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A. Overview
In Appendix B we prove that Equation 4 and Equation 5 are
necessary and sufficient conditions to satisfy the symmetry
constraint. In Appendix C we prove that the simple iterative
MVM method for finding the nullspace converges to the
true nullspace with an exponential rate, and we derive the
complexity upper bounds for various symmetry groups and
representations. In Appendix D we show that using gated
nonlinearities or Norm-ReLUs alone are not sufficient for
universality. In Appendix E we detail the various groups
we implement and calculate the equivariant subspaces for
different tensor representations. In Appendix F we detail the
steps necessary to extend our implementation to new groups
and representations. Appendix G details some additional
rules by which the solutions for group products can be sped
up. Finally, Appendix I and Appendix J describe training
hyperparameters and how the datasets were constructed.

B. Necessary and Sufficient Conditions for
Equivariance

Theorem 1 Given a (real) Lie groupG with a finite number
of connected components, and a representation ρ acting on
vector space V , the symmetry constraint

∀g ∈ G : ρ(g)v = v (11)

for v ∈ V is satisfied if and only if

∀i = 1, .., D : dρ(Ai)v = 0, (12)
∀` = 1, ...,M : (ρ(h`)− I)v = 0, (13)

where {Ai}Di=1 are D basis vectors for the D dimensional
Lie Algebra g with induced representation dρ, and for some
finite collection {h`}M`=1 of discrete generators.

Proof: As shown in Appendix H, elements of a (real) Lie
group can be written as g = exp (

∑
i αiAi)Πihki for some

collection of real valued coefficients αi ∈ R and discrete
coefficients ki ∈ [−M, ...,M ] which index the M dis-
crete generators (and their inverses). Note that M is up-
per bounded M ≤ (D + 1) + nc(G), by the sum of the
dimension and the number of connected components of G
and is often much smaller as shown by the examples in
Appendix E. For subgroups of Sn for example, M ≤ n
(Guralnick, 1989). Discrete groups are included as a special
case of Lie groups with D = 0. The forward and backward
directions of the proof are shown below.

Necessary: Assume ∀g ∈ G : ρ(g)v = v. Writing g =
exp (

∑
i αiAi)Πihki , we can freely choose group elements

with k = ∅ to find that

∀α : ρ
(

exp (

D∑
i=1

αiAi)
)
v = exp

(
dρ(

D∑
i=1

αiAi)
)
v = v

using the correspondence between group and algebra rep-
resentation (1). From the linearity of dρ(·), this implies
exp

(∑
i αidρ(Ai)

)
v = v. Taking the derivative with re-

spect to αi at α = 0, we have that

∀i = 1, .., D : dρ(Ai)v = 0, (14)

since the exponential map satisfies d
dt exp(tB)|t=0 = B.

Similarly for the discrete constraints we can set αi = 0 and
k = [`] so that ρ(g)v = ρ(Πihki)v = ρ(h`)v = v. By
setting varying `, we get the M constraints

∀` = 1, ...,M : (ρ(h`)− I)v = 0. (15)

Sufficient: Assume Equation 12 and Equation 13 both hold.
Starting with the continuous constraints, exponential map
(defined through the Taylor series) satisfies

exp (B)v = v +Bv +
1

2
B2v + ...

but if Bv = 0 then exp (B)v = v since all terms except v
are 0. Setting B =

∑
i αidρ(Ai) = dρ(

∑
i αiAi) which

satisfies Bv = 0, we have that

∀αi : exp
(
dρ(
∑
i

αiAi)
)
v = v

∀αi : ρ
(

exp (
∑
i

αiAi)
)
v = v.

(16)

Similarly for the discrete generators, if ∀` : ρ(h`)v = v
then

∀` : v = ρ(h`)
−1v = ρ(h−`)v,

and any product satisfies

ρ(ΠN
i=1hki)v = ΠN

i=1ρ(hki)v =
(
ΠN−1
i=1 ρ(hki)

)
ρ(hkN )v.

since ρ(hkN )v = v we can remove that factor and repeat
the argument to get

ρ(ΠN
i=1hki)v =

(
ΠN−1
i=1 ρ(hki)

)
v = ... = v. (17)

Putting Equation 16 and Equation 17 together, we
have that for all α, k: ρ(exp (

∑
i αiAi)Πihki)v = v.

