A Practical Method for Constructing Equivariant Multilayer Perceptrons for
Arbitrary Matrix Groups

Marc Finzi! Max Welling?> Andrew Gordon Wilson !

Abstract

Symmetries and equivariance are fundamental to
the generalization of neural networks on domains
such as images, graphs, and point clouds. Exist-
ing work has primarily focused on a small number
of groups, such as the translation, rotation, and
permutation groups. In this work we provide a
completely general algorithm for solving for the
equivariant layers of matrix groups. In addition to
recovering solutions from other works as special
cases, we construct multilayer perceptrons equiv-
ariant to multiple groups that have never been
tackled before, including O(1,3), O(5), Sp(n),
and the Rubik’s cube group. Our approach out-
performs non-equivariant baselines, with appli-
cations including particle physics and dynamical
systems. We release our software library to en-
able researchers to construct equivariant layers
for arbitrary matrix groups.

1. Introduction

As machine learning has expanded to cover more areas, the
kinds of structures and data types we must accommodate
grows ever larger. While translation equivariance may have
been sufficient for working with narrowly defined sequences
and images, with the expanding scope to sets, graphs, point
clouds, meshes, hierarchies, tables, proteins, RF signals,
games, PDEs, dynamical systems, and particle jets, we re-
quire new techniques to exploit the structure and symmetries
in the data.

In this work we propose a general formulation for equivari-
ant multilayer perceptrons (EMLP). Given a set of inputs
and outputs which transform according to finite dimensional
representations of a symmetry group, we characterize all lin-
ear layers that map from one space to the other, and provide
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Figure 1. We provide a general and efficient method for solving
equivariance constaints. For particular symmetry groups and type
signatures, we recover other well known equivariant layers while
also enabling application to new groups and representations.

a polynomial time algorithm for computing them. We re-
lease our library, along with documentation, and examples.

Figure 1 illustrates how the convolutional layers of a CNN
(LeCun et al., 1989), the permutation equivariant deep sets
(Zaheer et al., 2017), graph layers (Maron et al., 2018), and
layers for networks equivariant to point clouds (Thomas
et al., 2018), all arise as special cases of our more general
algorithm.

‘We summarize our contributions as follows:

* We prove that the conditions for equivariance to ma-
trix groups with arbitrary linear representations can be
reduced to a set of M + D constraints, where M is the
number of discrete generators and D is the dimension
of the group.

* We provide a polynomial time algorithm for solving
these constraints for finite dimensional representations,
and we show that the approach can be accelerated by
exploiting structure and recasting it as an optimization
problem.

* With the addition of a bilinear layer, we develop the
Equivariant MultiLayer Perceptron (EMLP), a general
equivariant architecture that can be applied to a new
group by specifying the group generators.


https://github.com/mfinzi/equivariant-MLP
https://emlp.readthedocs.io/en/latest/
https://colab.research.google.com/github/mfinzi/equivariant-MLP/blob/master/docs/notebooks/colabs/all.ipynb
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* Demonstrating the generality of our approach, we ap-
ply our network to multiple groups that were previ-
ously infeasible, such as the orthogonal group in five
dimensions O(5), the full Lorentz group O(1, 3), the
symplectic group Sp(n), the Rubik’s cube group, with
the same underlying architecture, outperforming non
equivariant baselines.

2. Related Work

While translation equivariance in convolutional neural net-
works (LeCun et al., 1989) has been around for many years,
more general group equivariant neural networks were intro-
duced in Cohen & Welling (2016a) for discrete groups with
GCNNs. There have been a number of important works gen-
eralizing the approach to make use of the irreducible group
representations for the continuous rotation groups SO(2)
(Cohen & Welling, 2016b; Esteves et al., 2017; Marcos
etal., 2017), O(2) (Weiler & Cesa, 2019), SO(3) (Thomas
et al., 2018; Weiler et al., 2018; Anderson et al., 2019),
O(3) (Smidt et al., 2020) and their discrete subgroups.The
requirements and complexity of working with irreducible
representations has limited the scope of these methods, with
only one example outside of these two rotation groups with
the identity component of the Lorentz group SO™ (1, 3) in
Bogatskiy et al. (2020).

