
ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

A. Experimental Details
In this section we describe the environments used in our experiments (see Section 4) and the experiment design.

A.1. Highway

We build on the highway-v0 task from the highway-env traffic simulator (Leurent, 2018). The
task is specified by:

1. State space, S: The kinematic information of the ego vehicle and the five closest ve-
hicles (ordered from closest to the furthest) is used as the Markov state, i.e., st =
{[xt, yt, ẋt, ẏt]}ego, other1, ..., other5 ∈ R6×4. The ego-car is illustrated in green and the other
cars in blue.

2. Action space, A: We use a discrete action space, constructed by K-means clustering of the
continuous actions of the intelligent driving model (Kesting et al., 2010). We found out that
keeping 9 actions was sufficient, i.e., at ∈ {0, . . . , 8}.

3. Demonstrations, D: At each time-step, the ego-car observes online the state-action pairs for the
5 closest cars.

Figure 6. Highway

A.2. Roundabout
We build on the roundabot-v0 task from the highway-env traffic simulator (Leurent, 2018).
The task is specified by:

1. State space, S: The kinematic information of the ego vehicle and the five closest ve-
hicles (ordered from closest to the furthest) is used as the Markov state, i.e., st =
{[xt, yt, ẋt, ẏt]}ego, other1, ..., other3 ∈ R4×4. The ego-car is illustrated in green and the other
cars in blue.

2. Action space, A: We use a discrete action space, constructed by K-means clustering of the
continuous actions of the intelligent driving model (Kesting et al., 2010). We found out that
keeping 6 actions was sufficient, i.e., at ∈ {0, . . . , 5}.

3. Demonstrations, D: At each time-step, the ego-car observes online the state-action pairs for the
3 closest cars.

Figure 7. Roundabout

A.3. CoinGrid
We build a simple multi-task grid-world. The task is specified by:

1. State space, S: We use a symbolic, multi-channel representation of the 7 × 7 grid-
world (Chevalier-Boisvert et al., 2019): the first three channels specify the presence or absence
of the three different coloured boxes, the forth channel was the walls mask and the fifth and last
channel was the position and orientation of the agent. We represent the orientation of the agent
by ‘painting’ the cell in front of the agent. Therefore st ∈ {0, 1}7×7×5.

2. Action space,A: We use the {LEFT, RIGHT, FORWARD} actions from Minigrid (Chevalier-
Boisvert et al., 2018) to navigate the maze, i.e., at ∈ {0, 1, 2}.

3. Demonstrations, D: At the beginning of training, the agent is given state-action pairs of other
agents collecting either red or green coins.

Figure 8. CoinGrid

A.4. Fruitbot
We build on the Fruitbot environment from OpenAI’s ProcGen benchmark (Cobbe et al., 2020).
The task is specified by:

1. State space, S: We use the original high-dimensional 64 × 64 RGB observations, i.e., st ∈
[0, 1]

64×64×3.
2. Action space, A: We use the original 15 discrete actions, i.e., at ∈ {0, . . . , 14}.
3. Demonstrations, D: At each time-step, the agent observes online the states and actions of 3

trained agents playing the game in parallel: One agent collects both fruits and other objects, one
collects other objects and avoids fruits and the last one randomly selects actions. Figure 9. Fruitbot

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

B. Implementation Details
For our experiments we used Python (Van Rossum & Drake Jr, 1995). We used JAX (Bradbury et al., 2018; Babuschkin et al.,
2020) as the core computational library, Haiku (Hennigan et al., 2020) and Acme (Hoffman et al., 2020) for implementing
ΨΦ-learning and the baselines, see Section 4. We also used Matplotlib (Hunter, 2007) for the visualisations and Weightd &
Biases (Biewald, 2020) for managing the experiments.

B.1. Computation Graph

ΦΨk
LITD

wk

Qk

D
LBC-Qk = 1 . . . K

Ψego

LTD-Ψ

wego

Qego

GPI

πego

B
LTD-Q

rego LR

Figure 10. Computational graph of the ΨΦ-learning algorithm. Demonstrations D contain data from other agents for unknown tasks.
We employ inverse temporal difference learning (ITD, see Section 3.1) to recover other agents’ successor features (SFs) and preferences.
The ego-agent combines the estimated SFs of others along with its own preferences and successor features with generalised policy
improvement (GPI, see Section 2.2), generating experience. Both the demonstrations and the ego-experience are used to learn the shared
cumulants. Losses L∗ are represented with double arrows and gradients flow according to the pointed direction(s).

