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Abstract
We present GNNAutoScale (GAS), a framework
for scaling arbitrary message-passing GNNs to
large graphs. GAS prunes entire sub-trees of the
computation graph by utilizing historical embed-
dings from prior training iterations, leading to
constant GPU memory consumption in respect to
input node size without dropping any data. While
existing solutions weaken the expressive power
of message passing due to sub-sampling of edges
or non-trainable propagations, our approach is
provably able to maintain the expressive power of
the original GNN. We achieve this by providing
approximation error bounds of historical embed-
dings and show how to tighten them in practice.
Empirically, we show that the practical realization
of our framework, PyGAS, an easy-to-use exten-
sion for PYTORCH GEOMETRIC, is both fast and
memory-efficient, learns expressive node repre-
sentations, closely resembles the performance of
their non-scaling counterparts, and reaches state-
of-the-art performance on large-scale graphs.

1. Introduction
Graph Neural Networks (GNNs) capture local graph struc-
ture and feature information in a trainable fashion to derive
powerful node representations suitable for a given task at
hand (Hamilton, 2020; Ma & Tang, 2020). As such, numer-
ous GNNs have been proposed in the past that integrate ideas
such as maximal expressiveness (Xu et al., 2019), anisotropy
and attention (Veličković et al., 2018), non-linearities (Wang
et al., 2019), or multiple aggregations (Corso et al., 2020)
into their message passing formulation. However, one of the
challenges that have so far precluded their wide adoption
in industrial and social applications is the difficulty to scale
them to large graphs (Frasca et al., 2020).
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While the full-gradient in a GNN is straightforward to com-
pute, assuming one has access to all hidden node embed-
dings in all layers, this is not feasible in large-scale graphs
due to GPU memory limitations (Ma & Tang, 2020). There-
fore, it is desirable to approximate its full-batch gradient
stochastically by considering only a mini-batch B ⊆ V of
nodes for loss computation. However, this stochastic gra-
dient is still expensive to obtain due to the exponentially
increasing dependency of nodes over layers; a phenomenon
framed as neighbor explosion (Hamilton et al., 2017). Due
to neighbor explosion and since the whole computation
graph needs to be stored on the GPU, deeper architectures
can not be applied to large graphs. Therefore, a scalable
solution needs to make the memory consumption constant
or sub-linear in respect to the number of input nodes.

Recent works aim to alleviate this problem by proposing
various sampling techniques based on the concept of drop-
ping edges (Ma & Tang, 2020; Rong et al., 2020): Node-
wise sampling (Hamilton et al., 2017; Chen et al., 2018b;
Markowitz et al., 2021) recursively samples a fixed number
of 1-hop neighbors; Layer-wise sampling techniques inde-
pendently sample nodes for each layer, leading to a constant
sample size in each layer (Chen et al., 2018a; Zou et al.,
2019; Huang et al., 2018); In subgraph sampling (Chiang
et al., 2019; Zeng et al., 2020b;a), a full GNN is run on an
entire subgraph G[B] induced by a sampled batch of nodes
B ⊆ V . These techniques get rid of the neighbor explosion
problem by sampling the graph but may fail to preserve the
edges that present a meaningful topological structure. Fur-
ther, existing approaches are either still restricted to shallow
networks, non-exchangeable GNN operators or operators
with reduced expressiveness. In particular, they consider
only specific GNN operators and it is an open question
whether these techniques can be successfully applied to
the wide range of GNN architectures available (Veličković
et al., 2018; Xu et al., 2019; Corso et al., 2020; Chen et al.,
2020b). Another line of work is based on the idea of decou-
pling propagations from predictions, either as a pre- (Wu
et al., 2019; Klicpera et al., 2019a; Frasca et al., 2020; Yu
et al., 2020) or post-processing step (Huang et al., 2021).
While this scheme enjoys fast training and inference time,
it cannot be applied to any GNN, in particular because the
propagation is non-trainable, and therefore reduces model
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expressiveness. A different scalability technique is based on
the idea of training each GNN layer in isolation (You et al.,
2020). While this scheme resolves the neighbor explosion
problem and accounts for all edges, it cannot infer complex
interactions across consecutive layers.

Here, we propose the GNNAutoScale (GAS) framework that
disentangles the scalability aspect of GNNs from their un-
derlying message passing implementation. GAS revisits and
generalizes the idea of historical embeddings (Chen et al.,
2018b), which are defined as node embeddings acquired in
previous iterations of training, cf. Figure 1. For a given mini-
batch of nodes, GAS prunes the GNN computation graph so
that only nodes inside the current mini-batch and their direct
1-hop neighbors are retained, independent of GNN depth.
Historical embeddings act as an offline storage and are used
to accurately fill in the inter-dependency information of
out-of-mini-batch nodes, cf. Figure 1c. Through constant
memory consumption in respect to input node size, GAS
is able to scale the training of GNNs to large graphs, while
still accounting for all available neighborhood information.

We show that approximation errors induced by historical
information are solely caused by the staleness of the history
and the Lipschitz continuity of the learned function, and pro-
pose solutions for tightening the proven bounds in practice.
Furthermore, we connect scalability with expressiveness
and theoretically show under which conditions historical
embeddings allow to learn expressive node representations
on large graphs. As a result, GAS is the first scalable solu-
tion that is able to keep the existing expressivity properties
of the used GNN, which exist for a wide range of models
(Xu et al., 2019; Morris et al., 2019; Corso et al., 2020).

