which means
the number of valid components gets smaller and the rank
of corresponding Jacobian gets smaller. This means the rank
drop indicated by Lemma 2 does happen in practice.

In fact, we find that each weight matrix W; has a low
rank structure. We conduct PCA to the weight matrix
Wo, ..., Wr. The results are reported in Fig. S2. We com-
pute the number of components that have strength larger
than 1% of that of the maximum component. The results are
reported in Tab. S2. We can find that the valid components
of each weight matrix are around 450, which means each
of the weight matrix will drop around 60 dimensions of the
inputs.

We then look into the intrinsic dimension of the feature
spaces produced by those dense layers. For each dense
layer, we sample 51200 random inputs z from A/(0, 1) and
feed them to the layer to produce 51200 points in the cor-
responding feature space. We then conduct PCA to those
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Table S3. Estimated intrinsic dimension of intermediate feature
space.

Layer Intrinsic dimension

Dense0 512
Densel 508
Dense2 422
Dense3 289
Dense4 207
Dense5 148
Dense6 105
Dense7 91

points. The results are reported in Fig. S3. We compute the
number of components that have strength larger than 1% of
that of the maximum component. The results are reported
in Tab. S3. We can find that as layer gets deeper, the com-
ponent strengths gather towards the left components, which
means the number of valid components gets smaller and the
intrinsic dimension of the corresponding feature space gets
smaller.

In conclusion, we validate that the dimension drop does
happen in practice, which supports the condition to induce
the adversarial dimension trap in practice.

B. Proof to theorems
B.1. Lemma 1

Proof. Lemma 1 is a natural extension of Sard’s Theorem
and the rank theorem on manifolds (Petersen et al., 20006).

Lemma C (Sard’s Theorem). Let f : N' — M be smooth
functions between smooth manifolds N' and M. Define the
set of critical points of f as

Cr={zeN :rank(J.f) < dim(N)}. (S3)

Then f(Cy) has zero measure in M.

Lemma D (Rank Theorem). Suppose that M and N are
smooth manifolds of dimensions m and n, and f : N' — M
with f(N) = M is a smooth mapping with constant rank r.
For each z € N, there exists a smooth char (U, ¢) around z
and a smooth chart (V, 1)) around f(z) such that f(U) C V,
and

Yo fop Ha,... yar,0,...,0).

7an) = (ala .. (S4)

Let r = max,en J.f, and R = {z € N : rank.f =
r}. Then Lemma D says that f(R) and N have intrinsic
dimension r, and A/ \ R belongs to the set of critical points.
By Lemma B, f(N \ R) is a zero measure set. Thus for
almost every point € M, its preimage has rank 7. O

D.1. Lemma 2

By the chain rule of differential (Rudin et al., 1964), we
have

rank(J(f' o f2)) = rank(Jf1Jf?). (S5)
Recall that for any two matrices A and B
rank(AB) < min{rankA, rankB}. (S6)

We then have Lemma 2.

D.2. Theorem 1

Proof. Denote the dimensions of G(Z) and & as d, and
d,, respectively. There are two possible cases for G: d is
lower than d, or d, is higher than or equal to d.

For the first case, a direct consequence is that, for almost
all points in X, there are no pre-images under GG. This
means that for an arbitrary point z € X, the possibility of
G lz)=0isl,as{x € X : G~ L(x) # 0} C G(Z)N
X, which is a zero measure set in X. This also implies
that the generator is unable to perform inversion. Another
consequence is that, the generated distribution P, can never
get aligned with real data distribution P,.. Namely, the
distance between P, and P, cannot be zero for arbitrary
distance metrics. For the KL divergence, the distance will
even approach infinity.

Specifically, let p, and p, be the densities of P, and P,
respectively. For the Jensen-Shannon divergence, we have

1 %,
DJS(PT;Pg):i/lOg <p ip >pr
r g

1 / 2p
+= [ log < g > dp,.
2 Dr + Dg ¢

As the support of p, is a zero measure set of the support of
pr, We have

20y 2py
/log( P )dP,:/ log( d )dPT
Dr + Py Pg=0 Pr + Py
2,
:/ 1og< L )dPTzlogQ/ dP, = log2,
pg=0 Pr pg=0

(S8)
/10g< 2pg >dPg > 0.
Pr + Pg

Thus Dyg > %2

(87

and

(89)

For the second case, d; > d; > dz. We simply show that
a Lipschitz-continuous function cannot map zero measure
set into positive measure set. Specifically, the image of low
dimensional space of a Lipschitz-continuous function has



Understanding Noise Injection in GANs

measure zero. Thus if d; > d,, G cannot be Lipschitz. As
Lipschitz constant is the supremum of gradient norm, we
then prove our theorem.