Others have used alternate approaches for equivariance
through group FFTs (Cohen et al., 2018b), and regular group
convolution (Worrall & Welling, 2019; Bekkers, 2019; Finzi
et al., 2020b). These methods enable greater flexibility; how-
ever, achieving equivariance for continuous groups with the
regular representation is fundamentally challenging, since
the regular representation is infinite dimensional.

Meanwhile, the theoretical understanding and practical
methods for equivariance to the permutation group .S, have
advanced considerably for the application to sets (Zaheer
etal., 2017), graphs (Maron et al., 2018), and related objects
(Serviansky et al., 2020). Particular instances of equivariant
networks have been shown to be universal: with a sufficient
size these networks can approximate equivariant functions
for the given group with arbitrary accuracy (Maron et al.,
2019; Ravanbakhsh, 2020; Dym & Maron, 2020).

Despite these developments, there is still no algorithm for
constructing equivariant networks that is completely general
to the choice of symmetry group or representation. Furthest
in this direction are the works of Lang & Weiler (2020),
Ravanbakhsh et al. (2017), and van der Pol et al. (2020)
with some of these ideas also appearing in Wood & Shawe-
Taylor (1996). Based on the Wigner-Eckert theorem, Lang
& Weiler (2020) show a general process by which equivari-
ant convolution kernels can be derived for arbitrary compact
groups. However this process still requires considerable

mathematical legwork to carry out for a given group, and is
not applicable beyond compact groups. Ravanbakhsh et al.
(2017) show how equivariance can be achieved by sharing
weights over the orbits of the group, but is limited to regu-
lar representations of finite groups. Unlike Lang & Weiler
(2020) and Ravanbakhsh et al. (2017), van der Pol et al.
(2020) present an explicit algorithm for computing equivari-
ant layers. However, the complexity of this approach scales
with the size of the group and quickly becomes too costly
for large groups and impossible for continuous groups like
SO(n),0(1, 3), Sp(n), and SU(n).

3. Background

In order to present our main results, we first review some
necessary background on group theory. Most importantly,
symmetry groups can be broken down in terms of discrete
and continuous generators, and these can act on objects
through group and Lie algebra representations.

Finite Groups and Discrete Generators. A group G is
finitely generated if we can write each element g € G as a se-
quence from a discrete set of generators {h1, ha, ...~y } and
their inverses h_j, = h,;l. For example we may have an ele-
ment g = hihohohy ! h4 and can be written more compactly
g = Y, hy, for the integer sequence k = [1,2,2, -1, 3].

All finite groups, like the cyclic group Z,, the dihedral
group D,,, the permutation group S,,, and the Rubik’s cube
group can be produced by a finite set of generators. Even
for large groups, the number of generators is much smaller
than the size of the group: 1 for Z,, of size n, 2 for S,, of
size n!, and 6 for the cube group of size 4 x 10%°.

Continuous Groups and Infinitesimal Generators. Sim-
ilarly, Lie theory provides a way of analyzing continuous
groups in terms of their infinitesimal generators. The Lie
Algebra g of a Lie Group G (a continuous group that forms
a smooth manifold) is the tangent space at the identity
g := TigG C R™ "™, which is a vector space of infinitesimal
generators of group transformations from G. The exponen-
tial map exp : g — G maps back to the Lie Group and can
be understood through the series: exp(A4) = > 7o | A*/k!

A classic example is the rotation group G = SO(n) with
matrices R"*" satisfying R' R = I and det(R) = 1.
Parametrizing a curve R(t) with R(0) = I, R'(0) = A, one
can find the tangent space by differentiating the constraint at
the identity. The Lie Algebra consists of antisymmetric ma-
trices: 50(n) = T;qSO(n) = {A € R™*" : AT = — A}

Given that g is a finite dimensional vector space (D =
dim(g) = dim(Q)), its elements can be expanded in a basis
{41, As, ..., Ap}. For some Lie Groups like SO(n), the
orientation preserving isometries SE(n), the special unitary
group SU(n), the symplectic group Sp(n), the exponen-
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tial map is surjective meaning all elements g € G can be
written in terms of this exponential g = exp(D , a;A4;)
with a set of real valued coefficients {o;}2,. But in
general for other Matrix Groups like O(n), E(n), and
0O(1,3), exp is not surjective and one can instead write
g = exp(>_; a; A;)IIY. | by, as a product of the exponential
map that traverses the identity component and an additional
collection of discrete generators (see Appendix H).