We implement our framework practically as PyGAS1, an
extension for the PYTORCH GEOMETRIC library (Fey &
Lenssen, 2019), which makes it easy to convert common
and custom GNN models into their scalable variants and to
apply them to large-scale graphs. Experiments show that
GNNs utilizing GAS achieve the same performances as
their (non-scalable) full-batch equivalents (while requiring
orders of magnitude less GPU memory), and are able to
learn expressive node representations. Furthermore, GAS
allows the application of expressive and hard-to-scale-up
models on large graphs, leading to state-of-the-art results
on several large-scale graph benchmark datasets.

2. Scalable GNNs via Historical Embeddings

Background. Let G = (V, E) or A ∈ {0, 1}|V|×|V| de-
note a graph with node feature vectors xv for all v ∈ V .
In this work, we are mostly interested in the task of node
classification, where each node v ∈ V is associated with a
label yv, and the goal is to learn a representation hv from

1https://github.com/rusty1s/pyg_autoscale

which yv can be easily predicted. To derive such a repre-
sentation, GNNs follow a neural message passing scheme
(Gilmer et al., 2017). Formally, the (` + 1)-th layer of a
GNN is defined as (omitting edge features for simplicity)
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where h(`)
v represents the embedding of node v obtained in

layer ` and N (v) defines the neighborhood set of v. We ini-
tializeh(0)

v = xv . Here, f (`+1)
θ operates on multisets {{. . .}}

and can be decomposed into differentiable MESSAGE
(`)
θ and

UPDATE
(`)
θ functions parametrized by weights θ, as well as

permutation-invariant aggregation functions
⊕

, e.g. taking
the sum, mean or maximum of features (Fey & Lenssen,
2019; Gilmer et al., 2017; Qi et al., 2017; Wang et al., 2019;
Xu et al., 2019; Kipf & Welling, 2017; Veličković et al.,
2018; Hamilton et al., 2017; Klicpera et al., 2019a; Chen
et al., 2020b; Xu et al., 2018). Our following scalability
framework is based on the general message passing formu-
lation given in Equation (1) and thus is applicable to this
wide range of different GNN operators.

Historical Embeddings. Let h(`)
v denote the node em-

bedding in layer ` of a node v ∈ B in a mini-batch B ⊆ V .
For the general message scheme given in Equation (1), the
execution of f (`+1)

θ can be formulated as:
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Here, we separate the neighborhood information of the mul-
tiset into two parts: (1) the local information of neighbors
N (v) which are part of the current mini-batch B, and (2)
the information of neighbors which are not included in the
current mini-batch. For out-of-mini-batch nodes, we ap-
proximate their embeddings via historical embeddings ac-
quired in previous iterations of training (Chen et al., 2018b),
denoted by h̄(`)

w . After each step of training, the newly com-
puted embeddingsh(`+1)

v are pushed to the history and serve
as historical embeddings h̄(`+1)

w in future iterations. The
separation of in-mini-batch nodes and out-of-mini-batch
nodes, and their approximation via historical embeddings
represent the foundation of our GAS framework.

A high-level illustration of its computation flow is visualized
in Figure 1. Figure 1b shows the original data flow without

https://github.com/rusty1s/pyg_autoscale
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Figure 1. Mini-batch processing of GNNs with historical embeddings. � denotes the nodes in the current mini-batch and � represents
their direct 1-hop neighbors. For a given mini-batch (a), GPU memory and computation costs exponentially increase with GNN depth (b).
The usage of historical embeddings avoids this problem as it allows to prune entire sub-trees of the computation graph, which leads to
constant GPU memory consumption in respect to input node size (c). Here, nodes in the current mini-batch push their updated embeddings
to the history H̄(`), while their direct neighbors pull their most recent historical embeddings from H̄(`) for further processing.

historical embeddings. The required GPU memory increases
as the model gets deeper. After a few layers, embeddings
for the entire input graph need to be stored, even if only a
mini-batch of nodes is considered for loss computation. In
contrast, historical embeddings eliminate this problem by
approximating entire sub-trees of the computation graph,
cf. Figure 1c. The required historical embeddings are pulled
from an offline storage, instead of being re-computed in
each iteration, which keeps the required information for each
batch local. For a single batch B ⊆ V , the GPU memory
footprint for one training step is given byO(|⋃v∈BN (v)∪
{v}| · L) and thus only scales linearly with the number of
layers L. The majority of data (the histories) can be stored
in RAM or hard drive storage rather than GPU memory.

In the following, we are going to use h̃(`)
v to denote em-

beddings estimated via GAS (line 3 of Equation (2)) to
differentiate them from the exact embeddings obtained with-
out historical approximation (line 1 of Equation (2)). In
contrast to existing scaling solutions based on sub-sampling
edges, the usage of historical embeddings as utilized in GAS
provides the following additional advantages:

(1) GAS trains over all the data: In GAS, a GNN will
make use of all available graph information, i.e. no edges
are dropped, which results in lower variance and more ac-
curate estimations (since ‖h̄(`)

v − h(`)
v ‖ � ‖h(`)

v ‖). Impor-
tantly, for a single epoch and layer, each edge is still only
processed once, putting its time complexity O(|E|) on par
with its full-batch counterpart. Notably, more accurate esti-
mations will further strengthen gradient estimation during
backpropagation. Specifically, the model parameters will
be updated based on the node embeddings of all neighbors
since ∂h̃(`+1)

v /∂θ also depends on {{h̄(`)
w : w ∈ N (v) \ B}}.