Since every group element can be expressed as g =
exp (

∑
i αiAi)Πihki for some α, k, the equivariance con-

straint ∀g ∈ G : ρ(g)v = v is satisfied.

C. Krylov Method for Efficiently Finding the
Equivariant Subspace

The iterative Krylov subspace algorithm that we use to find
the nullspace of the constraint matrix C is a close variant
of the iterative methods for finding the largest eigenvectors
such as power iteration and Ojas method . We need to
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be able to compute the nullspaces of the massively large
constraint matrices C (such as the (4 × 105) × (7 × 104)
sized matrix for computing the equivariant subspace of TS5

7

in Appendix E), making use of efficient structure that allows
fast MVMs with C.

While the shift and invert strategy for finding small eigen-
values is commonly recommended (Ipsen, 1997), the costs
of inversion via conjugate gradients for these massive matri-
ces can make it exceedingly slow in practice. Other meth-
ods such as block Lanczos (Eberly, 2004) and Wiedemann
(Turner, 2006) have been explored in the literature for the
nullspace problem, but these methods tend to be exceedingly
complicated.

Instead we provide a much simpler algorithm that is also
extremely fast: simple gradient descent followed by a
small SVD. We prove that gradient descent converges ex-
ponentially in this problem, and that with probability 1 our
method converges to the correct nullspace with error ε in
O(log(1/ε)) iterations. We then verify this fact empirically.
The algorithm is closely related to power iteration (Francis,
1961), Oja’s rule (Shamir, 2015), and the PCA approaches
that are framed as optimization problems (Garber & Hazan,
2015).

As introduced in algorithm 1 we propose the following
algorithm for finding the nullspace with rank r ≤ rmax and
then use iterative doubling of rmax until the conditions are
met.

Fast Krylov Nullspace
def CappedKrylovNullspace(C, rmax):
X ∼ N (0, 1)n×rmax

while L(X) > ε do
L(X) = ‖CX‖2F
X ← X − η∇L

end
Q̃, Σ̃, Ṽ = SVD(X)
return Q̃

Assume then that r ≤ rmax (abbreviated rm) and that
we will use the notation from Equation 6 that C =

U

[
Σ 0
0 0

] [
P>

Q>

]
. The gradients of L are∇XL = C>CX

and thus gradient descent can be written as the iteration

Xt+1 = (I − ηC>C)Xt. (18)

We can write X in terms of the true singular vectors of C
(the eigenvectors of C>C) which form a basis. Q and P
are orthogonal (Q>Q = I , Q>P = 0, P>P = I) and we
define the projections of Xt onto these subspaces, Wt =
QTXt and Vt = PTXt. As orthogonal transformations of
isotropic Gaussians are also isotropic Gaussians, the two
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Figure 7. Exponential convergence of algorithm 1 shown em-
pirically over a range of groups and tensor representations for
rmax = 20. In each of these cases, X converges to the limits of
floating point precision in 300 iterations.

matrices are initially distributed W0 ∼ N (0, 1)r×rm and
V0 ∼ N (0, 1)(n−r)×rm .

Writing Xt = QWt + PVt, and noting C>C = PΣ2P>

we can now see the effect of the iteration on the subspaces:

QWt+1 + PVt+1 = (I − ηPΣ2P>)
(
QWt + PVt)

= QWt + P (I − ηΣ2)Vt.