Now we prove our claim.

Suppose that f : R® — R™ n < m, and f is Lipschitz
with Lipschitz constant L. We show that f (R™) has measure
zero in R™. As R is a zero measure subset of R, by the
Kirszbraun theorem (Deimling, 2010), f has an extension to
a Lipschitz function of the same Lipschitz constant on R™.
For convenience, we still denote the extension as f. Then
the problem reduces to proving that f maps zero measure set
to zero measure set. For every ¢ > 0, we can find countable
union of balls { By}, of radius 74 such that R™ C UgBj,
and ), m(Bj) < ein R™, where m(-) is the Lebesgue
measure in R™. But f(By) is contained in a ball with radius
Lry,. Thus we have m(f(R™)) < L™ %", m(By) < L™,
which means that it is a zero measure set in R™. For the
mapping between manifolds, using the chart system can
turn it into the case we analyze above, which completes our
proof. O

We want to remind the readers that, even if the generator
suits one of the cases in Theorem 1, the other case can
still occur. For example, G could succeed in capturing the
distribution of certain parts of the real data, while it may
fail in the other parts. Then for the pre-image of those
successfully captured data, the generator will not have finite
Lipschitz constant.

D.3. Theorems 2 & 3

Proof. Theorems 2 & 3 are classical conclusions in Rie-
mannian manifold. We refer readers to section 5.5 of the
book written by Petersen et al. (2006) for detailed proofs
and illustration. O

D.4. Theorem 4

Proof. Theorem 4 is a natural extension of the Heine-Borel
theorem (Rudin et al., 1964).

Lemma E (Heine-Borel Theorem). For any compact set
M, if {U;}ier is an open cover of M, (that is, for each
i € I, U; is an open set, and M C U;cU;), then there
exist finite many elements Uy, , ..., U;, of {U; }ic1, such that
M C Uigj<iUs;.

Let the skeleton set be all points of M. Then the represen-
tative pairs in Theorems 2 & 3 define an open cover of M.
By Lemma E, we can pick finite many points of skeleton
set fu1, ..., g, such that their representative pairs also define
an open cover of M.

For each local neighborhood of representative pairs, it is

easy to see that the error is o(r) by Taylor expansion of
Theorem 3.

O
E.1. Theorem 5
Proof.
Ellg(@) ~ 9@la] < llu(@) = o)l
+Bllot@e ol oo

< Lullz = yll2 + 2C o]l
< Lyllz —yll2 + o(1),

where C'is a constant related to the dimension of the image
space of o and L,, is Lipschitz constant of p. O

F. Why Gaussian distribution?

We first introduce the notion of fuzzy equivalence relations
(Zhang & Zhang, 2005; Murali, 1989).

Definition 1. A t-norm is a function T : [0,1] x [0,1] —
[0, 1] which satisfies the following properties:

1. Commutativity: T(a,b) = T(b,a).

2. Monotonicity: T(a,b) < T(c,d), ifa < candb < d.
3. Associativity: T(a,T(b,c)) = T(T(a,b),c).

4. The number I acts as identity element: T(a,1) = a.

Definition 2. Given a t-norm T, a T-equivalence relation
on a set X is a fuzzy relation E on X and satisfies the
following conditions:

1. E(z,x) = 1,Vz € X (Reflexivity).
2. E(x,y) = E(y,z),Yz,y € X (Symmetry).

3. T(E(z,y),E(y,2)) < E(z,z) Vz,y,2 € X (T-
transitivity).

Then it is easy to check that T'(x,y) = xy is a t-norm,
and F(z,y) = e~ %*¥) is a T-equivalence for any distance
metric d on X, as

(S11)

T(E(x,y), E(y, Z)) = e—(d(x,y)+d(y,z))
< (S12)

e~ Hw2) — E(x, z).