(2) GAS enables constant inference time complexity:
The time complexity of model inference is reduced to a

constant factor, since we can directly use the historical em-
beddings of the last layer to derive predictions for test nodes.

(3) GAS is simple to implement: Our scheme does not
need to maintain recursive layer-wise computation graphs,
which makes its overall implementation straightforward and
comparable to full-batch training. Only minor modifications
are required to pull information from and push information
to the histories, cf. our training algorithm in the appendix.

(4) GAS provides theoretical guarantees: In particular, if
the model weights are kept fixed, h̃(`)

v eventually equals
h
(`)
v after a fixed amount of iterations (Chen et al., 2018b).

3. Approximation Error and Expressiveness

The advantages of utilizing historical embeddings h̄(`)
v to

compute an approximation h̃(`)
v of the exact embedding h(`)

v

come at the cost of an approximation error ‖h̃(`)
v − h(`)

v ‖,
which can be decomposed into two sources of variance:
(1) The closeness of estimated inputs to their exact values,
i.e. ‖h̃(`−1)

v − h(`−1)
v ‖ ≥ 0, and (2) the staleness of histori-

cal embeddings, i.e. ‖h̄(`−1)
v − h̃(`−1)

v ‖ ≥ 0. In the follow-
ing, we show concrete bounds for this error, which can be
then tightened using specific procedures. Here, our analysis
focuses on arbitrary f (`)

θ GNN layers as described in Equa-
tion (1), but we restrict both MESSAGE

(`)
θ and UPDATE

(`)
θ

to model k-Lipschitz continuous functions due to their po-
tentially highly non-linear nature. Proofs of all lemmas and
theorems can be found in the appendix.

Lemma 1 Let MESSAGE
(`)
θ and UPDATE

(`)
θ be Lipschitz

continuous functions with Lipschitz constants k1 and k2,
respectively. If, for all v ∈ V , the inputs are close to the
exact input, i.e. ‖h̃(`−1)

v − h(`−1)
v ‖ ≤ δ, and the historical

embeddings do not run too stale, i.e. ‖h̄(`−1)
v −h̃(`−1)

v ‖ ≤ ε,
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then the output error is bounded by

‖h̃(`)
v − h(`)

v ‖ ≤ δ k2 + (δ + ε) k1 k2 |N (v)|.

Due to the behavior of Lipschitz constants in a series of
function compositions, we obtain an upper bound that is
dependent on k1, k2 and |N (v)|, as well as dependent on the
errors δ and ε of the inputs. Interestingly, sum aggregation,
the most expressive aggregation function (Xu et al., 2019),
introduces a factor of |N (v)| to the upper bound, while we
can obtain a much tighter upper bound for mean or max
aggregation, cf. its proof. Next, we take a look at the final
output error produced by a L-layered GNN:

Theorem 2 Let f (L)
θ be a L-layered GNN, containing only

Lipschitz continuous MESSAGE
(`)
θ and UPDATE

(`)
θ func-

tions with Lipschitz constants k1 and k2, respectively. If,
for all v ∈ V and all ` ∈ {1, . . . , L − 1}, the historical
embeddings do not run too stale, i.e. ‖h̄(`)

v − h̃(`)
v ‖ ≤ ε(`),

then the final output error is bounded by

‖h̃(L)
v,j − h

(L)
v,j ‖ ≤

L−1∑

`=1

ε(`) kL−`1 kL−`2 |N (v)|L−`.

Notably, this upper bound does not longer depend on
‖h̃(`)

v − h(`)
v ‖ ≤ δ(`), and is instead solely conditioned

on the staleness of histories ‖h̄(`)
v − h̃(`)

v ‖ ≤ ε(`). However,
it depends exponentially on the Lipschitz constants k1 and
k2 as well as |N (v)| with respect to the number of layers. In
particular, each additional layer introduces a less restrictive
bound since the errors made in the first layers get immedi-
ately propagated to later ones, leading to potentially high
inaccuracies for histories in deeper GNNs. We will later
propose solutions for tightening the proven bound in prac-
tice, allowing the application of GAS to deep and non-linear
GNNs. Furthermore, Theorem 2 lets us immediately derive
an upper error bound of gradients as well, i.e.

‖∇θL(h̃(L)
v )−∇θL(h(L)

v )‖ ≤ λ‖h̃(L)
v − h(L)

v ‖

in case L is λ-Lipschitz continuous. As such, GAS encour-
ages low variance and bias in the learning signal as well.
However, parameters are not guaranteed to converge to the
same optimum since we explicitely consider arbitrary GNNs
solving non-convex problems (Cong et al., 2020).

It is well known that the most powerful GNNs adhere to the
same representational power as the Weisfeiler-Lehman (WL)
test (Weisfeiler & Lehman, 1968) in distinguishing non-
isomorphic structures, i.e. h(L)

v 6= h
(L)
w in case c(L)v 6= c

(L)
w

(Xu et al., 2019; Morris et al., 2019), where c(L)v denotes a
node’s coloring after L rounds of color refinement. How-
ever, in order to leverage such expressiveness, a GNN needs

to be able to reason about structural differences across neigh-
borhoods directly during training. We now show that GNNs
that scale by sampling edges are not capable of doing so:

Proposition 3 Let f (L)
θ : V → Rd be a L-layered GNN

as expressive as the WL test in distinguishing the L-hop
neighborhood around each node v ∈ V . Then, there exists
a graph A ∈ {0, 1}|V|×|V| for which f (L)

θ operating on a

sampled variant Ã, ãv,w =

{ |N (v)|
|Ñ (v)| , if w ∈ Ñ (v)

0, otherwise
, pro-

duces a non-equivalent coloring, i.e. h̃(L)
v 6= h̃

(L)
w while

c
(L)
v = c

(L)
w for nodes v, w ∈ V .