Group Representations. In the machine learning context,
a group element is most relevant in how it acts as a trans-
formation on an input. A (linear finite dimensional) group
representation p : G — GL(m) associates each g € G to an
invertible matrix p(g) € R™>™ that acts on R™. The rep-
resentation satisfies Vg1, g2 € G : p(g192) = p(g91)p(g2),
and therefore also p(g~') = p(g)~!. The representation
specifies how objects transform under the group, and can be
considered a specification of the type of an object.

Lie Algebra Representations. Mirroring the group repre-
sentations, Lie Groups have an associated representation
of their Lie algebra, prescribing how infinitesimal trans-
formations act on an input. A Lie algebra representation
dp : g — gl(N) is a linear map from the Lie algebra to
m X m matrices. An important result in Lie Theory relates
the representation of a Lie Group to the representation of its
Lie Algebra

VAeg: ple?)=elr) ()

Tensor Representations. Given some base group represen-
tation p, Lie Algebra representation dp, acting on a vector
space V, representations of increasing size and complexity
can be built up through the tensor operations dual (x), direct
sum (), and tensor product (®).

0) P dp Vv

* plg™")7T —dp(A)" Ve

& plg) @pg) dp(A) @dpa(A) Viel,
®  pi(g) @p2(g)  dpi(A)Bdpa(A) Vie Vs

Acting on matrices, & is the direct sum which concate-
X 0

0 vl and
facilitates multiple representations which are acted upon
separately. The ® on matrices is the Kronecker product, and
@ is the Kronecker sum: XY = X QI +1QY. V*is
the dual space of V. The tensor product and dual are useful
in describing linear maps from one vector space to another.
Linear maps from V; — V5, form the vector space Vo @ Vi
and have the corresponding representation ps ® pj.

nates the matrices on the diagonal X @Y =

We will work with the corresponding vector spaces and
representations interchangeably with the understanding
that the other is defined through these composition rules.

We abbreviate many copies of the same vector space
VeVe..aV as mV. Similarly we will refer to the
—_— —

vector sgace formed from many tensor products T(; o) =
V® @ (V*)®7 where (-)®P is the tensor product iterated
p times. Following the table, these tensors have the group
representation p(, o) (9) = p(9)®? ® p*(g)®, and the Lie
algebra representation dp, 4)(A) = dp(A)®PBdp* (A)®9.
We will abbreviate T}, , for T(,, ;) when using orthogonal
representations (p = p*), as the distinction between V' and
V'* becomes unnecessary.

4. Equivariant Linear Maps

In building equivariant models, we need that the layers of
the network are equivariant to the action of the group. Below
we characterize all equivariant linear layers W € RV2xM
that map from one vector space V; with representation p; to
another vector space V5 with representation ps for a matrix
group GG. We prove that the infinite set of constraints can be
reduced to a finite collection without loss of generality, and
then provide a polynomial-time algorithm for solving the
constraints.

4.1. The Equivariance Constraint

Equivariance requires that transforming the input is the same
as transforming the output:

Ve e Vq,Vg € G: p2(g)Wa =Wpi(g)z.

Since true for all =, p2(g)Wp1(g)~! = W, or more ab-
stractly:

Vg G: palg) @pi(g™") Tvec(W) = vec(W) (2)

where vec flattens the matrix into a vector. p;(g~!) T is the
dual representation pj(g), and so the whole object p2(g) ®

p1(g7 )T = (p2 ® p3)(g) = pa1(g) is a representation of
how g acts on matrices mapping from V; — V5.

While equation (2) is linear, the constraint must be upheld
for each of the possibly combinatorially large or infinite
number of group elements in the case of continuous groups.
However, in the following section we show that these con-
straints can be reduced to a finite and small number.