Unrolling the iteration, we have that Wt = W0 and Vt =
P (I − ηΣ2)tV0. So long as the learning rate is chosen
η < 2/σ2

max then the iteration will converge exponentially
to X = QW0. Given optimal learning rate, the convergence
is T = O(κ log(1/ε)) where κ = (σmax

σmin
)2. Since W0 is a

Gaussian random matrix N (0, 1)r×rm , it will be full rank r
with probability 1. Therefore, performing a final SVD on X
will yield the nullspace Q. The runtime of this procedure is
O((M+D)T rm log( 1

ε )+r2mn) since each matrix multiply
with C and C> takes time (M + D)T rm where T is the
time for multiplies with the ρ and dρ matrices with a single
vector, and there are M + D such multiplies that go into
a single multiply with C. Finally the r2mn factor is the
cost of taking the SVD of X at the end. The exponential
convergence is shown empirically across a range of groups
in Figure 7.

If r > rmax then the SVD output Q̃ is a random projection
of rank rmax of the true nullspace Q. Given an unknown r,
we can simply rerun the algorithm doubling rmax each time
until the rank of Q̃ is less than rmax. Adding up the costs,
the total runtime of the algorithm to reach an ε accurate
solution for the nullspace is

O((M +D)T r log( 1
ε ) + r2n). (19)

To put this runtime into perspective, we can upper bound the
runtime to compute the symmetric bases for rank p tensors
Tk of any subgroup of the symmetric group G ≤ Sm. Since
all G ≤ Sm can be expressed with D + M < m discrete
generators (Guralnick, 1989), and axis-wise permutations
of the n = mk sized tensors can be performed in time T =
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mk, the runtime is upper bounded by O(mkr(m log( 1
ε ) +

r)).

Similarly for the orthogonal groups SO(m) and O(m) with
D = m(m − 1)/2 infinitesmal generators and M ≤ 1
discrete generators, the MVM time can be done in T =
kmk since the infinitesmal generators can be expressed
with only 2 nonzero elements. Putting this together, the
symmetric spaces for rank Tk tensors can be solved for
in time O(mkr(km2 log( 1

ε ) + r)), where r is also upper
bounded by the Bell numbers r ≤ Bk. Generalizations
of the Lorentz group SO(p, n − p) and O(p, n − p) have
identical runtimes, and similarly for the complex groups
SU(n) and U(n), as well as the symplectic group Sp(n).

For the equivariant maps between the popular irreducible
representations: ρ = ψk ⊗ ψ` for the group G = SO(3),
T = k2`+ k`2 giving the runtime of our method O((k2`+
k`2)r log( 1

ε )+r2k`). Meanwhile for irreducible representa-
tions of G = SO(2) the runtime is a mere O(r log( 1

ε ) + r2)
regardless of k and `.

D. Linear Layers and Gated Nonlinearities
are Not Universal

Outside of the regular representations where each ρ(g) is
a permutation matrix, we cannot necessarily use pointwise
nonlinearities. Existing equivariant nonlinearities for this
setting such as Norm-ReLU and Gated-Nonlinearity can
artificially limit the expressivity of the networks in cases
such as when using tensor representations.

Theorem 2 Consider equivariant networks built only from
equivariant linear layers that map between (direct sums of)
tensor representations with features v ∈

⊕
a∈A Ta (as well

as biases) and nonlinearities which act separately on each
of the tensors σ : Ta → Ta, or with an additional scalar
as σ : T0 × Ta → Ta. There exists groups (like SO(2) and
O(3)) for which these networks cannot approximate even
simple equivariant functions.

Suppose the base representation ρ of a group G includes
elements that satisfy ∃(g, g′) : ρ(g′) = −ρ(g), which we
term the parity property. For simplicity assume the repre-
sentation is orthogonal ρ = ρ∗ so that we can talk about
rank k tensors rather than rank (p, q) tensors, but the same
argument also applies for non-orthogonal representations
setting k = p+ q. Tensor representations ρk(g) = ρ(g)⊗k

that have an order k that is odd will also have the parity
property since ρ(g′)⊗k = (−1)kρ(g)⊗k. But because the
equivariance constraint holds for all g ∈ G, the following
two constraints must also hold for odd k:

ρ(g)⊗kv = v

−ρ(g)⊗kv = v.

Adding the two constraints together, we have that all equiv-
ariant tensors of odd rank (for groups with this property)
are v = 0. This also means that all equivariant linear maps
from a tensor with even rank to a tensor with odd rank will
be 0.