While sampling strategies lose expressive power due to
sub-sampling of edges, scalable GNNs based on historical
embeddings are leveraging all edges during neighborhood
aggregation. Therefore, a special interest lies in the question
if historical-based GNNs are as expressive as their full-batch
counterpart. Here, a maximally powerful and scalable GNN
needs to fulfill the following two requirements: (1) It needs
to be as expressive as the WL test in distinguishing non-
isomorphic structures, and (2) it needs to account for the
approximation error ‖h̄(`−1)

v −h(`−1)
v ‖ induced by the usage

of historical embeddings. Since it is known that there exists
a wide range of maximally powerful GNNs (Xu et al., 2019;
Morris et al., 2019; Corso et al., 2020), we can restrict our
analysis to the latter question. Following upon Xu et al.
(2019), we focus on the case where input node features are
from a countable set Pd ⊂ Rd of bounded size:

Lemma 4 Let {{h(`−1)
v : v ∈ V}} be a countable multiset

such that ‖h(`−1)
v − h(`−1)

w ‖ > 2(δ + ε) for all v, w ∈ V ,
h
(`−1)
v 6= h

(`−1)
w . If the inputs are close to the exact input,

i.e. ‖h̃(`−1)
v − h(`−1)

v ‖ ≤ δ, and the historical embeddings
do not run too stale, i.e. ‖h̄(`−1)

v − h̃(`−1)
v ‖ ≤ ε, then there

exist MESSAGE
(`)
θ and UPDATE

(`)
θ functions, such that

‖f (`)
θ (h̃(`−1)

v )− f (`)
θ (h(`−1)

v )‖ ≤ δ + ε

and

‖f (`)
θ (h(`−1)

v )− f (`)
θ (h(`−1)

w )‖ > 2(δ + ε+ λ)

for all v, w ∈ V , h(`−1)
v 6= h

(`−1)
w and all λ > 0.

Informally, Lemma 4 tells us that if (1) exact input em-
beddings are sufficiently far apart from each other and (2)
historical embeddings are sufficiently close to the exact em-
beddings, there exist historical-based GNN operators which
can distinguish equal from non-equal inputs. Key to the
proof is that (δ + ε)-balls around exact inputs do not inter-
sect each other and are therefore well separated. Notably,
we do not require f (`)

θ to model strict injectivity since it is
sufficient for f (`)

θ to be 2(δ + ε)-injective (Seo et al., 2019).
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Following Xu et al. (2019), one can leverage MLPs to model
and learn such MESSAGE and UPDATE functions due to
the universal approximation theorem (Hornik et al., 1989;
Hornik, 1991). However, the theory behind Lemma 4 holds
for any maximally powerful GNN operator. Finally, we
can use this insight to relate the expressiveness of scalable
GNNs to the WL test color refinement procedure:

Theorem 5 Let f (L)
θ be a L-layered GNN in which all

MESSAGE
(`)
θ and UPDATE

(`)
θ functions fulfill the conditions

of Lemma 4. Then, there exists a map φ : Rd → Σ so that
φ(h̃

(L)
v ) = c

(L)
v for all v ∈ V .

Theorem 5 extends the insights of Lemma 4 to multi-layered
GNNs, and indicates that scalable GNNs using historical em-
beddings are able to distinguish non-isomorphic structures
(that are distinguishable by the WL test) directly during
training, which is what makes reasoning about structural
properties possible. It should be noted that recent proposals
such as DROPEDGE (Rong et al., 2020) are still applicable
for data augmentation and message reduction. However,
through the given theorem, we disentangle scalability and
expressiveness from regularization via edge dropping.

While sampling approaches lose expressiveness compared
to their original counterparts (cf. Proposition 3), Theorem 5
tells us that, in theory, there exist message passing func-
tions that are as expressive as the WL test in distinguishing
non-isomorphic structures while accounting for the effects
of approximation in stored embeddings. In practice, we
have two degrees of freedom to tighten the upper bounds
given by Lemma 1 and Theorem 2, leading to a lower ap-
proximation error and higher expressiveness in return: (1)
Minimizing the staleness of historical embeddings, and (2)
maximizing the closeness of estimated inputs to their exact
values by controlling the Lipschitz constants of UPDATE
and MESSAGE functions. In what follows, we derive a list
of procedures to achieve these goals:

Minimizing Inter-Connectivity Between Batches. As
formulated in Equation (2) in Section 2, the output em-
beddings of f (`+1)

θ are exact if |⋃v∈BN (v) ∪ {v}| = |B|,
i.e. all neighbors of nodes in B are as well part of B. How-
ever, in practice, this can only be guaranteed for full-batch
GNNs. Motivated by this observation, we aim to mini-
mize the inter-connectivity between sampled mini-batches,
i.e. min |⋃v∈BN (v) \ B|, which minimizes history access,
and increases closeness and reduces staleness in return.

