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Abstract
Noise injection is an effective way of circumvent-
ing overfitting and enhancing generalization in
machine learning, the rationale of which has been
validated in deep learning as well. Recently, noise
injection exhibits surprising effectiveness when
generating high-fidelity images in Generative Ad-
versarial Networks (GANs) (e.g. StyleGAN). De-
spite its successful applications in GANs, the
mechanism of its validity is still unclear. In this
paper, we propose a geometric framework to the-
oretically analyze the role of noise injection in
GANs. First, we point out the existence of the ad-
versarial dimension trap inherent in GANs, which
leads to the difficulty of learning a proper gen-
erator. Second, we successfully model the noise
injection framework with exponential maps based
on Riemannian geometry. Guided by our theories,
we propose a general geometric realization for
noise injection. Under our novel framework, the
simple noise injection used in StyleGAN reduces
to the Euclidean case. The goal of our work is to
make theoretical steps towards understanding the
underlying mechanism of state-of-the-art GAN al-
gorithms. Experiments on image generation and
GAN inversion validate our theory in practice.

1. Introduction
Noise injection is usually applied as regularization to cope
with overfitting or facilitate generalization in neural net-
works (Bishop, 1995; An, 1996). The effectiveness of this
simple technique has also been proved in various tasks in
deep learning, such as learning deep architectures (Hin-
ton et al., 2012; Srivastava et al., 2014; Noh et al., 2017),
defending adversarial attacks (He et al., 2019), facilitat-
ing stability of differentiable architecture search with rein-
forcement learning (Liu et al., 2019; Chu et al., 2020), and
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quantizing neural networks (Baskin et al., 2018). In recent
years, noise injection1 has attracted more and more atten-
tion in the community of Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014a). Extensive research
shows that it helps stabilize the training procedure (Arjovsky
& Bottou, 2017; Jenni & Favaro, 2019) and generate images
of high fidelity (Karras et al., 2019a;b; Brock et al., 2018).

Particularly, noise injection in StyleGAN (Karras et al.,
2019a;b) has shown the amazing capability of helping gen-
erate sharp details in images (see Fig. 1 for illustration),
shedding new light on obtaining high-quality photo-realistic
results using GANs. In other domains like variants of varia-
tional auto-encoder (Vahdat & Kautz, 2020; Child, 2020),
noise injection technique also contributes to the appealing
synthesis quality. Therefore, studying the underlying princi-
ple of noise injection in GANs is an important theoretical
work of understanding GAN algorithms.

In this paper, we propose a theoretical framework to explain
and improve the effectiveness of noise injection in GANs.
Our contributions are listed as follows:

• we uncover an intrinsic defect of GAN models that the
expressive power of generator is limited by the rank
of its Jacobian matrix, and the rank of Jacobian matrix
is monotonically (but not strictly) decreasing as the
network gets deeper.

• We prove that noise injection is an effective weapon to
enhance the expressive power of generators for GANs.

• Based on our theory, we propose a generalized form via
exponential maps for noise injection in GANs, which
can overcome the adversarial dimension trap. Experi-
ments on the state-of-the-art GAN, StyleGAN2 (Karras
et al., 2019b), validate the effectiveness of our geomet-
ric model.

To the best of our knowledge, this is the first work that
theoretically draws the geometric picture of noise injection
in GANs, and uncover the intrinsic defect of the expressive
power of generators.

1It suffices to note that noise injection here is totally different
from adversarial attacks raised in (Goodfellow et al., 2014b).
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Figure 1. Noise injection significantly improves the detail quality of generated images. From left to right, we inject extra noise to the
generator layer by layer. We can see that hair quality is clearly improved. By varying the injected noise and visualizing the standard
deviation (std) over 100 different seeds, we can find that the detailed information such as hair, parts of the background, and silhouettes are
most involved, while the global information such as identity and pose is less affected.