Considering that we want to contain the fuzzy semantics of
real world data in our local geometries of feature manifolds,
a natural solution will be that we sample points from the
local neighborhood of 1 with different densities on behalf
of different strengths of semantic relations with . Points
with stronger semantic relations will have larger densities
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to be sampled. A good framework to model this process is
the fuzzy equivalence relations we mention above, where
the degrees of membership E are used as the sampling
density. However, our expansion of the exponential map
Exp,, carries an error term of o(||v||2). We certainly do not
want the local error to be out of control, and we also wish
to constrain the sampling locally. Thus we accelerate the
decrease of density when points depart from the center p,
and constrain the integral of E' to be identity, which turns £
to the density of standard Gaussian.

G. Datasets

FFHQ Flickr-Faces-HQ (FFHQ) (Karras et al., 2019a)
is a high-quality image dataset of human faces, originally
created as a benchmark data for generative adversarial net-
works (GANs). The dataset consists of 70,000 high-quality
PNG images and contains considerable variations in terms
of age, pose, expression, hair style, ethnicity and image
backgrounds. It also covers diverse accessories such as
eyeglasses, sunglasses, hats, etc.

LSUN-Church and Cat-Selected LSUN-Church is the
church outdoor category of LSUN dataset (Yu et al., 2015),
which consists of 126 thousand church images of various
styles. Cat-Selected contains 100 thousand cat images se-
lected by ranking algorithm (Zhou et al., 2004) from the
LSUN cat category. The plausibility of using PageRank to
rank data was analyzed in (Zhou et al., 2004). We also used
the algorithm presented in (Zhao & Tang, 2009) to construct
the graph from the cat data.

CIFAR-10 The CIFAR-10 dataset (Krizhevsky et al.,
2009) consists of 60,000 images of size 32x32. There are
all 10 classes and 6000 images per class. There are 50,000
training images and 10,000 test images.

H. Implementation details
H.1. Models

We illustrate the generator architectures of StyleGAN2
based methods in Figure S4. For all those models, the
discriminators share the same architecture as the original
StyleGAN?2. The generator architecture of DCGAN based
methods are illustrated in Figure S5. For all those models,
the discriminators share the same architecture as the original
DCGAN.

I. Experiment environment

All experiments are carried out by TensorFlow 1.14 and
Python 3.6 with CUDA Version 10.2 and NVIDIA-SMI
440.64.00. We basically build our code upon the framework

of NVIDIA official StyleGAN2 code, which is available at
https://github.com/NVlabs/stylegan2. We
use a variety of servers to run the experiments as reported
in Table S4.

J. Image encoding and GAN inversion

From a mathematical perspective, a well behaved generator
should be easily invertible. In the last section, we have
shown that our method is well conditioned, which implies
that it could be easily invertible. We adopt the methods
in Image2StyleGAN (Abdal et al., 2019) to perform GAN
inversion and compare the mean square error and perceptual
loss on a manually collected dataset of 20 images. The
source code of inversion is from Luxemburg (2020). The
images are shown in Figure S6 and the quantitative results
are provided in Table S5. For our RNI methods, we further
optimize the o parameter in Eq. 7 in section 4.3, which fine-
tunes the local geometries of the network to suit the new
images that might not be settled in the model. Considering
is 1], CRIEE =l .*),;(J‘F.X(*l)ia*)t to replace
the original o and optimize ¢. The initial value of ¢ is set
to 1.0 and o is constant with the same value as « in the
converged RNI models.

that o is limited to [0, 1], we use —

During the experiments, we find that the StyleGAN2 model
is prone to work well for full-face, non-blocking human face
images. For this type of images, we observe comparable
performance for all the GAN architectures. We think that
this is because those images are closed to the ‘mean’ face
of FFHQ dataset (Karras et al., 2019a), thus easy to learn
for the StyleGAN based models. For faces of large pose
or partially blocked ones, the capacity of different models
differs significantly. Noise injection methods outperform
the bald StyleGAN2 by a large margin, and our method
achieves the best performance.