This is a property of the equivariance for linear layers for
certain groups and is not by itself a problem; however, if the
equivariant nonlinearities σ act separately on each tensor
and preserve its rank σ : Ta → Ta then all quantities in
the network (inputs, outputs, and features) of even order
are computationally disconnected from those of odd order.
Since the nonlinearities act only on a given tensor and keep
its order the same, and linear layers between even and odd
are 0, there can be no nontrivial path between the two. Simi-
larly for nonlinearities like Gated-Nonlinearities which take
in an additional scalar gate as input, so that the nonlineari-
ties are maps σ : T0 × Ta → Ta we can extend the result.
For these kinds of nonlinearities, features of odd order can
depend on inputs and features in previous layers of odd and
even rank; however, there is still no path from a feature or
input of odd order to a later feature or output of even order.

A simple example is the group O(3) and the standard vector
representation for R>R = I , ρ(R) = R. Suppose the
input to the network is the vector v ∈ T1 and the target
to be learned is the scalar f(v) = ‖v‖ ∈ T0. Since the
input is an odd order tensor and the output is an even order
tensor, there can be no nonzero computational path in the
network connecting them. Using Norm-ReLU or Gated-
Nonlinearities the only valid output of such a network is
a constant c which is independent of the input, and the
network cannot fit a simple function such as ‖ · ‖.

Of course this limitation extends much beyond this simple
example, preventing inner products, matrix vector multi-
plies, and many other kinds of valid equivariant functions
from being expressed, regardless of the size of the net-
work. In fact, using the standard vector representation for all
groups O(n) as well as SO(2n) satisfies the parity property,
and will provably have this limitation. Other groups like
the Lorentz group SO(1, 3) and O(1, 3), and the symplectic
group Sp(n) satisfy this property.

E. Equivariant Bases for Various Groups
In this section we list the dimension of the symmetric bases
for various groups and tensor representations that we calcu-
late using our algorithm, and visualize the bases.

E.1. Discrete Translation Group Zn

The discrete translation group (or cyclic group) Zn is gen-
erated by a single shift permutation P[n, 1, 2, ..., n − 1].
Translation equivariant neural networks make use of con-
volutions which are maps (T1 → T1) ∼= T2 and average
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pooling (T1 → T0) ∼= T1. We recover the n dimensional
convolution bases and the 1 dimensional average pooling
element as shown in the table and Figure 3. We also show
the ranks for higher order tensors, which appear to satisfy
r = nk−1 for Zn and Tk. While we are not aware of the
higher order equivariant tensor having been derived in the
literature, it’s not unlikely due to the prominence of the
translation group in signal processing.

Z2 Z3 Z4 Z5 Z6 Z7 Z8

T1 1 1 1 1 1 1 1
T2 2 3 4 5 6 7 8
T3 4 9 16 25 36 49 64
T4 8 27 64 125 216 343 512
T5 16 81 256 625 1296 2401
T6 32 243 1024 3125
T7 64 729 4096

Table 2. Symmetric subspace rank r for tensors Tk of G = Zn

E.2. Permutation Group Sn

We review the solutions to the permutation group Sn which
were solved for analytically in Maron et al. (2018), which
we solve for numerically using our algorithm. As expected,
the solutions bases match the limiting size of the kth Bell
number Bk as n→∞.

However, Maron et al. (2018) claim that the size of the
basis is always Bk regardless of n and that is not quite cor-
rect. The basis derived in Maron et al. (2018) is always
equivariant, but sometimes it contains linearly dependent
solutions, leading to an overcounting when n is small. The
fact that the basis cannot always be of size Bk can be seen
from the fact that the total dimension of Tk is nk and the
equivariant subspace thus has rank r ≤ nk. The Bell num-
bers grow super exponentially in k (about (k/ log(k))k)
and therefore given any n they must exceed the maximum
nk for some value of k. The place where the original ar-
gument of Maron et al. (2018) breaks down is when the
equivalence classes γ may be empty. For example the equiv-
alence class γ1 = {{1}, {2}, {3}, {4}} corresponds to in-
dices i1,i2,i3,i4 which are all distinct. But for n < 4 one
cannot form a set of four indices that are all distinct, hence
γ1 is empty for n < 4. To the best of our knowledge, the
dimension of the equivariant subspaces for small n that
we report below are the precise values and have not been
presented anywhere else.