Similar to CLUSTER-GCN (Chiang et al., 2019), we make
use of graph clustering techniques, e.g., METIS (Karypis &
Kumar, 1998; Dhillon et al., 2007), to achieve this goal. It
aims to construct partitions over the nodes in a graph such
that intra-links within clusters occur much more frequently
than inter-links between different clusters. Intuitively, this

results in a high chance that neighbors of a node are lo-
cated in the same cluster. Notably, modern graph clustering
methods are both fast and scalable with time complexities
given by O(|E|), and only need to be applied once, which
leads to an unremarkable computational overhead in the
pre-processing stage. In general, we argue that the METIS
clustering technique is highly scalable, as it is in the heart
of many large-scale distributed graph storage layers such as
(Zhu et al., 2019; Zheng et al., 2020) that are known scale to
billion-sized graphs. Furthermore, the additional overhead
in the pre-processing stage is quickly compensated by an
acceleration of training, since the number of neighbors out-
side of B is heavily reduced, and pushing information to the
histories now leads to contiguous memory transfers.

Enforcing Local Lipschitz Continuity. To guide our
neural network in learning a function with controllable error,
we can enforce its intermediate output layers f (`)

θ to be in-
variant to small input perturbations. In particular, following
upon Usama & Chang (2018), we found it useful to apply
the auxiliary loss

L(`)
reg = ‖f (`)

θ (h̃(`−1)
v )− f (`)

θ (h̃(`−1)
v + ε)‖ (3)

in highly non-linear message passing phases, e.g., in GIN
(Xu et al., 2019). Such regularization enforces equal out-
puts for small pertubations ε ∼ Bδ(0) inside closed balls
of radius δ. Notably, we do not restrict UPDATE

(`)
θ and

MESSAGE
(`)
θ to separately model global k-Lipschitz contin-

uous functions, but rather aim for local Lipschitz continuity
at each h(`−1)

v for f (`)
θ as a whole. For other message

passing GNNs, e.g., in GCN (Kipf & Welling, 2017), L2

regularization is usually sufficient to ensure closeness of
historical embeddings. Further, we found gradient clipping
to be an effective method to restrict the parameters from
changing too fast, regularizing history changes in return.

4. Related Work
Our GAS framework utilizes historical embeddings as an
affordable approximation. The idea of historical embed-
dings was originally introduced in VR-GCN (Chen et al.,
2018b). VR-GCN aims to reduce the variance in estima-
tion during neighbor sampling (Hamilton et al., 2017), and
avoids the need to sample a large amount of neighbors in re-
turn. Cong et al. (2020) further simplified this scheme into a
one-shot sampling scenario, where nodes no longer need to
recursively explore neighborhoods in each layer. However,
these approaches consider only a specific GNN operator
which prevent their application to the wide range of GNN
architectures available. Furthermore, they only consider
shallow architectures and do not account for the increas-
ing approximation error induced by deeper and expressive
GNNs, which is well observable in practice, cf. Section 6.1.
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Figure 2. Illustrative runtime performances of a serial and con-
current mini-batch execution in comparison to a full-batch
GNN execution. In the full-batch approach (a), all necessary
data is first transferred to the device via the HOST2DEVICE (H2D)
engine, before GNN layers are executed in serial inside the kernel
engine. As depicted in (b), a serial mini-batch execution suffers
from an I/O bottleneck, in particular because each kernel engine
has to wait for memory transfers to complete. The concurrent mini-
batch execution (c) avoids this problem by leveraging an additional
worker thread and overlapping data transfers, leading to two times
performance improvements in comparison to a serial execution,
which is on par with the standard full-batch approach.

In order to minimize the inter-connectivity between mini-
batches, we utilize graph clustering techniques for mini-
batch selection, as first introduced in the subgraph sampling
approach CLUSTER-GCN (Chiang et al., 2019). CLUSTER-
GCN leverages clustering in order to infer meaningful sub-
graphs, while we aim to minimize history accesses. Fur-
thermore, CLUSTER-GCN limits message passing to intra-
connected nodes, and therefore ignores potentially useful
information outside the current mini-batch. This inherently
limits the model to learn from nodes nearby. In contrast, our
GAS framework makes use of all available neighborhood
data for aggregation, and therefore avoids this downside.

5. PyGAS: Auto-Scaling GNNs in PyG
We condense our GAS framework and theoretical findings
into a tool named PyGAS that implements all the presented
techniques in practice.2 PyGAS is built upon PYTORCH
(Paszke et al., 2019) and utilizes the PYTORCH GEOMET-

2https://github.com/rusty1s/pyg_autoscale

RIC (PyG) library (Fey & Lenssen, 2019). It provides an
easy-to-use interface to convert common and custom GNN
models from PYTORCH GEOMETRIC into their scalable
variants. Furthermore, it provides a fully deterministic test
bed for evaluating models on large-scale graphs. An exam-
ple of the interface is shown in the appendix.

Fast Historical Embeddings. Our approach accesses his-
tories to account for any data outside the current mini-batch,
which requires frequent data transfers to and from the GPU.
Therefore, PyGAS optimizes pulling from and pushing to
histories via non-blocking device transfers. Specifically, we
immediately start pulling historical embeddings for each
layer asynchronously at the beginning of each optimization
step, which ensures that GPUs do not run idle while waiting
for memory transfers to complete. A separate worker thread
gathers historical information into one of multiple pinned
CPU memory buffers (denoted by PULL), from where it can
be transfered to the GPU via the usage of CUDA streams
without blocking any CPU or CUDA execution. Synchro-
nization is done by synchronizing the respective CUDA
stream before inputting the transferred data into the GNN
layer. The same strategy is applied for pushing informa-
tion to the history. Considering that the device transfer of
H̄(`−1) is faster than the execution of f (`)

θ , this scheme
does not lead to any runtime overhead when leveraging his-
torical embeddings and can be twice as fast as its serial
non-overlapping counterpart, cf. Figure 2. We have im-
plemented our non-blocking transfer scheme with custom
C++/CUDA code to avoid Python’s global interpreter lock.