2. Related Work
The main drawbacks of GANs are unstable training and
mode collapse. Arjovsky et al. (Arjovsky & Bottou, 2017)
theoretically analyze that noise injection to the image space
can help smooth the distribution so as to stabilize the train-
ing. The authors of distribution-filtering GAN (Jenni &
Favaro, 2019) then put this idea into practice and prove that
this technique will not influence the global optimality of
the real data distribution. However, as the authors in (Ar-
jovsky & Bottou, 2017) pointed out, this method depends
on the amount of noise, and does not support the intrinsic
geometry of synthesis and data distributions. Different from
these works, our method of noise injection follows that of
StyleGAN (Karras et al., 2019a) and is performed on fea-
tures of different layers. Besides, we provide a theoretical
insight of explaining the connection between injected noise
and features.

BigGAN (Brock et al., 2018) splits input latent vectors into
one chunk per layer and projects each chunk to the gains
and biases of batch normalization in each layer. They claim
that this design allows direct influence on features at differ-
ent resolutions and levels of hierarchy. StyleGAN (Karras
et al., 2019a) and StyleGAN2 (Karras et al., 2019b) adopt a
slightly different view, where noise injection is introduced
to enhance randomness for multi-scale stochastic variations.
Different from the settings in BigGAN, they inject extra
noise independent of latent inputs into different layers of
the network without projection. Our theoretical analysis is
mainly motivated by the success of noise injection used in
StyleGAN (Karras et al., 2019a). Our proposed framework
reveals that noise injection in StyleGAN is a kind of repa-
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Figure 2. Illustration of dimensions in the generator of GAN. We
assume that the data X lie in an underlying low-dimensional mani-
foldMdx embedded in the high-dimensional Euclidean space Rm,
where dx is the intrinsic dimension ofM and m is the ambient
dimension. Usually, we have dx � m and n� m.

rameterization in Euclidean spaces, and we extend it into
generic manifolds (section 4.3).

3. Inherent Drawbacks of GANs
We will analyze the inherent drawbacks of traditional GANs
in this section. Our arguments can be divided into three
steps. We first prove that the rank of Jacobian matrix lim-
its the intrinsic dimension of the learned manifold of the
generator. Then we show that the rank of Jacobian matrix
monotonically decreases as the network gets deeper. At last
we prove that the expressive power of learned distribution
by GAN is limited by its intrinsic dimension.

Prior to our arguments, we briefly introduce the geometric
perspective of generative models as follows. Given a prior z,
the generator G of GAN generates a fake sample x̃ = G(z).
Here, the fake sample is of the same ambient dimension
with the real sample set X in the Euclidean space Rm. The
input prior z is a n-dimensional vector, which is usually
sampled from Gaussian distributions of Rn. Following the
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convention of manifold learning (Tenenbaum et al., 2000;
Roweis & Saul, 2000), we assume that the real data X lie in
an underlying low-dimensional manifoldMdx embedded
in the high-dimensional Rm, where dx is called the intrinsic
dimension ofM and m is the ambient dimension using the
geometric language. Usually, we have dx � m and n� m,
e.g. n = 512 and m = 1024× 1024× 3 in StyleGAN. The
generation process and related dimensions are illustrated in
Figure 2. The intrinsic dimension dx is actually ambiguous
in most cases, thus making the generation problem com-
plicated. We refer to the dimension of the data manifold
as the intrinsic dimension dx except noted otherwise. The
purpose of GAN is then to approximate this data manifold
Mdx with generator-induced manifold Gdg = G(Z).

3.1. Jacobian Limits the Intrinsic Dimension

We first prove that the intrinsic dimension dg of the gen-
erated distribution can be identified through the Jacobian
matrix of the generator.

Definition 1 (Jacobian matrix). Let f : Z → Rm, where Z
are open subset in Rn. Let

dfi
dzj

(z) = lim
h→0

fi(z + hej)

h
, (1)

where ej ∈ Rn is a vector with the j-th component to be 1
and 0 otherwise, and fi is the i-th component of f . Then
the Jacobian matrix of f with respect to variable z is the
matrix

Jzf =

(
dfi
dzj

(z)

)
m×n

. (2)

Lemma 1 (Sard’s Theorem (Hirsch, 2012)). Let f : Rn →
Rm and f(Z) = X df be a manifold embedded in Rm with
Z an open subset of Rn. Then for almost every point x ∈
X df , the gradient matrix of f has constant rank rank(Jzf)
at the pre-image of x in Z , and the intrinsic dimension of
X df is df = rank(Jzf).