4.2. General Solution for Symmetric Objects

Equation (2) above with p = (p2 ® p}) is a special case
of a more general equation expressing the symmetry of an
object v,

VgeG: plgv=v 3)
Writing the elements of GG in terms of their generators: g =
eXP(ZiD a; AT hy,. For group elements with k = &,
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we have

Yoy : p(exp(z aiAi))v =0

Using the Lie Algebra - Lie Group representation correspon-
dence (1) and the linearity of dp(-) we have

Va; :  exp (Z ozidp(Ai))v = .

Taking the derivative with respect to «; at o = 0, we get a
constraint for each of the infinitesimal generators

(Vi=1,..D: dp(4;)v=0) )

For group elements with all &; = 0 and N = 1, we get an
additional constraint for each of the discrete generators in
the group:

(VE=1,...M: (p(hx) — v =0}, (5)

We get a total of O(M + D) constraints, one for each of the
discrete and infinitesimal generators. In Appendix B, we
prove that these reduced constraints are not just necessary
but also sufficient, and therefore characterize all solutions
to the symmetry equation (3).

Solving the Constraint: We collect each of the symme-
try constraints C; = dp(A;),Cy = dp(Asz),...,Cpy1 =
p(h1) — I, ... into a single matrix C', which we can break-
down into its nullspace spanned by the columns of @ €
R™*" and orthogonal complement P € R™*(™~") ysing
the singular value decomposition:

i
0
Cv= p(h1)2 ; v=U [% 8] [gq v=20. (6)

All symmetric solutions for v must lie in the nullspace of
C: v = Qp for some coefficients 3, and we can then
parametrize all symmetric solutions directly in this sub-
space. Alternatively, defining 3 = Q7Tvy we can reuse
any standard parametrization and initialization, but simply
project onto the equivariant subspace: v = QQT vy.

Thus given any finite dimensional linear representation,
we can solve the constraints with a singular value decom-
position.!. If v € R™ the runtime of the approach is

O((M + D)m?).

"Equations (4) and (5) apply also to infinite dimensional repre-
sentations, where p and dp are linear operators acting on functions
v, but solving these on a computer would be more difficult.

(a) Sa (b) Za

() Z3

(d) Zy4 x 72

Figure 2. Equivariant basis for permutations, translation, 2d trans-
lation, and GCNN symmetries respectively, each of which are
solutions to Equation 5 for different groups. The r different solu-
tions in the basis are shown by different colors.

4.3. A Unifying Perspective on Equivariance

In order to make it more concrete and demonstrate its gen-
erality, we now show that standard convolutional layers
(LeCun et al., 1989), deep sets (Zaheer et al., 2017), in-
variant graph networks (Maron et al., 2018), and GCNNs
(Cohen & Welling, 2016a) are examples of the solutions
in equation (6) when specifying a specific symmetry group
and representation.

Convolutions: To start off with the 1D case with sequences
of n elements and a single channel, V' = R" is acted upon
by cyclic translations from the group G = Z,,. The group
can be generated by a single element given by the permua-
tion matrix p(h) = P[n, 1,2, ...,n — 1]. Equivariant linear
maps from V' — V are of type T(; 1). Expressing the rep-
resentation and solving eq. (6) with SVD gives the r = n
matrices (reshaped from the rows of Q) shown by the circu-
lant matrix in Figure 2, which is precisely the way to express
convolution as a matrix.

In the typical case of 2D arrays with V' = R"’ elements and
multiple channels cj, couy, there are M = 2 generators of
the group G = Z,,xZ,, = 7?2 thatare p(h1) = p(h)®I and
p(ha) = I®p(h) defined in terms of the generator in the 1D
case. For multiple channels, the mapping is ¢,V — coutV
which has type cincoutT{1,1) Which yields the matrix valued
2D convolution (With ¢jn Cousn? independent basis elements)
that we are accustomed to using for computer vision?.

Deep Sets: We can recover the solutions in Zaheer et al.
(2017) by specifying V' = R" and considering .S,, (permu-
tation) equivariant linear maps V' — V. S, can be gener-
ated in several ways such as with the M = 2 generators
p(h1) = P[1,n —1,2,3,...] and p(h2) = P[2,1,3,4,...]
(Conrad, 2013). Solving the constraints for 7{ 1 yields the
r = 2 dimensional basis Q = [I, 11 "] shown in Figure 2.