S2 S3 S4 S5 S6 S7 S8 Bk

T1 1 1 1 1 1 1 1 1
T2 2 2 2 2 2 2 2 2
T3 4 5 5 5 5 5 5 5
T4 8 14 15 15 15 15 15 15
T5 16 41 51 52 52 52 52 52
T6 32 122 187 202 203 203 203
T7 64 365 715 855 877

Table 3. Symmetric Subspace rank r for tensors Tk of G = Sn

E.3. Rubik’s Cube Group

Showing the capabilities to apply to unexplored groups and
representations, we compute the equivariant bases for linear
layers that are equivariant to the action of the Rubik’s Cube
group. The Rubik’s cube group is a subgroup of the permuta-
tion group G < S48 containing all valid Rubik’s cube trans-
formations. The group is extremely large |G| > 4× 1019,
but is generated by only 6 generators: F,B,U,D,L,R a
quarter turn about the front, back, up, down, left, and right
faces.

We use the standard 48 dimensional regular representation
where each of the 6 ∗ (9− 1) = 48 facets (the center facets
are excluded) is a component. The state of the Rubik’s
cube is represented by a 48 dimensional vector where each
component is an integer 0− 5 representing the 6 possible
colors each facet can take. Using this representation, the 6
generators can be expressed as permutations and we refer
the readers to the code for the (lengthy) values of the per-
mutations. Below we show the dimension of the equivariant
basis and the size of the tensors in which the basis is em-
bedded. Note that as the Rubik’s cube is a subgroup of S48,
and has fewer group elements as symmetries, the size of the
equivariant basis is larger 2, 6, 22, ... vs 1, 2, 5, .... For T4
of size 484 = 5308416 we were able to run the solver with
rmax = 20 before running out of GPU memory.

T1 T2 T3 T4

r 2 6 22 >20
48k 48 2304 110592 5308416

Table 4. Symmetric Subspace rank r for tensors Tk of Rubik’s
Cube Group

E.4. Continuous Rotation Groups SO(n) and O(n)

The special orthogonal group SO(n) and the orthogonal
group O(n) are continuous Lie groups have the Lie algebra

o(n) = so(n) = TidSO(n) = {A ∈ Rn×n : A> = −A}

of dimension D = n(n − 1)/2. The orthogonal group
can be constructed with the additional discrete generator
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h =

[
−1 0
0 In−1

]
that has det(h) = −1.

SO(2) SO(3) SO(4) SO(5) SO(6) SO(7)

T2 2 1 1 1 1 1
T3 0 1 0 0 0 0
T4 6 3 4 3 3 3
T5 0 6 0 1 0 0
T6 20 15 25 15 16 15
T7 0 36 0 15
T8 70 91 196

Table 5. Symmetric subspace rank r for tensors Tk of G = SO(n)

We omit the first row T1 since all the values are 0. The
additional basis element along the diagonal n = k can be
recognized as the well known anti-symmetric Levi-Civita
symbol εijk`.... However this basis element does not respect
orientation reversing isometries, and is thus absent in the
equivariant basis for O(n):

O(2) O(3) O(4) O(5) O(6) O(7)

T2 1 1 1 1 1 1
T3 0 0 0 0 0 0
T4 3 3 3 3 3 3
T5 0 0 0 0 0 0
T6 10 15 15 15 15 15
T7 0 0 0 0
T8 35 91 105

Table 6. Symmetric subspace rank r for tensors Tk of G = O(n)

E.5. Lorentz Groups SO+(1, 3), SO(1, 3), O(1, 3)

The Lorentz group is defined as the set of matrices that
preserve the Lorentz metric η: O(1, 3) = {L ∈ R4×4 :
L>ηL = η}. Differentiating, one gets the D = 6 dimen-
sional Lie algebra so(1, 3) = {A ∈ R4×4 : A>η + ηA =
0}. The full Lorentz group O(1, 3) has four connected com-
ponents.