B.2. Neural Network Architecture

st

E

Φ(st, ·)Ψ1(st, ·)Ψ1(st, ·) w1 · · · ΨK(st, ·)ΨK(st, ·) wK Ψego(st, ·)Ψego(st, ·) wego

Figure 11. Neural network architecture of the ΨΦ-learner. The rectangular nodes are tensors parametrised by MLPs and the circles
are learnable vectors. We share an observation network/torso, E , across all the network heads. The network heads that related to the other
agents are in blue and trained from demonstrations D. The ego-agent’s experience B is used for training the green heads. The shared
cumulants and torso are trained with both D and B. An ensemble of two successor features approximators is used for the ego- and other-
agents for combatting model overestimation, see Section 3.

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

B.3. Hyperparameters

Table 3. ΨΦ-learner’s hyperparameters per environment. The tuning was performed on a DQN (Mnih et al., 2013) baseline with
population based training (Jaderberg et al., 2017) using Weights & Biases (Biewald, 2020) integration with Ray Tune (Liaw et al., 2018).
We selected the best hyperparameters configuration out of 32 trials per environment and used this for our ΨΦ-learner.

Highway CoinGrid FruitBot

Torso network, E MLP([512, 256]) IMPALA (Espeholt et al., 2018), shallow (no LSTM) IMPALA (Espeholt et al., 2018), deep (no LSTM)
Cumulants approximator, Φ MLP([128, 128]) MLP([256, 128]) MLP([256, 128])
Successor features approximator, Ψ MLP([256, 128]) MLP([512, 256]) MLP([512, 256])
Ensemble size, Ψ 2 2 2
L1 coefficient 0.05 0.05 0.05

Number of dimensions in Φ 8 4 64

Minibatch size 512 64 32
n-step 4 8 128
Discount factor, γ 1.0 0.9 0.999
Target network update period 100 1000 2500
Optimiser ADAM (Kingma & Ba, 2014), lr=1e-3 ADAM (Kingma & Ba, 2014), lr=1e-4 ADAM (Kingma & Ba, 2014), lr=5e-5

B.4. Compute Resources

All the experiments were run on Microsoft Azure Standard NC6s v3 machines, i.e., with a 6-core vCPU, 112GB RAM
and a single NVIDIA Tesla V100 GPU. The iteration cycle for (i) Highway experiments was 3 hours; (ii) CoinGrid
experiments was 5.5 hours and (iii) Fruitbot experiments was 19 hours.

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

C. Proofs
First, we formalise the statement of Theorem 1.

Theorem 1 (Validity of the ITD Minimiser). The minimisers of LBC-Q and LITD are potentially-shaped cumulants that
explain the observed reward-free demonstrations.

Proof. First, we prove the validity of the minimiser of the inverse temporal difference learning for the single-task setting.
Next, we show that the result holds true in the vector (i.e., cumulants) case.

Single task. We assume that our demonstrations are generated by an expert, who samples actions from a Boltzmann policy,
according to the optimal (for its task) action-value function Qπexpert and temperature ν > 0, i.e., D = {(s,a)} ∼ πexpert s.t.

πexpert(a|s) , p(A = a|s) =
exp(1

ν
Qπexpert (s,a))∑

a exp(1
ν
Qπexpert (s, a))

, ∀s ∈ S,a ∈ A . (15)

The minimiser of the behavioural cloning loss LBC-Q(θQ), i.e. Eqn. (8), for a single expert is s.t.

θ∗Q ∈ arg min
θQ

− E
(s,a)∼D

log
exp(Q(s,a;θQ))∑
a exp(Q(s, a;θQ))

(16)

⇒ Q(s,a;θ∗Q) =
1

ν
Qπexpert (s,a) + F (s), ∀s ∈ S,a ∈ A , (17)

where F : S → R is a state-dependent (bounded potential) function. We arrive at Eqn. (17) by (1) testing 1
νQ

πexpert(s,a) as a
solution and noting that the “softmax“ function is convex in the exponent (Boyd et al., 2004) and (2) using the translation
invariance property of the assumed Boltzmann policy parametrisation, i.e., for any f : S ×A → R and g : S → R

exp(f(s,a) + g(s))∑
a exp(f(s, a) + g(s))

=
exp(g(s)) exp(f(s,a))

exp(g(s))
∑
a exp(f(s, a))

=
exp(f(s,a))∑
a exp(f(s, a))

. (18)

The minimiser of the inverse temporal difference learning loss LITD(θQ,θr), Eqn. (9), for a single expert is s.t.