When f is a linear transformation, i.e. f(x) = Ax,A ∈
Rm×n, Lemma 1 reduces to rank theorem of matrices
(Strang et al., 1993), that the dimension of subspace induced
by a matrix is equal to the rank of that matrix.

Lemma 1 gives a quantitative description to the property
of generated manifold Gdg , that it has an intrinsic dimen-
sion equal to the rank of JzG ∈ Rn×m. Recall that a ma-
trix of Rm×n has rank at most min{n,m}. Thus we have
dg ≤ min{n,m}. In practice, the prior dimension n is usu-
ally a bit small compared with the high variance of details
in real-world data. Taking face images as an example, the
hair, freckles, and wrinkles have an extremely high degree
of freedom, the combination of which may exceed millions
of types, while typical GANs only have latent dimensions
around 512. In order to plausibly model the details of im-

ages, we need to endow the network of the generator with
more degrees of freedom.

3.2. Monotonic Decreasing of Jacobian Rank

Apart from the relatively small prior dimension, another
trouble comes from the network depth. To capture highly
non-linear features of data manifolds, current generators of-
ten use very deep coupling modules of convolutional neural
networks (CNNs). The following Lemma then suggests a
monotonic decline in the dimension of the generated mani-
fold as the network gets deeper.

Lemma 2. Let f = f1 ◦ f2. We have rank(Jf) ≤
min{rank(Jf1), rank(Jf2)}. Further, let F k = f1 ◦
f2 ◦ · · · ◦ fk. Then we have rank(JF s) ≤ rank(JF t) if
s ≥ t, and rank(JF s) ≤ rank(Jfk) for all k ≤ s.

Typical generators are composed of a large number of blocks
of multilayer perceptrons (MLPs) or CNNs, which will keep
reducing the dimension of the feature manifolds during
the feedforward procedure. The intention of reducing the
dimension of the underlying manifold in the deep network of
the generator, combined with the relatively low dimension of
the input prior and Lemma 1, will then force the dimension
of the generated manifold lower than that of the real data
manifold. We will look into how this will influence the
expressive power of GANs.

3.3. Adversarial Dimension Trap

Previous sections have demonstrated that, in practice, there
is a very high chance that the generated manifold has an
intrinsic dimension lower than that of the data manifold.
During training, however, the discriminator which measures
the distance of these two distributions will keep encouraging
the generator to increase the dimension up to the same
as the true data. This contradictory functionality incurs
severe punishment on the smoothness and invertibility of
the generative model, which we refer to as the adversarial
dimension trap.

Theorem 1. For a deterministic GAN model and generator
G : Z → X , if rank(JzG) < dx, then at least one of the
two cases must stand:

1. supz∈Z ‖JzG‖ =∞;

2. the generator network fails to capture the data distribu-
tion and is unable to perform inversion. Namely, for an
arbitrary point x ∈ X , the possibility of G−1(x) = ∅
is 1, and we have the following estimation

DJS(Pg,Pr) ≥
log 2

2
, (3)

where DJS is the Jensen-Shannon divergence, Pg and
Pr are generated and data distributions, respectively.
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(a) Skeleton of the manifold. (b) Representative pair.

Figure 3. Illustration of the skeleton set and representative pair.
The blue curve in (a) is the skeleton. In (b), the dashed sphere
inM is the geodesic ball, while the solid sphere in TµM is its
projection onto the tangent space. The normal vector ~n determines
the final affine transformation into the Euclidean space.

The above theorem stands for a wide range of GAN
loss functions, including Wasserstein divergence, Jensen-
Shannon divergence, and other KL-divergence based losses.
Notice that this theorem implies a much worse situation than
it states. For any open sphere B in the data manifold X ,
the generator restricted in the pre-image of B also follows
this theorem, which suggests bad properties of nearly every
local neighborhood. This also suggests that the above con-
sequences of Theorem 1 may both stand, as in some subsets
the generator may successfully capture the data distribution,
while in some others the generator may fail to do so.

The above theorem describes the relationship between
rank(JzG) and the expressive power of GANs. It means
that a generator with a very small Jacobian rank may not be
able to model complicated manifolds. We will show how
noise injection addresses this issue.