K. Ablation study of RNI

In Tab. S6, we perform the ablation study of the proposed
RNI method on the FFHQ dataset. We test 5 different
choices of RNI implementation and compare their FID and
PPL scores after convergence.

1. No normalization: in this setting we remove the nor-
malization of fi in Eq. (14), and use the unnormalized
[ to replace s in the following equations. The network
comes to a minimum FID of 23.77 after training on
1323 thousand images, and then quickly falls into mode
collapse after that.

2. No stabilization: in this setting we remove the stabi-
lization technique in Eq. (16). The network comes to a
minimum FID of 50.27 after training on 963 thousand
images, and then quickly falls to mode collapse after
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Table S4. GPU environments for all experiments in this work.

Experiment Environment
StyleGAN?2 based GAN model training 8 NVIDIA Tesla V100-SXM2-16GB GPUs (DGX-1 station)
DCGAN based GAN model training 4 TITAN Xp GPUs

Metrics measurement
GAN inversion

8 GeForce GTX 1080Ti GPUs
1 TITAN Xp GPU

Table S5. Image inversion metrics for different StyleGAN2 based models. The perceptual loss is the mean square distance of VGG16
features between the original and projected images as in Abdal et al. (2019)

GAN arch Overall Hard Cases

MSE () Perceptual Loss () MSE (J) Perceptual Loss ({)
Bald StyleGAN2 1.34 542 2.86 11.34
StyleGAN2 + ENI 1.24 4.86 2.58 9.82
StyleGAN2-NoPathReg + RNI 1.24 5.11 2.70 10.49
StyleGAN2 + RNI 1.13 4.52 2.23 8.47

that.

3. No decomposition: in this setting we remove the de-
composition in Eq. (15). The network successfully
converges, but admits a large PPL score.

4. CNN: in this setting we use a convolutional neural net-
work to replace the procedure that we get ¢ in section
4.3. Namely, we take 0 = CNN(u). The network
successfully converges, but admits a very large FID
score.

The zero PPL scores in ‘No normalization’ and ‘No stabiliza-
tion’ suggest that the generator output is invariant to small
perturbations, which means mode collapse. We can find that
the stabilization and normalization in the RNI implemen-
tation in section 4.3 is necessary for the network to avoid
numerical instability and mode collapse. The implementa-
tion of RNI method reaches the best performance in PPL
score and comparable performance against the ‘no decom-
position’ method in FID score. As analyzed in StyleGAN
(Karras et al., 2019a) and StyleGAN?2 (Karras et al., 2019b),
for high fidelity images, PPL is more convincing than the
FID score in measuring the synthesis quality. Therefore, the
RNI implementation is the best among these methods.
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Figure S1. Strengths of the principal components of the Jacobian matrix of each dense layer. The sum of strengths of all components is
normalized to 1. We can find that as layer gets deeper, the component strengths gather towards the left components, which means the
number of valid components gets smaller and the rank of corresponding Jacobian gets smaller.
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Figure S2. Strengths of the principal components of the weight matrices. The sum of strengths of all components is normalized to 1. We
can find that the valid components of each weight matrix is around 450, which means each of the weight matrices will drop around 60
dimensions of the inputs
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Figure S3. Strengths of the principal components of the output space of each dense layer. The sum of strengths of all components is
normalized to 1. We can find that as layer gets deeper, the component strengths gather towards the left components, which means the
number of valid components gets smaller and the intrinsic dimension of corresponding feature space gets smaller.
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(a) Bald StyleGAN2. (b) StyleGAN2.
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Figure S4. Generator architectures of StyleGAN?2 based models. (a) The generator of bald StyleGAN2. (b) The generator of StyleGAN2.
(c) The generator of StyleGAN2 + RNI and StyleGAN2-NoPathReg + RNI. ‘Mod’ and ‘Demod’ denote the weight demodulation method
proposed in section 2.2 of StyleGAN2 (Karras et al., 2019b). A denotes a learned affine transformation from the intermediate latent space

wW.
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Figure S5. Generator architecture of DCGAN based models. (a) The generator of DCGAN. (b) The generator of DCGAN + Additive
Noise. (c) The generator of DCGAN + RNI.
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Figure S6. Manually collected 20 images for GAN inversion.