6. Experiments
In this section, we evaluate our GAS framework in practice
using PyGAS, utilizing 6 different GNN operators and 15
datasets. Please refer to the appendix for a detailed descrip-
tion of the used GNN operators and datasets, and to our
code for hyperparameter configurations. All models were
trained on a single GeForce RTX 2080 Ti (11 GB). In our
experiments, we hold all histories in RAM, using a machine
with 64GB of CPU memory.

6.1. GAS resembles full-batch performance

First, we analyze how GAS affects the robustness and ex-
pressiveness of our method. We compare GAS against two
different baselines: a regular full-batch variant and a history
baseline, which naively integrates history-based mini-batch
training without any of the additional GAS techniques. To
evaluate, we make use of a shallow 2-layer GCN (Kipf &
Welling, 2017) and two recent state-of-the-art models: a
deep GCNII network with 64 layers (Chen et al., 2020b),
and a maximally expressive GIN network with 4 layers (Xu
et al., 2019). We evaluate those models on tasks for which

https://github.com/rusty1s/pyg_autoscale
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Full-batch Historical-based Baseline GAS

Accuracy 100 200 300

0.8

0.9

Epochs

(a) 2-GCN on CORA

Accuracy 300 600 900

0.8

0.9

Epochs

(b) 64-GCNII on CORA

Accuracy 50 100 150

0.5

0.6

Epochs

(c) 4-GIN on CLUSTER

Figure 3. Model performance comparison between full-batch, an unoptimized history-based baseline and our GAS approach. In
contrast to the historical-based baseline, GAS reaches the quality of full-batch training, especially for (b) deep and (c) expressive models.

Table 1. Full-batch vs GAS performance on small transductive graph benchmark datasets across 20 different initializations. Pre-
dictive performance of models trained via GAS closely matches those of full-batch gradient descent on all models for all datasets.

† Results omitted due to unstable performance across different weight initializations, cf. Shchur et al. (2018)

Dataset GCN GAT APPNP GCNII
Full GAS Full GAS Full GAS Full GAS

CORA 81.88±0.75 82.29±0.76 82.80±0.47 83.32±0.62 83.28±0.60 83.19±0.58 85.04±0.53 85.52±0.39

CITESEER 70.98±0.66 71.18±0.97 71.72±0.91 71.86±1.00 72.13±0.73 72.63±0.82 73.06±0.81 73.89±0.48

PUBMED 78.73±1.10 79.23±0.62 78.03±0.40 78.42±0.56 80.21±0.20 79.82±0.52 79.72±0.78 80.19±0.49

COAUTHOR-CS 91.08±0.59 91.22±0.45 90.31±0.49 90.38±0.42 92.51±0.47 92.44±0.58 92.45±0.35 92.52±0.31

COAUTHOR-PHYSICS 93.10±0.84 92.98±0.72 92.32±0.86 92.80±0.61 93.40±0.92 93.68±0.61 93.43±0.52 93.61±0.41

AMAZON-COMPUTER 81.17±1.81 80.84±2.26 —† —† 81.79±2.00 81.66±1.81 83.04±1.81 83.05±1.16

AMAZON-PHOTO 90.25±1.66 90.53±1.40 —† —† 91.27±1.26 91.23±1.34 91.42±0.81 91.60±0.78

WIKI-CS 79.08±0.50 79.00±0.41 79.44±0.41 79.56±0.47 79.88±0.40 79.75±0.53 79.94±0.67 80.02±0.43

∆ Mean Accuracy +0.13 +0.29 -0.01 +0.29

they are well suitable: classifying academic papers in a cita-
tion network (CORA), and identifying community clusters
in Stochastic Block Models (CLUSTER) (Yang et al., 2016;
Dwivedi et al., 2020), cf. Figure 3. Since CLUSTER is a node
classification task containing multiple graphs, we first con-
vert it into a super graph (holding all the nodes of all graphs),
and partition this super graph using twice as many partitions
as there are initial graphs. It can be seen that especially
for deep (64-GCNII, cf. Figure 3b) and expressive (4-GIN,
cf. Figure 3c) architectures, the naive historical-based base-
line fails to reach the desired full-batch performance. This
can be contributed to the high approximation error induced
by deep and expressive models. In contrast, GAS shows
far superior performance, reaching the quality of full-batch
training in both cases.

In general, we expect the model performances of our GAS
mini-batch training to closely resemble the performances of
their full-batch counterparts, except for the variance intro-
duced by stochastic optimization (which is, in fact, known
to improve generalization (Bottoue & Bousquet, 2007)). To
validate, we compare our approach against full-batch perfor-
mances on small transductive benchmark datasets for which
full-batch training is easily feasible. We evaluate on four
GNN models that significantly advanced the field of graph

representation learning: GCN (Kipf & Welling, 2017), GAT
(Veličković et al., 2018), APPNP (Klicpera et al., 2019a)
and GCNII (Chen et al., 2020b). For all experiments, we
tried to follow the hyperparameter setup of the respective
papers as closely as possible and perform an in-depth grid
search on datasets for which best performing configurations
are not known. We then apply GAS mini-batch training on
the same set of hyperparameters. As shown in Table 1, all
models that utilize GAS training perform as well as their
full-batch equivalents (with slight gains overall), confirming
the practical effectiveness of our approach. Notably, even
for deep GNNs such as APPNP and GCNII, our approach
is able to closely resemble the desired performance.