The readers may note that, our expressive power here is a
bit different from those in classification tasks. For exam-
ple, in a binary classification task, the intrinsic dimension
of output space is the same as its ambient space. The ex-
pressive power in this case cares more about modeling the
highly non-linear structure of classes. In this paper, as our
target is a data manifold with unknown intrinsic dimension,
the expressive power focuses on capturing all its intrinsic
dimensions, which corresponds to certain semantic features
of images.

4. Riemannian Geometry of Noise Injection
The generator G in the traditional GAN is a composite
of sequential non-linear feature mappings, which can be
denoted as G(z) = fk ◦ fk−1 ◦ · · · ◦ f1(z), where z ∼
N (0, 1) is the standard Gaussian. Each feature mapping
is typically a single layer CNN combined with non-linear
operations such as normalization, pooling, and activation.
The whole network is then a deterministic mapping from the
latent space Z to the image space X . The common noise
injection is actually a linear transformation

fk ← fk + aε, ε ∼ N (0, 1), (4)

where a is a learnable scalar parameter and noise ε is ran-
domly sampled from Gaussian N (0, 1). This simple tech-
nique significantly improves the performance of GANs, es-
pecially the fidelity and realism of generated images as
displayed in Figure 1.

In order to establish a solid geometric framework, we pro-
pose a general formulation by replacing fk(x) with

gk(x) = µk(x) + σk(x)ε, x ∈ gk−1 ◦ · · · ◦ g1(Z), (5)

where µk(x) and σk(x) are both learnable operators on the
layer input x. It is straightforward to see that noise injection
in (5), which is a type of deep noise injection in feature
maps of each layer, is essentially different from the reparam-
eterization trick used in VAEs (Kingma & Welling, 2013)
that is only applied one time in the latent space. In what
follows, we call (5) used in this paper Riemannian Noise In-
jection (RNI) as our theory is established with Riemannian
geometry.

It is worth emphasizing that RNI in (5) can be viewed as
fuzzy equivalence relation of the original features, and uses
reparameterization to model the low-dimensional feature
manifolds. We present this content in the supplementary
material for interested readers.

4.1. Handling Adversarial Dimension Trap with Noise
Injection

As Sard’s theorem tells us (Petersen et al., 2006), the key to
solving the adversarial dimension trap is to avoid mapping
low-dimensional feature spaces into feature manifolds with
higher intrinsic dimensions. However, we are not able to
control the intrinsic dimension of data manifold, and in each
intermediate feature spaces of the network, we also have
the dimension drop problem described in Lemma 2. So the
solution could be that, instead of learning mappings into
the full feature spaces, we choose to map only onto the
skeleton of each feature space and use random noise to fill
up the remaining space. For a compact manifold, it is easy
to find that the intrinsic dimension of the skeleton set can
be arbitrarily low by applying Heine–Borel theorem to the
skeleton (Rudin et al., 1964). By this way, the model can
escape from the adversarial dimension trap.

Now we formulate the idea in detail. The whole idea is based
on approximating the manifold by the tangent polyhedron.
Assume that the feature spaceM is a Riemannian manifold
embedded in Rm. Then for any point µ ∈ M, the local
geometry induces a coordinate transformation from a small
neighborhood of µ inM to its projection onto the tangent
space TµM at µ by the following theorem.

Theorem 2. Given Riemannian manifoldM embedded in
Rm, for any point µ ∈M, we let TµM denote the tangent
space at µ. Then the exponential map Expµ induces a
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smooth diffeomorphism from a Euclidean ball BTµM(0, r)
centered at 0 to a geodesic ball BM(µ, r) centered at µ in
M. Thus {Exp−1

µ , BM(µ, r), BTµM(0, r)} forms a local
coordinate system of M in BM(µ, r), which we call the
normal coordinates. Thus we have

BM(µ, r) = Expµ(BTµM(0, r)) (6)
= {τ : τ = Expµ(v), v ∈ BTµM(0, r)}. (7)

For each local geodesic neighborhood BM(µ, r) of point µ
in the feature manifoldM, we can model it by its tangent
space in the ambient Euclidean space as follows with error
no more than o(r) .