Equivariant Graph Networks: Equivariant graph net-
works in Maron et al. (2018) generalize deep sets to S,
equivariant maps from T3 — T}, such as maps from adja-

2Note that the inductive bias of locality restricting from n. X n
filters to 3 x 3 filters is not a consequence of equivariance.
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cency matrices 75 to themselves. They show these maps
satisfy

VP e S, : PE*+Ovec(W) = vec(W), (7)
and use analytic techniques to find a basis, showing that
the size of the basis is upper bounded® by the Bell num-
bers 1,2,5, 15, .... Noting that P = (P~!) T, we can now
recognize PP = p. ,y(P) acting on the maps of type
Tix,c)- However we need not solve the combinatorially
large Equation 7; our algorithm instead solves it just for the
permutation generators p(h; ), yielding the same solutions.

GCNNs: The Group Equivariant CNNs in Cohen & Welling
(20164a) can be defined abstractly through fiber bundles and
base spaces, but we can also describe them in our tensor no-
tation. The original GCNNs have the G = Zy4 X (Zy, X Zy,)
symmetry group consisting of discrete translations of the
grid, as well as 90 rotations where x is the semi-direct
product. # In total, the representation space can be written
V =R*®R". We can now disentangle these two parts to
read off the M = 3 generators for x, y translation and rota-
tion. The translation generators are I ® p(hq) and I ® p(hs)
from the 2D convolution section, as well a generator for
rotation P[4,1,2,3] ® Rotgg with the Rotgy matrix per-
forming 90° rotations on the grid. Solving for the constraint
on T{y 1) yields the G-convolutional layer embedded in a
dense matrix shown in Figure 2. Note the diagonal blocks
implement rotated copies of a given filter, equivalent to the
orientations in the regular representation of a GCNN.

Notably, each of these solutions for convolution, deep sets,
equivariant graph networks, and GCNNs are produced as
solutions from Equation 6 as a direct consequence of spec-
ifying the representation and the group generators. In Ap-
pendix E we calculate the equivariant basis for tensor repre-
sentations of these groups Z,,, S,,, D.,, as well as unexplored
territory with SO(n), O(n), Sp(n), SO™(1,3), SO(1, 3),
0O(1,3), SU(n), and the Rubiks Cube group. We visualize
several of these equivariant bases in Figure 3.

5. Efficiently Solving the Constraint

The practical application of our general approach is limited
by two factors: the computational cost of computing the
equivariant basis at initialization, and the computational cost
of applying the equivariant maps in the forward pass of a
network. In this section we address the scalability of the
first factor, computing the equivariant basis.

The runtime for using SVD directly to compute the equivari-

3For small n, the size of the equivariant basis for 7T}, can actu-
ally be less than By, when nk < By.

4Cohen & Welling (2016a) also make D4 dihedral equivariant
networks that respect reflections, which can be accomodated by in
our framework with 1 additional generator.
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Figure 3. Equivariant basis for various tensor representations 7,
where G denotes the symmetry group. The r different solutions
in the basis are shown by different colors. For SO(3) the bases
cannot be separated into disjoint set of 0 or 1 valued vectors, and
so we choose overlapping colors randomly and add an additional
color for 0.

ant basis is too costly for all but very small representations
m = dim(V) < 5000. We improve upon the naive al-
gorithm with two techniques: dividing the problem into
a smaller set of independent subproblems and exploiting
structure in the constraint matrices to enable an efficient iter-
ative Krylov subspace approach for computing the nullspace.
These two techniques allow us to compute the bases for high
dimensional representations while not sacrificing the equiv-
ariance or completeness of the solution basis. Our resulting
networks run in time similar to a standard MLP.

5.1. Dividing into Independent Sub-problems

The feature space U in a neural network can be considered
a combination of objects with different types and multiplici-
ties. The features in standard CNN or deep set would be ¢
copies of rank one tensors, U = ¢T}, where c is the number
of channels. Graph networks include both node features 77
as well as edge features 75 like the adjacency matrix. More
general networks could have a mix of representations, for
example 100 scalars, 30 vectors, 10 matrices and 3 higher
order tensors: U = 1007, @307y $ 1075 @ 3T5. These com-
posite representations with multiplicity are built from direct
sums of simpler representations. pi7(g) = €, 4 Pa(g) for
some collection of representations .A.