We further conduct an ablation study to highlight the indi-
vidual performance improvements of our GAS techniques
within a GCNII model, i.e. minimizing inter-connectivity
and applying regularization techniques. Table 2 shows the
relative performance improvements of individual GAS tech-
niques in percentage points, compared to the corresponding
model performance obtained by full-batch training. Notably,
it can be seen that both techniques contribute to resembling
full-batch performance, reaching their full strength when
used in combination. We include an additional ablation
study for training an expressive GIN model in the appendix.
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Table 2. Relative performance improvements of individual GAS techniques within a GCNII model. The performance improvement
is measured in percentage points in relation to the corresponding model performance obtained by full-batch training.

CORA CITESEER PUBMED
COAUTHOR- AMAZON- WIKI-CSCS PHYSICS COMPUTER PHOTO

Baseline -3.26 -5.66 -3.20 -0.79 -0.50 -5.76 -4.16 -3.19
Regularization -2.12 -1.03 -1.24 -0.46 -0.24 -3.02 -1.19 -0.74
METIS -1.57 -3.12 -1.50 -0.47 +0.13 -2.75 -1.02 -0.24
GAS +0.48 +0.83 +0.47 +0.07 +0.18 +0.01 +0.18 +0.08

Table 3. GPU memory consumption (in GB) and the amount
of data used (%) across different GNN execution techniques.
GAS consumes low memory while making use of all available
neighborhood information during a single optimization step.

# nodes 717K 169K 2.4M
# edges 7.9M 1.2M 61.9M

Method YELP
ogbn- ogbn-
arxiv products

2-
la

ye
r Full-batch 6.64GB/100% 1.44GB/100% 21.96GB/100%

GRAPHSAGE 0.76GB/ 9% 0.40GB/ 27% 0.92GB/ 2%
CLUSTER-GCN 0.17GB/ 13% 0.15GB/ 40% 0.16GB/ 16%
GAS 0.51GB/100% 0.22GB/100% 0.36GB/100%

3-
la

ye
r Full-batch 9.44GB/100% 2.11GB/100% 31.53GB/100%

GRAPHSAGE 2.19GB/ 14% 0.93GB/ 33% 4.34GB/ 5%
CLUSTER-GCN 0.23GB/ 13% 0.22GB/ 40% 0.23GB/ 16%
GAS 0.79GB/100% 0.34GB/100% 0.59GB/100%

4-
la

ye
r Full-batch 12.24GB/100% 2.77GB/100% 41.10GB/100%

GRAPHSAGE 4.31GB/ 19% 1.55GB/ 37% 11.23GB/ 8%
CLUSTER-GCN 0.30GB/ 13% 0.29GB/ 40% 0.29GB/ 16%
GAS 1.07GB/100% 0.46GB/100% 0.82GB/100%

6.2. GAS is fast and memory-efficient

For training large-scale GNNs, GPU memory consumption
will directly dictate the scalability of the given approach.
Here, we show how GAS maintains a low GPU memory
footprint while, in contrast to other scalability approaches,
accounts for all available information inside a GNN’s re-
ceptive field in a single optimization step. We compare the
memory usage of GCN+GAS training with the memory
usage of full-batch GCN, and mini-batch GRAPHSAGE
(Hamilton et al., 2017) and CLUSTER-GCN (Chiang et al.,
2019) training, cf. Table 3. Notably, GAS is easily able to fit
the required data on the GPU, while memory consumption
only increases linearly with the number of layers. Although
CLUSTER-GCN maintains an overall lower memory foot-
print than GAS, it will only utilize a fraction of available
information inside its receptive field, i.e. ≈23% on average.

We now analyze how GAS enables large-scale training due
to fast mini-batch execution. Specifically, we are interested
in how our concurrent memory transfer scheme (cf. Sec-
tion 5) reduces the overhead induced by accessing historical
embeddings from the offline storage. For this, we evalu-
ate runtimes of a 4-layer GIN model on synthetic graph
data, which allows fine-grained control over the ratio be-
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Figure 4. Runtime overhead in relation to the inter-/intra-
connectivity ratio of mini-batches, both for serial and concur-
rent history access patterns. The overall runtime overhead is
further separated into computational overhead (overhead of aggre-
gating additional messages) and I/O overhead (overhead of pulling
from and pushing to histories). Our concurrent memory transfer
reduces I/O overhead caused by histories by a wide margin.

tween inter- and intra-connected nodes, cf. Figure 4. Here,
a given mini-batch consists of exactly 4,000 nodes which
are randomly intra-connected to 60 other nodes. We vary
the number of inter-connections (connections to nodes out-
side of the batch) by adding out-of-batch nodes that are
randomly inter-connected to 60 nodes inside the batch. No-
tably, the naive serial memory transfer increases runtimes
up to 350%, which indicates that frequent history accesses
can cause major I/O bottlenecks. In contrast, our concurrent
access pattern incurs almost no I/O overhead at all, and
the overhead in execution time is solely explained by the
computational overhead of aggregating far more messages
during message propagation. Note that in most real-world
scenarios, the additional aggregation of history data may
only increase runtimes up to 25%, since most real-world
datasets contain inter-/intra-connectivity ratios between 0.1
and 2.5, cf. appendix. Further, the additional overhead of
computing METIS partitions in the pre-processing stage is
negligible and is quickly mitigated by faster training times:
Computing the partitioning of a graph with 2M nodes takes
only about 20–50 seconds (depending on the number of
clusters).