Theorem 3. The differential of Expµ at the origin of TµM
is identity I . Thus Expµ can be approximated by

Expµ(v) = µ+ Iv + o(‖v‖2). (8)

Thus, if r in equation (6) is small enough, we can approxi-
mate BM(µ, r) by

BM(µ, r) ≈ µ+ IBTµM(0, r) (9)
= {τ : τ = µ+ Iv, v ∈ BTµM(0, r)}. (10)

Considering that TµM is an affine subspace of Rm, the
coordinates on BTµM(0, r) admit an affine transformation
into the coordinates on Rm. Thus equation (9) can be
written as

BM(µ, r) ≈ µ+ IBTµM(0, r) (11)
= {τ : τ = µ+ rT (µ)ε, ε ∈ B(0, 1)}. (12)

We remind the readers that the linear component matrix
T (µ) differs at different µ ∈M and is decided by the local
geometry near µ.

In the above formula, µ defines the center point and rT (µ)
defines the shape of the approximated neighborhood. So
we call them a representative pair of BM(µ, r). Picking
up a series of such representative pairs, which we refer as
the skeleton set, we can construct a tangent polyhedronH
ofM. Thus instead of trying to learn the feature manifold
directly, we adopt a two-stage procedure. We first learn a
map f : x 7→ [µ(x), σ(x)] (σ(x) ≡ rT (µ(x))) onto the
skeleton set, then we use noise injection g : x 7→ µ(x) +
σ(x)ε, ε ∼ U(0, 1) (uniform distribution) to fill up the flesh
of the skeleton as shown in Figure 3.

However, the real world data often include fuzzy seman-
tics. Even long range features could share some structural
relations in common. It is unwise to model them with non-
smooth architectures such as locally bounded spheres and
uniform distributions. Thus we borrow the idea from fuzzy
topology (Ling & Bo, 2003; Murali, 1989; Recasens, 2010)
which is designed to address this issue. It is well known

that for any distance metrics d(·, ·), e−d(µ,·) admits a fuzzy
equivalence relation for points near µ, which is similar to
the density of Gaussian. The fuzzy equivalence relation
can be viewed as a suitable smooth alternative to the sphere
neighborhood BM(µ, r). Thus we replace the uniform dis-
tribution with unclipped Gaussian2. Under this setting, the
first-stage mapping in fact learns a fuzzy equivalence rela-
tion, while the second stage is a reparameterization tech-
nique.

Notice that the skeleton set can have arbitrarily low dimen-
sion as we only need finite many skeleton points to recon-
struct the full manifold, and capturing finite many points
is easy for functions with Jacobians of any ranks. Thus
the first-stage map can be smooth, well conditioned, and
expressive in modeling the target manifold.

Theorem 4. If manifold M is compact, then there exist
finite many points µ1, ..., µk ∈ M, such that the skeleton
set S = {µ1, ..., µk} with representative pairs and radius r
defined in Theorems 2 & 3 can approximateM with local
error no more than o(r).

Remark 1. Theorem 4 characterizes the expressive power
of noise injection. Combined with Theorem 2, they show that
for any compact manifold embedded in Rm, the generator
with noise injection can approximate it with error no more
than o(r), where r is the radius of geodesic ball defined in
Eq. (11), regardless of the relation between JzG and dx.

For the second stage, we can show that it possesses a smooth
property in expectation by the following theorem.

Theorem 5. Given f : x 7→ [µ(x), σ(x)]T , f is locally Lip-
schitz and ‖σ‖∞ = o(1). Define g(x) ≡ µ(x)+σ(x)ε, ε ∼
N (0, 1) (standard Gaussian). Then for any bounded set
U , ∃L > 0, we have E[‖g(x) − g(y)‖2] ≤ L‖x − y‖2 +
o(1),∀x, y ∈ U . Namely, the principal component of g is
locally Lipschitz in expectation. Specifically, if the definition
domain of f is bounded, then the principal component of g
is globally Lipschitz in expectation.