Since linear maps U; — Us have the representation ps ® pJ,
the product can be expanded as the direct sum

popi=@meo@r= D

beA2 a€ Ay (b,a)G.Ag X A1

Pb® pg- (8)

Since @ for both the group and algebra representations con-
catenates blocks along the diagonal, the constraints can be
separated into the blocks given by each of the (b, a) pairs.
Each of these constraints (4) and (5) can be solved indepen-
dently for the p, ® p}: representation and then reassembled
into the parts of the full matrix.
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Figure 4. EMLP layers. G-equivariant linear layers, followed by
the bilinear layer and a shortcut connection, and finally a gated
nonlinearity. Stacking these layers together and choosing some
internal representation (shown below), the EMLP maps some col-
lection of geometric quantities to some other collection. Here
we show the equivariant mappings from scalars and vectors to
matrices.

Unlike Steerable CNNs which use analytic solutions of irre-
ducible representations (Cohen & Welling, 2016b; Weiler &
Cesa, 2019), we need not worry about any Clebsch-Gordon
coefficients or otherwise, regardless of the representation
used. > Note that tensor representations make things espe-
cially simple since T{;, 4) ® T(*;_,s) = T(p+s,q+r)» but are not
required.

5.2. Krylov Method for Efficient Nullspaces

We can exploit structure in the matrices p and dp for a more
efficient solution. With this in mind, we propose to find the
nullspace ) € R"*" where r is the rank of the nullspace
with the following optimization problem:

st QTQ=1 )

Minimizing using gradient descent, we have a very close
relative of QR power iteration (Francis, 1961) and Oja’s
rule (Garber & Hazan, 2015; De Sa et al., 2015; Shamir,
2015), that instead finds the smallest singular vectors. As
the nullspace components are preserved by the gradient
updates, the orthogonalization constraint can in fact be re-
moved during the minimization and we list the steps of the
iterative method in algorithm 1. Crucially, gradients require
only matrix vector multiplies (MVMs) with the constraint
matrix C', we never have to form the representation matrices
explicitly and can instead implement an efficient MVM for
p and dp. Through iterative doubling of the max rank r we
need not know the true rank beforehand. As we prove in
Appendix C the algorithm produces an € accurate solution
in time O((M + D)Trlog(1/€) + r?n) where T is the
time for an MVM with p and dp. The method is “exact”
in the sense of numerical algorithms in that we can specify
a precision € close to machine precision and converge in
log(1/€) iterations due to the exponential convergence rate,
which we verify in Figure 7.

min | CQ|I%

The pairs of tensor products of representations, p,(h) ®

3For irreducible representations one typically decomposes p; ®
p; = Q™ (D, pr)Q with Clebsch-Gordan matrix @, but we can
leave the rep as p; ® p; and solve numerically.

Algorithm 1 Fast Krylov Nullspace
def KrylovNullspace(C):
Tmax = 7 = 10
while r = r,, do
Tmax € 2rmax
Q = CappedKrylovNullspace(C, mmax)
r < rank(Q)
end
return ()
def CappedKrylovNullspace(C, 7% ):
Q NN(071)anmax
while L(Q) > e do

L(Q) = [[CQll%
Q<+ Q@—-nVL
end
Q, %,V =5VD(Q)
return ()

pa(h™H)T and dpy(A)S(—dps(A)T) from Equation 8
have Kronecker structure allowing efficent MVMs (A ®
B)vec(W) = vec(AWBT). Exploiting this structure
alone, solving the constraints for a matrix W € R¢ — R®
takes time

O((M + D)Tre+r%c?) (10)

where 7 is the time for MVMs with constituent matrices
Pa, Pos Apa, dpy. For some of the groups this time 7 is
in fact a constant, for example the permutation generators
merely swap two entries, and Lie algebras can often be writ-
ten in a sparse basis. For high order tensor representations,
one can exploit higher order Kronecker structure. Even for
discrete groups the runtime is a strict improvement over the
approach by van der Pol et al. (2020) which runs in time
O(|G|Trc+ r2c?). For large discrete groups like S,, our
approach gives an exponential speedup, O(n!) — O(n).