θ∗Q,θ
∗
r ∈ arg min

θQ,θr

E
(s,a,s′,a′)∼D

‖Q(s,a;θQ)− r(s,a;θr)− γQ(s′,a′;θQ)‖ (19)

where θ∗Q is minimising LBC-Q(θQ) simultaneously, as in Eqn. (17). Therefore, it holds that LITD(θ∗Q,θ
∗
r) = 0

r(s,a;θ∗r) = Q(s,a;θ∗Q)− γQ(s′,a′;θ∗Q) (20)
(17)
=

1

ν
Qπexpert (s,a) + F (s)− γ 1

ν
Qπexpert (s′,a′)− γF (s′) (21)

=
1

ν

Qπexpert (s,a)− γQπexpert (s′,a′)
rexpert(s,a)

+ F (s)− γF (s′) (22)

=
1

ν
rexpert(s,a) + F (s)− γF (s′)

potential-based reward
shaping function

, (23)

where rexpert is the (unobserved) expert’s reward function. We have shown that the minimiser of LBC-Q and LITD leads to a
reward function r(s,a;θ∗r) which is a potential-based shaped and scaled reward function of the expert reward function and
hence the optimal policy for r(s,a;θ∗r) is also optimal for rexpert(s,a) for all s,a (Ng et al., 1999).

Multiple tasks. The minimiser of the behavioural cloning loss LBC-Q(θΨk ,wk), i.e., Eqn. (8), for the k-th expert is s.t.

θ∗Ψk ,w
k∗ ∈ arg min

θ
Ψk ,w

k

− E
(s,a)∼Dk

log
exp(Ψ(s,a;θΨk)>wk)∑
a exp(Ψ(s, a;θΨk)>wk)

(24)

⇒ Ψ(s,a;θΨk)>wk =
1

ν
Qπk-expert (s,a) + F k(s), ∀s ∈ S,a ∈ A , (25)

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

where Qπk-expert is the k-agent’s action-value function and Hk : S → R a state-dependent (bounded potential) function. Next,
the minimiser of the inverse temporal difference learning loss LITD(θΨk ,θΦ), Eqn. (9), for the k-th expert is s.t.

θ∗Ψk ,θ
∗
Φ ∈ arg min

θ
Ψk ,θΦ

E
(s,a,s′,a′)∼Dk

‖Ψ(s,a;θΨk)− Φ(s,a;θΦ)− γΨ(s′,a′;θΨk)‖ (26)

where θ∗Ψk is minimising LBC-Q(θΨk ,wk) simultaneously, as in Eqn. (25). Therefore, it holds that for LITD(θ∗Ψk ,θ
∗
Φ) = 0

Φ(s,a;θ∗Φ) = Ψ(s,a;θ∗Ψk)− γΨ(s′,a′;θ∗Ψk) (27)

Φ(s,a;θ∗Φ)>wk∗ = Ψ(s,a;θ∗Ψk)>wk∗ − γΨ(s′,a′;θ∗Ψk)>wk∗ (28)
(25)
=

1

ν
Qπk-expert (s,a) + F k(s)− γ 1

ν
Qπk-expert (s′,a′)− γF k(s′) (29)

=
1

ν

Qπk-expert (s,a)− γQπk-expert (s′,a′)
rk-expert(s,a)

+ F k(s)− γF k(s′) (30)

=
1

ν
rk-expert(s,a) + F k(s)− γF k(s′)

potential-based reward
shaping function

, (31)

We have shown that the minimiser of LBC-Q and LITD leads to agent-agnostic cumulants Φ(s,a;θ∗Φ) and agent-specific
preference vector wk∗, which when dot-producted, form a potential-based shaped and scaled reward function of the k-th
expert reward function and hence the optimal policy for Φ(s,a;θ∗Φ)>wk∗ is also optimal for rk-expert(s,a) for all s,a (Ng
et al., 1999). The result holds for all k ∈ {1 . . .K} since no assumptions were made for the proof about k.