4.2. Property of Noise Injection

As we have discussed, traditional GANs face two challenges:
the relatively low dimensional latent space compared with
complicated details of real images, and the intention of di-
mension drop in feedforward procedure. Both of the two
challenges will lead to the adversarial dimension trap in
Theorem 1. The adversarial dimension trap implies an un-
stable training procedure because of the gradient explosion
that may occur on the generator. With noise injection in
the network of the generator, however, we can theoretically
overcome such problems if the representative pairs are con-
structed properly to capture the local geometry. In this case,

2A detailed analysis about why unclipped Gaussian should be
applied is offered in the supplementary material.
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our model does not need to fit the image manifold with a
higher intrinsic dimension than that the network architecture
can handle. Thus the training procedure will not encour-
age the nonsmooth generator, and can proceed more stably.
Also, the extra noise can compensate the loss of information
compression so as to capture high-variance details, which
has been discussed and illustrated in StyleGAN (Karras
et al., 2019a). We will evaluate the performance of our
method from these aspects in section 5.

4.3. Geometric Realization of µ(x) and σ(x)

As µ stands for a particular point in the feature space, we
simply model it by the traditional deep CNN architectures.
σ(x) is designed to fit the local geometry of µ(x). Accord-
ing to our theory, the local geometry should only admit
minor differences from µ(x). Thus we believe that σ(x)
should be determined by the spatial and semantic informa-
tion contained in µ(x), and should characterize the local
variations of the spatial and semantic information. The de-
viation of pixel-wise sum along channels of feature maps
in StyleGAN2 highlights the semantic variations like hair,
parts of background, and silhouettes, as the standard devi-
ation map over sampling instances shows in Fig. 1. This
observation suggests that the sum along channels identifies
the local semantics we expect to reveal. Thus it should be
directly connected to σ(x) we pursue here. For a given
feature map µ = DCNN(x) from the deep CNN, which is
a specific point in the feature manifold, the sum along its
channels is

µ̃ijk =

c∑
i=1

µijk, (13)

where i enumerates all the c feature maps of µ, while j, k
enumerate the spatial indices of µ in its h rows and w
columns, respectively. The resulting µ̃ is then a spatial
semantic identifier, whose variation corresponds to the local
semantic variation. We then normalize µ̃ to obtain a spatial
semantic coefficient matrix s with

mean(µ̃) =
1

h× w
h∑
j=1

w∑
k=1

µ̃jk,

s = µ̃−mean(µ̃),

max(|s|) = max
1≤j≤h,1≤k≤w

|sjk|,

s =
s

max(|s|) .

(14)

Recall that the standard deviation of s over sampling in-
stances highlights the local variance in semantics. Thus s
can be decomposed into two independent components: sm
that corresponds to the main content of the output image
and is almost invariant under changes of injected noise; sv
that is associated with the variance induced by the injected
noise and is nearly orthogonal to the main content. We as-

sume that this decomposition can be attained by an affine
transformation on s such that

sd = A ∗ s+ b = sm + sv, sv ∗ µ ≈ 0, (15)

where ∗ denotes element-wise matrix multiplication, and 0
denotes the zero matrix. To avoid numerical instability, we
add the all-one matrix 1 to the above decomposition such
that its condition number will not get exploded, i.e.

s′ = αsd + (1− α)1, σ =
s′

‖s′‖2
. (16)

The regularized sm component is then used to enhance the
main content in µ, and the regularized sv component is then
used to guide the variance of injected noise. The final output
o is then calculated as

o = rσ ∗ µ+ rσ ∗ ε, ε ∼ N (0, 1). (17)

In the above procedure, A, b, r, and α are learnable param-
eters. Note that in the last equation, we do not need to
decompose s′ into sv and sm, as sv is designed to be nearly
orthogonal to µ, and sm is nearly invariant. Thus σ ∗ µ will
automatically drop the sv component, and σ ∗ ε amounts
to adding an invariant bias to the variance of injected noise.
There are alternative forms for µ and σ with respect to var-
ious GAN architectures. However, modeling µ by deep
CNNs and deriving σ through the spatial and semantic in-
formation of µ are universal for GANs, as they comply with
our theorems. We further conduct an ablation study to verify
the effectiveness of the above procedure. The related results
can be found in the supplementary material.