The identity component of the Lorentz group SO+(1, 3)
is just the exponential of the Lie algebra SO+(1, 3) =
exp(o(1, 3)). The subgroup SO(1, 3) of O(1, 3) with deter-
minant 1 can be constructed with the additional generator
h1 = −I (which combines time reversal with a parity trans-
formation), and the full Lorentz group O(1, 3) includes h1

as well as the generator h2 =

[
−1 0
0 I3

]
that reverses time

only. As these groups are not orthogonal, we must distin-
guish T(a,b) from T(a+b,0). Below we show the number
of basis vectors for T(k,0) which for these 3 groups is the
same number as for T(k−i,i) although the bases elements

are distinct.

T(2,0) T(3,0) T(4,0) T(5,0) T(6,0) T(7,0) T(8,0)

SO+(1, 3) 1 0 4 0 25 0 196
SO(1, 3) 1 0 4 0 25 0 196
O(1, 3) 1 0 3 0 15 0 105

Table 7. Symmetric subspace rank r for tensors T(k,0) for the
Lorentz groups.

E.6. Symplectic Group Sp(n)

Similar to the orthogonal group and the Lorentz group, the
symplectic group is defined through the perservation of a
quadratic form.

Sp(n) = {M ∈ R2n×2n : M>ΩM = Ω},

where Ω =

[
0 In
−In 0

]
and is often relevant in the con-

text of Hamiltonian mechanics and classical physics. The
quadratic form Ω can be interpreted as a measurement of
oriented area (in phase space) and is preserved by the evo-
lution of many systems. The D = n(2n+ 1) dimensional
Lie algebra satisfies

sp(n) = {A ∈ R2n×2n : A>Ω + ΩA = 0},

and any element in Sp(n) can be written M =
exp(A1)exp(A2) for some A1, A2 ∈ sp(n).

Sp(1) Sp(2) Sp(3) Sp(4) Sp(5) Sp(6)

T(2,0) 1 1 1 1 1 1
T(3,0) 0 0 0 0 0 0
T(4,0) 2 3 3 3 3 3
T(5,0) 0 0 0 0 0 0
T(6,0) 5 14 15 15
T(7,0) 0 0 0
T(8,0) 14 84

Table 8. Symmetric subspace rank r for tensors T(k,0) of G =
Sp(n)

Although for large values of n, the dimension of the basis for
Sp(n) becomes similar to that of its subgroup O(n), the ba-
sis elements themselves are quite different. Like the Lorentz
groups, different ways of distributing the rank between the
base vector space and its dual as T(k−i,i) for different i
yields different solutions for the equivariant basis.

E.7. Special Unitary Group SU(n)

Using a complex valued SVD and replacing the objective in
the iterative algorithm L(Q) = ‖CQ‖2F = Tr(Q>C>CQ)
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with L(Q) = Tr(Q†C†CQ) where † is the complex conju-
gate transpose, we can apply our method to solve for the
equivariant bases for complex groups such as the special
unitary group SU(n) relevant for the symmetries of the
standard model of particle physics.

The group can be defined

SU(n) = {U ∈ Cn×n : U†U = 1, det(U) = 1}.

The Lie algebra of dimension D = n2 − 1 satisfies

su(n) = {A ∈ Cn×n : A† = −A, Tr(A) = 0}.

The group is contained in the image of the exponential
map, exp(su(n)) = SU(n). Since the size of the basis
differs between T(4,1) and T(3,2) for example, we show the
solutions for only a selection of tensor ranks. It may also
be useful to consider anti-linear maps, but we leave this to
future work.