Next, we compare runtimes and memory consumption of
GAS to the recent GTTF proposal (Markowitz et al., 2021),
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Table 4. Efficiency of GCN with GTTF and GAS.

Dataset Runtime (s) Memory (MB)
GTTF GAS GTTF GAS

CORA 0.077 0.006 18.01 2.13
PUBMED 0.071 0.006 28.79 2.19
PPI 0.976 0.007 134.86 12.37
FLICKR 1.178 0.007 325.97 16.32

which utilizes a fast neighbor sampling strategy based on
tensor functionals. For this, we make use of a 4-layered
GCN model with equal mini-batch and receptive field sizes.
As shown in Table 4, GAS is both faster and consumes
less memory than GTTF. Although GTTF makes use of a
fast vectorized sampling procedure, its underlying recursive
neighborhood construction still scales exponentially with
GNN depth, which explains the observable differences in
runtime and memory consumption.

6.3. GAS scales to large graphs

In order to demonstrate the scalability and generality of our
approach, we scale various GNN operators to common large-
scale graph benchmark datasets. Here, we focus our analysis
on GNNs that are notorious hard to scale-up but have the
potential to leverage the increased amount of available data
to make more accurate predictions. In particular, we bench-
mark deep GNNs, i.e. GCNII (Chen et al., 2020b), and ex-
pressive GNNs, i.e. PNA (Corso et al., 2020). Note that it is
not possible to run those models in full-batch mode on most
of these datasets as they will run out of memory on com-
mon GPUs. We compare with 10 scalable GNN baselines:
GRAPHSAGE (Hamilton et al., 2017), FASTGCN (Chen
et al., 2018a), LADIES (Zou et al., 2019), VR-GCN (Chen
et al., 2018b), MVS-GNN (Cong et al., 2020), CLUSTER-
GCN (Chiang et al., 2019), GRAPHSAINT (Zeng et al.,
2020b), SGC (Wu et al., 2019), SIGN (Frasca et al., 2020)
and GBP (Chen et al., 2020a). Since results are hard to com-
pare across different approaches due to differences in frame-
works, model implementations, weight initializations and
optimizers, we additionally report a shallow GCN+GAS
baseline. GAS is able to train all models on all datasets on a
single GPU, while holding corresponding histories in CPU
memory. On the largest dataset, i.e. ogbn-products,
this will consume ≈ L· 2GB of storage for L layers, which
easily fits in RAM on most modern workstations.

As can be seen in Table 5, the usage of deep and expressive
models within our framework advances the state-of-the-art
on REDDIT and FLICKR, while it performs equally well for
others, e.g., PPI. Notably, our approach outperforms the
two historical-based variants VR-GCN and MVS-GNN
by a wide margin. Interestingly, our deep and expressive
variants reach superior performance than our GCN baseline

Table 5. Performance on large graph datasets. GAS is both scal-
able and general while achieving state-of-the-art performance.
# nodes 230K 57K 89K 717K 169K 2.4M
# edges 11.6M 794K 450K 7.9M 1.2M 61.9M

Method REDDIT PPI FLICKR YELP
ogbn- ogbn-
arxiv products

GRAPHSAGE 95.40 61.20 50.10 63.40 71.49 78.70
FASTGCN 93.70 — 50.40 — — —
LADIES 92.80 — — — — —
VR-GCN 94.50 85.60 — 61.50 — —
MVS-GNN 94.90 89.20 — 62.00 — —
CLUSTER-GCN 96.60 99.36 48.10 60.90 — 78.97
GRAPHSAINT 97.00 99.50 51.10 65.30 — 79.08
SGC 96.40 96.30 48.20 64.00 — —
SIGN 96.80 97.00 51.40 63.10 — 77.60
GBP — 99.30 — 65.40 — —

Fu
ll-

ba
tc

h GCN 95.43 97.58 53.73 OOM 71.64 OOM
GCNII OOM OOM 55.28 OOM 72.83 OOM
PNA OOM OOM 56.23 OOM 72.17 OOM

G
A

S GCN 95.45 98.92 54.00 62.94 71.68 76.66
GCNII 96.77 99.50 56.20 65.14 73.00 77.24
PNA 97.17 99.44 56.67 64.40 72.50 79.91

on all datasets, which highlights the benefits of evaluating
larger models on larger scale.

7. Conclusion and Future Work
We proposed a general framework for scaling arbitrary mes-
sage passing GNNs to large graphs without the necessity to
sub-sample edges. As we have shown, our approach is able
to train both deep and expressive GNNs in a scalable fashion.
Notably, our approach is orthogonal to many methodologi-
cal advancements, such as unifying GNNs and label prop-
agation (Shi et al., 2020), graph diffusion (Klicpera et al.,
2019b), or random wiring (Valsesia et al., 2020), which we
like to investigate further in future works. While our exper-
iments focus on node-level tasks, our work is technically
able to scale the training of GNNs for edge-level and graph-
level tasks as well. However, this still needs to be verified
empirically. Another interesting future direction is the fu-
sion of GAS into a distributed training algorithm (Jia et al.,
2020; Ma et al., 2019; Zhu et al., 2016; Tripathy et al., 2020;
Wan et al., 2020; Angerd et al., 2020; Zheng et al., 2020),
and to extend our framework in accessing histories from
disk storage rather than CPU memory. Overall, we hope
that our findings lead to the development of sophisticated
and expressive GNNs evaluated on large-scale graphs.
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then propagate: Graph neural networks meet personalized
PageRank. In ICLR, 2019a.

Klicpera, J., Weißenberger, S., and Günnemann, S. Diffu-
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