Using our formulation, noise injection in StyleGAN2 can
be written as follows:

µ = DCNN(x), o = µ+ r ∗ ε, ε ∼ N (0, 1), (18)

where r is a learnable scalar parameter. This can be viewed
as a special case of our method, where T (µ) in (11) is set
to be the identity mapping. Under this settings, the local
geometry is assumed to be everywhere identical among the
feature manifold, which suggests a globally Euclidean struc-
ture. Our theory supports this simplification and special-
ization. But our choice of µ(x) and σ(x) can suit broader
and more usual scenarios, where the feature manifolds are
non-Euclidean. We denote this simplified noise injection as
Euclidean Noise Injection (ENI), and will extensively study
its performance compared with our choice in the following
section.

5. Experiment
We conduct experiments on benchmark datasets including
FFHQ faces, LSUN objects, and CIFAR-10. The GAN
models we use are the baseline DCGAN (Radford et al.,
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Table 1. Comparison for different generator architectures.

GAN arch FFHQ LSUN-Church

PPL (↓) FID (↓) PPL (↓) FID (↓)
DCGAN 2.97 45.29 33.30 51.18
DCGAN + ENI 3.14 44.22 22.97 54.01
DCGAN + RNI (Ours) 2.83 40.06 22.53 46.31

Plain StyleGAN2 28.44 6.87 425.7 6.44
StyleGAN2 + ENI 16.20 7.29 123.6 6.80
StyleGAN2-NoPathReg + RNI (Ours) 16.02 7.14 178.9 5.75
StyleGAN2 + RNI (Ours) 13.05 7.31 119.5 6.86

2015) (originally without noise injection) and the state-of-
the-art StyleGAN2 (Karras et al., 2019b) (originally with
Euclidean noise injection). For StyleGAN2, we use images
of resolution 128× 128 and config-e in the original paper
due to that config-e achieves the best performance with
respect to Path Perceptual Length (PPL) score. Besides, we
apply the experimental settings from StyleGAN2.

Noise injection presented in section 4.3 is called Rieman-
nian Noise Injection (RNI) while the simple form used in
StyleGAN is called Euclidean Noise Injection (ENI).

Image synthesis. PPL (Zhang et al., 2018) has been
proven an effective metric for measuring structural con-
sistency of generated images (Karras et al., 2019b). Con-
sidering its similarity to the expectation of the Lipschitz
constant of the generator, it can also be viewed as a quantifi-
cation of the smoothness of the generator. The path length
regularizer is proposed in StyleGAN2 to improve generated
image quality by explicitly regularizing the Jacobian of the
generator with respect to the intermediate latent space. We
first compare the noise injection methods with the plain
StyleGAN2, which the Euclidean noise injection and path
length regularizer in StyleGAN2 are removed. As shown
in Table 1, we can find that all types of noise injection
significantly improve the PPL scores. It is worth noting
that our method without path length regularizer can achieve
comparable performance against the standard StyleGAN2
on the FFHQ dataset, and the performance can be further
improved if combined with path length regularizer. Con-
sidering the extra GPU memory consuming of path length
regularizer in training, we think that our method offers a
computation-friendly alternative to StyleGAN2 as we ob-
serve smaller GPU memory occupation of our method for
all the experiments.

For the LSUN-Church dataset, we observe an obvious im-
provement in FID scores compared with StyleGAN2. We
believe that this is because the LSUN-Church data are scene
images and contain various semantics of multiple objects,
which are hard to fit for the original StyleGAN2 that is more

suitable for single object synthesis. So our RNI architecture
offers more degrees of freedom to the generator to fit the
true distribution of the dataset. In all cases, our method is
superior to StyleGAN2 in both PPL and FID scores. This
proves that our noise injection method is more powerful than
the one used in StyleGAN2. For DCGAN, as it does not
possess the intermediate latent space, we cannot facilitate
it with the path length regularizer. So we only compare the
Euclidean noise injection with our RNI method. Through
all the cases we can find that our method achieves the best
performance in PPL and FID scores.

We also study whether our choice for µ(x) and σ(x) can
be applied to broader occasions. We further conduct ex-
periments on a cat dataset which consists of 100 thousand
selected images from 800 thousand LSUN-Cat images by
ranking algorithm (Zhou et al., 2004). For DCGAN, we
conduct extra experiments on CIFAR-10 to test whether our
method could succeed in multi-class image synthesis. The
results are reported in Figure 5. We can see that our method
still outperforms the compared methods in PPL scores and
FID scores are comparable, indicating that the proposed
noise injection is more favorable of preserving structural
consistency of generated images with real ones.