T(3,0) T(3,1) T(3,2) T(3,3) T(4,0) T(4,1) T(4,2)

SU(2) 0 2 0 5 2 0 5
SU(3) 1 0 0 6 0 3 0
SU(4) 0 0 0 6 1 0 0

Table 9. Symmetric subspace rank r for tensors T(q,p) of G =
SU(n)

F. Recipe for Use
Below we outline the minimum required steps for adding
new groups and representations to our existing implementa-
tion written in Jax (Bradbury et al., 2018).

Adding new groups:

1. Specify a sufficient set of M discrete generators and
their base representation as a matrix ρ(hi) or as a
matrix vector multiply v → ρ(hi)v for each i =
1, 2, ...,M

2. Specify a basis for the Lie algebra (if any) and its base
representation as a matrix dρ(Ai) or as a matrix vector
multiply v → dρ(Ai)v for each i = 1, 2, ..., D

We walk through these steps and provide examples in
Adding new representations ρ̃ to existing groups:

1. Specify ρ̃(hi) as a function of ρ(hi)

2. Define dim(V ), ==, and hash functions for the repre-
sentation

We provide more detailed instructions along with exam-
ples for implementing new groups at https://emlp.

readthedocs.io/en/latest/notebooks/
3new_groups.html and new representations at
https://emlp.readthedocs.io/en/latest/
notebooks/4new_representations.html.

Given that a base representation ρ is faithful, all representa-
tions can be constructed as functions of this ρ whatever it
may be.

A specification of ρ̃(h) = f(ρ(h)) induces the Lie algebra
representation dρ̃(A) which may be computed automatically
using autograd Jacobian vector products (JVP), without
needing to specify it manually. dρ̃(A) = JVP(f, I, dρ(A))
which corresponds in math terms to the operation dρ̃(A) =
Df |ρ(h)=I(dρ(A)).

G. Group Products
Many of the relevant groups for larger problems like 2D
arrays, GCNNs, point clouds (Fuchs et al., 2020), sets of im-
ages (Maron et al., 2020), and hierarchical structures (Wang
et al., 2020) have multiple distinct group substructures. 2D
translation symmetry is the group G = Zn × Zn = Z2

n,
GCNNs have G = H n Z2

n point clouds typically have
G = Sn × E(3), sets of images have the symmetry
Sm × Z2

n, and a voxelized point cloud network could be
(Sn×E(3)) oZ3

m. Here these symbols for combining groups
are the direct product (×), semi-direct product (n) and
wreath product (o). An additional asymptotic speedup can
be achieved for groups that are constructed using these struc-
tures by exploiting knowledge about how solutions for the
larger group depend on the solutions for the constituent
groups.

Suppose representation ρa of the groupGa acts on the space
Va which has the symmetric basis Qa, and ρb of Gb acts on
Vb with the symmetric basis Qb.

(×): As shown in (Maron et al., 2020), the equivariant basis
forGa×Gb with rep ρa⊗ρb can be written as the Kronecker
product Qab = Qa ⊗Qb.

(o): In (Wang et al., 2020) it was worked out that the equiv-
ariant basis forGa oGb with rep (ρa oρb)⊗(ρa oρb)∗ satisfies
unvec(Qab[α, β]) = unvec(Qaβ)⊗I+11>⊗unvec(Qbα)
where α, β are coefficient vectors of size ra,rb and the
unvec(·) operation reshapes a vector into a matrix.

H. Parametrizing Lie Groups with
Continuous and Discrete Generators

According to Winkelmann (2003), every real connected
Lie group G of dimension D contains a dense subgroup
H ≤ G generated by D + 1 elements (which can be con-
structed explicitly by sampling elements in a neighborhood
of the identity). Since H is dense in G, for every element

https://emlp.readthedocs.io/en/latest/notebooks/3new_groups.html
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g ∈ G has a neighborhood N (g) which contains an el-
ement h ∈ H . Since h ∈ N (g) it must also be true
that gh−1 ∈ N (id) is in a neighborhood of the identity.
Since the exponential map exp is a bijection for a neigh-
borhood around the identity, it must be possible to express
gh−1 = exp (A) = exp (

∑
i αiAi) for some A ∈ g that

we can then write in terms of the basis elements Ai. Rear-
ranging, and expressing h in terms of the finite generators
for H , h = Πihki , we have that any g ∈ G can be written

g = exp (
∑
i

αiAi)Πihki . (20)

or more succinctly G = exp (g)H . It is likely that the
result can also be extended to other fields like C such as by
embedding the group in a higher dimensional real group,
but we focus on the real case here. For groups with multiple
connected components, we can apply the same result with
at most one additional discrete generator for each of the
connected components.