Next, we formalise the statement of Theorem 2. When not specified the norm ‖ · ‖ refers to the 2-norm. Given a function
F : X → Rd for some finite set X , we will write F (x) to denote the value of the function on input x and F to denote the
matrix representation of this function in R|X |×d.
Theorem 2 (Generalisation Bound of ΨΦ-Learning). Let C = (S,A, P, γ) be a CMP with a finite state space. Let
φ : S → Rd, and let Φ = φ(S) ∈ R|S|×d. Let (ri)

k
i=1 denote a set of reward functions on C, Ψ̃i be a collection of successor

features approximations for policies (πi)ki=1 (πi optimal for ri) with true successor feature values Ψi, and wi the best
least-squares linear approximator of ri given Φ, with errors

‖Φwi − ri‖∞ < δr and ‖Ψ̃i −Ψi‖ < δΨ ∀i.

Let w′ be a new preference vector for a reward function r′, with maximal error δr as well. Let Q̃i = Ψ̃iw′. Let π∗ be the
optimal policy for the ego task w′ and let π be the GPI policy obtained from {Q̃πi}, with δr, δΨ the reward and successor
feature approximation errors. Then for all s, a

Q∗(s, a)−Qπ(s, a) ≤ 2

1− γ

[
(φmax‖wj − w′‖+ 2δr) + ‖w′‖δΨ +

1

(1− γ)
δr

]
(32)

Barreto et al. (2017) construct their bound on the sub-optimality of the GPI policy as a function of the error of the value
approximations Q̃i. Because we bound the reward approximation error, rather than the value approximation error, we require
an additional step to obtain a bound on the errors of the value funciton approximations. To prove Theorem 1, we must
therefore first use the following lemma to bound the effect of the reward approximation error on the value approximation
error. While this result is straightforward, we include a short proof for completeness.
Lemma 1. Fix some policy π. Let r be reward vector and let w be the least-squares solution to min ‖Φw − r‖. Let Ψπ be
the true successor features for Φ under policy π, and let Qπ be the value. Let δr = R(S) − Φw, δmax = ‖δr‖∞. Then
letting Q̃ = Ψw, we have

‖Qπ − Q̃‖∞ ≤
1

1− γ δr (33)

Proof.

‖Qπ − Q̃‖∞ ≤
∑

γt‖Pπt(Φw − r)‖∞ (34)

≤
∑

γt‖Pπtδr‖∞ =
∑
t

γt max
s′
|
∑
s∈S

(Pπ)t(s′, s)δr(s)| (35)

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

Since Pπ is a stochastic matrix, so are all of its powers, and so the rows of (Pπ)t sum to 1.

≤
∑
t

γt max
s′
|
∑

Pπt(s, s′)δmax| =
∑

γtδmax (36)

=
1

1− γ δmax (37)

We now prove the main result.

Proof. We follow the proof of Barreto et al. (2017, Theorem 2), with additional error terms to account for the reward and
successor feature approximation errors.

Q∗(s, a)−Qπ(s, a) ≤ Q∗(s, a)−Qπj (s, a) +
2

1− γ ε (Barreto et al., 2017, Theorem 1)

≤ 2

1− γ ‖rj − r
′‖∞ +

2

1− γ ε (Barreto et al., 2017, Lemma 1)

≤ 2

1− γ ‖φwj + δj − φw′ − δ′‖∞ +
2

1− γ ε

≤ 2

1− γ (φmax‖wj − w′‖+ δr + δr) +
2

1− γ ε

≤ 2

1− γ (φmax‖wj − w′‖+ 2δr) +
2

1− γ ‖Ψ̃
jw′ −Ψjw

′ + Ψjw
′ −Qj‖

≤ 2

1− γ (φmax‖wj − w′‖+ 2δr) +
2

1− γ ‖Ψ̃
jw′ −Ψjw

′‖+ ‖Ψjw
′ −Qj‖

≤ 2

1− γ (φmax‖wj − w′‖+ 2δr) +
2

1− γ ‖w
′‖δΨ +

2

1− γ ‖Ψjw
′ −Qj‖

≤ 2

1− γ (φmax‖wj − w′‖+ 2δr) +
2

1− γ ‖w
′‖δΨ +

2

1− γ (
1

1− γ δr) (Lemma 1)

=
2

1− γ

[
(φmax‖wj − w′‖+ 2δr) + ‖w′‖δΨ +

1

(1− γ)
δr

]

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

D. Algorithms

Algorithm 1: Inverse Temporal Difference Learning
Input :
D = {(s1,a1, . . . ,aT ; k)Kk=1} No-reward demonstrations
λw L1 loss coefficient

Output :
θΦ Parameters of cumulants network
{θΨk}Kk=1 Parameters of successor features approximators
{wk}Kk=1 Preferences vectors for the K agents