Numerical stability. As we have analyzed above, noise
injection should be able to improve the numerical stability
of GANs. To evaluate it, we examine the condition number
of different GAN architectures. The condition number of a
given function f is defines as (Horn & Johnson, 2013)

C(f) = lim sup
‖∆x‖→0

‖f(x)− f(x+ ∆x)‖/‖f(x)‖
‖∆x‖/‖x‖ . (19)

It measures how sensitive a function is to changes or er-
rors in the input. A function with a high condition num-
ber is said to be ill-conditioned. Considering the numer-
ical infeasibility of the sup operator in the definition of
condition number, we resort to the following alternative
approach. We first sample a batch of 50000 pairs of
(Input, Perturbation) from the input distribution and the
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FFHQ LSUN-Church

Plain StyleGAN2

StyleGAN2 + ENI

StyleGAN2-NoPathReg + RNI

StyleGAN2 + RNI

Figure 4. Synthesized images of different StyleGAN2-based models.

Table 2. Conditions for different GAN architectures. Lower condition metrics suggest better network stability and invertibility.

GAN arch FFHQ LSUN-Church

MC (↓) TTMC (↓) MC (↓) TTMC (↓)
Plain StyleGAN2 0.943 2.81 2.31 6.31
StyleGAN2 + ENI 0.666 1.27 0.883 1.75
StyleGAN2-NoPathReg + RNI (Ours) 0.766 2.39 1.71 4.74
StyleGAN2 + RNI (Ours) 0.530 1.05 0.773 1.51

perturbation ∆x ∼ N (0, 1e-4), and then compute the cor-
responding condition numbers. We compute the mean value
and the mean value of the largest 1000 values of these 50000
condition numbers as Mean Condition (MC) and Top Thou-
sand Mean Condition (TTMC) respectively to evaluate
the condition of GAN models. We report the results in Ta-
ble 2, where we can find that noise injection significantly
improves the condition of GAN models, and our proposed
method dominates the performance.

GAN inversion. StyleGAN2 makes use of a latent style
space that is capable of enabling controllable image modifi-
cations. This characteristic motivates us to study the image
embedding capability of our method via GAN inversion al-
gorithms (Abdal et al., 2019) as it may help further leverage
the potential of GAN models. From the experiments, we

find that the StyleGAN2 model is prone to work well for
full-face, non-blocking human face images. For this type
of images, we observe comparable performance for all the
GAN architectures. We think that this is because those im-
ages are close to the ‘mean’ face of FFHQ dataset (Karras
et al., 2019a), thus easy to learn for the StyleGAN-based
models. For faces of large pose or partially occluded ones,
the ability of compared models differs significantly. Noise
injection methods outperform the plain StyleGAN2 by a
large margin, and our method achieves the best performance.
The detailed implementation and results are reported in the
supplementary material.
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CIFAR-10

DCGAN DCGAN + ENI DCGAN + RNI
PPL=101.4,FID=83.8, IS=4.46 PPL=77.9, FID=84.8, IS=4.73 PPL=69.9, FID=83.2, IS=4.64

Cat-Selected

StyleGAN2 + ENI StyleGAN2 + RNI
PPL=115, MC=0.725, TTMC=1.54 FID=12.7 PPL=106, MC=0.686, TTMC=1.45, FID=13.4

Figure 5. Image synthesis on CIFAR-10 and LSUN cats.

6. Conclusion
In this paper, we propose a theoretical framework to ex-
plain the effect of noise injection technique in GANs. We
prove that the generator can easily encounter the difficulty
of nonsmoothness or expressiveness, and noise injection is
an effective approach to addressing this issue. Based on
our theoretical framework, we also derive a more proper
formulation for noise injection. We conduct experiments on
various datasets to confirm its validity. In future work, we
will further investigate the universal realizations of noise
injection for diverse GAN architectures, and attempt to find
more powerful ways to characterize local geometries of
feature spaces.
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