I. Implementation Details
While there is substantial freedom in the chosen represen-
tation for a given feature layer of a neural network, for
maximum expressiveness in the subsequent neural network
architecture given a fixed channel budget, we suggest allo-
cating the channels to the different representations in each
layer with a uniform allocation heuristic. Progressing from
lower dimensional representations to higher dimensional
ones, the multiplicity of the representation should be chosen
so that the number of channels for associated with each
is approximately the same. We use this heuristic for the
equivariant networks of each experiment in the paper.

For the three synthetic experiments, we use networks con-
structed with 3 EMLP layers each with c = 384 channels,
followed by a single equivariant linear layer mapping to
the output type. The baseline MLPs also have 3 hidden
layers of size c = 384 each. We train all models with
batchsize 500, and learning rate 3 × 10−3 with the Adam
optimizer (Kingma & Ba, 2014). We train for a total of
min(900000/N, 1000) epochs where N is the size of the
dataset, which we found was ample for convergence of both
models in all cases. The training time for the EMLP is a
couple minutes, while the MLP model trains in < 1 minute.

For the modeling of the double spring pendulum dynami-
cal system we use the same hyperparameters except with
c = 128 for all models. For the numerical integrator,
we use the adaptive RK integrator that is default to Jax
with tolerance 2 × 10−6. We measure relative error as
relative error(a, b) = ‖a − b‖/(‖a‖ + ‖b‖). For calcu-
lating state relative error, the state is the full vector z of
both position and momentum. We train for a total of 2000
epochs, long enough for each of the models to converge.

J. Datasets
We generate the O(5) invariant dataset using the function

f(x1, x2) = sin(‖x1‖)−‖x2‖3/2+
x>
1 x2

‖x1‖‖x2‖ and sampling
x1, x2 ∼ N (0, 1)5. We generate the O(3) equivariant iner-
tia dataset by computing I =

∑5
i=1mi(x

>
i xiI−xix>i ) for

xi ∼ N (0, 1)3 and sampling positive masses by passing ran-
dom entries through a softplus: mi ∼ Softplus(N (0, 1)).

For the Lorentz invariant particle interaction dataset
we calculate the targets y = 4[p(µp̃ν) − (pαp̃α −
pαpα)ηµν ][q(µq̃ν) − (qαq̃α − qαqα)ηµν ] from the sampled
momenta pµ, p̃µ, qµ, q̃µ ∼ N (0, 1/42).

For each of these datasets we separate out a test set of size
5000 and a validation set of size 1000 which we use for
early stopping.

For the double spring dynamical system, we generate the
ground truth trajectories using the Hamiltonian dynamics of
the Hamiltonian

H(x1, x2, p1, p2) = V (x1, x2) + T (p1, p2)

where T (p1, p2) = ‖p1‖2/2m1 + ‖p2‖2/2m2 and
V (x1, x2) =

1
2k1(‖x1‖−`1)2+ 1

2k2(‖x1−x2‖−`2)2+m1g
>x1+m2g

>x2.

The constants are chosen m1 = m2 = k1 = k2 = `1 =
`2 = 1. The gravity direction is down g = [0, 0, 1]. We
sample the initial conditions from the distribution x1 ∼
[0, 0,−1.5]+N (0, .22)3, x2 ∼ [0, 0,−3]+N (0, .22)3 and
p1, p2 ∼ N (0, .42)3. We integrate these systems for a time
T = 30s and for each initial condition we select a randomly
chosen 1s chunk (evaluated at five 0.2s intervals) as the
training data. We generate 1500 trajectory chunks which
we split up into 500 for each of the train, validation, and test
sets.