// initialisations
1 Initialise parameters θΦ, {θΨk ,wk}Kk=1

2 while budget do

3 Sample trajectories {τi = (s
(i)
1 , a

(i)
1 , . . . , s

(i)
T , a

(i)
T ; k(i))}Ni=1 ∼ D

4 Calculate behavioural cloning loss LBC-Q(θΨk ,wk) on samples {τi}Ni=1 . see Eqn. (8)

5 θΨk
α← ∇θ

Ψk
LBC-Q(θΨk ,wk) . update Ψs

6 wk α← ∇wk

(
LBC-Q(θΨk ,wk) + λw‖wk‖1

)
. update ws

7 Calculate inverse temporal difference loss LITD(θΦ,θΨk) on samples {τi}Ni=1 . see Eqn. (9)

8 θΦ
α← ∇θΦ

LITD(θΨk
,θΦ) . update Φ

9 θΨk

α← ∇θΨk
LITD(θΨk

,θΦ) . update Ψs

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

Algorithm 2: ΨΦ-Learning
Input :
D = {(s1,a1, . . . ,aT ; k)Kk=1} No-reward demonstrations
λw L1 loss coefficient

Output :
θΨego Ego successor features approximator
θΦ Parameters of cumulants network
{θΨk}Kk=1 Parameters of successor features approximators
{wk}Kk=1 Preferences vectors for the K agents

// initialisations
1 Empty replay buffer for ego-experience B = {}
2 Initialise parameters θΨego ,wego,θΦ, {θΨk ,wk}Kk=1

3 while budget do

// agent-environment interaction
4 Reset episode, s← env.reset(), t← 0
5 while not done do
6 wego ← arg minw LR(θΦ, w;B) . ego-task inference, see Eqn. (10)
7 a← πego

GPI

(
s; Ψego,wego, {θΨk}Kk=1

)
. GPI, see Eqn. (13)

8 Step in the environment, s′, rego,done← env.step(a)
9 Append transition in the replay buffer, B ← B ∪ (s,a, rego, s′)

10 s′ ← s, t← t+ 1
11 (online demonstrations) Append demonstrations in D . optional

// parameter updates/learning
12 θΦ, {θΨk ,wk}Kk=1 ← ITD

(
D, λw,θΦ, {θΨk ,wk}Kk=1

)
. see Algorithm. (1)

13 Sample transitions {(s(i),a(i), rego,(i), s′(i))} ∼ B
14 Calculate the reward loss LR(θΦ,w

ego) . see Eqn. (10)

15 θΦ
α← ∇θΦ

LR(θΦ,w
ego) . update Φ

16 Calculate TD losses LQ(θΨego) and LTD-Ψ(θΨego) . see Eqn. (11,12)

17 θΨego
α← ∇θΨego

(
LQ(θΨego) + 1

|Ψ|LTD-Ψ(θΨego)
)

. update Ψego

ΨΦ-Learning: RL with Demonstrations using Successor Features and Inverse TD Learning

E. Visualisations

(a) CoinGrid (b) φ1 (c) φ2 (d) φ3 (e) φ4

Figure 12. Qualitative evaluation of the learned cumulants in the CoinGrid task. Cumulants φ1, φ2, and φ3 seem to capture the red, green,
and yellow blocks, respectively. The yellow blocks are captured by both and φ4. Therefore, linear combinations of the learned cumulants
can represent arbitrary rewards in the environment, which involve stepping on the coloured blocks.

2 4 8 16 32 128
|Φ|

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
Re

tu
rn

s

(a) ITD for Roundabout

2 4 8 16 32 128
|Φ|

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ise
d

Re
tu

rn
s

(b) ITD for CoinGrid

102 103 104
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu
rn
s

|Φ|
2
4
8

16
32
128

(c) ΨΦ-learning for Highway Multi-Task

Figure 13. Sensitivity of our ITD (see Section 3.1) and ΨΦ-learning (see Section 3.2) algorithms to the dimensionality of the learned
cumulants. We consistently observe across all three experiments (a)-(c) that for a small number of Φ dimensions the cumulants are not
expressive enough to capture the axis of variation of the different agents’ reward functions (including the ego-agent in (c)). We also note
that the performance of both ITD and ΨΦ-learning is relative robust for a medium and large number of Φ dimensions. We attribute this
to the used sparsity prior, i.e., L1 loss, to the preferences w. In our experiments we selected the smallest number of Φ dimensions that
demonstrated good performance to keep the number of model parameters as small as possible (in bold in the figures and reported in
Table 3).