6. Network Architecture

While the constraint solving procedure can be applied to
any linear representations, we will use tensor representa-
tions to construct our network. The features in each layer
are a collection of tensors of different ranks v € U =
Poca Tp,,q.) With the individual objects v, € T(;, q.)-
As a heuristic, we allocate the channels uniformly be-
tween tensor ranks for the intermediate layers. For exam-
ple with 256 channels for an SO(3) equivariant layer with
dim(T(,,4)) = 3777, uniformly allocating channels pro-
duces U = 707y & 23T + 715 + 2T5. The input and output
layers are set by the types of the data. To build a full equiv-
ariant multilayer perceptron (EMLP) from the equivariant
linear layer, we also need equivariant nonlinearities.

Gated Nonlinearities: For this purpose we use gafted non-
linearities introduced in Weiler et al. (2018). Gated nonlin-
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Figure 5. Data efficiency for the synthetic equivariance experiments. Here the EMLP-G models where G are relevant symmetry groups
strongly outperforms both standard MLPs and MLPs that have been trained with data augmentation to the given symmetry group, across
the range of dataset sizes. The shaded regions depict 95% confidence intervals taken over 3 runs.

earities act separately for each of the different objects in
the features (that are concatenated through the direct sum
z = Concat({vgtaca)). The nonlinearity takes values
Gated(v,) = v,0(s,) Where s, is a scalar ’gate’ for each
of the objects. For scalar objects v, € Tp = R! and regular
representations (which allow pointwise nonlinearities), the
gate is just the object itself and so the nonlinearity is just
Swish (Ramachandran et al., 2017). For other representa-
tions the gate scalars are produced as an additional output
of the previous layer.

Universality: The theorem in Maron et al. (2019) shows
that tensor networks with pointwise nonlinearities and G-
equivariant linear layers for G < S,, are universal. How-
ever, this result does not extend to the gated nonlinearities
required for other groups and representations. As we prove
in Appendix D, gated nonlinearities are not sufficient for
universality in this general case, and can be extremely lim-
iting in practice. The problem relates to not being able to
express any kind of contractions between elements with the
different objects within a feature layer (like a dot product).

Cheap Bilinear Layers. To address this limitation we in-
troduce an inexpensive bilinear layer which performs tensor
contractions on pairs of input objects that produce a given
output type. Explicitly, two input objects v, € T(q, q,) and
vy € T(p, p,) can be contracted to give a type T(c, c,) if
and only if (a1,a2) = (¢1 + ba,co + by) or (b1, by) =
(c1 + a2,¢2 + a1). In other words, if v, can be inter-
preted as a linear map from 7, — 7, then we can apply
y. = Reshape(v,)vp and vice versa. We add a learnable
parameter weighting each of these contractions (excluding
scalars).

We can now assemble the components to build a full equiv-
ariant multilayer perceptron (EMLP) from the equivariant
linear layer, the gated nonlinearities, and the additional bi-
linear layer. We show how these components are assembled

in Figure 4.

7. Experiments

We evaluate EMLP on several synthetic datasets to test
its capability on previously unexplored groups, and apply
our model to the task of learning dynamical systems with
symmetry.

7.1. Synthetic Experiments

O(5) Invariant Task: To start off, we evaluate our model
on a synthetic O(5) invariant regression problem 27} — T}
in d = 5 dimensions given by the function f(x1,25) =
sin (|1 )~ [ll|? /24 22 . We evaluate EMLP-SO(5)
and EMLP-O(5) which is also equivariant to reflections. We
compare against a standard MLP as well as MLP-Aug that
is trained with O(5) data augmentation. We show the results
in Figure 5.

O(3) Equivariant Task: Next we evaluate the networks
on the equivariant task of predicting the moment of iner-
tia matrix Z = >, m; (2] 2,1 — ;2 ) from n = 5 point
masses and positions. The inputs X = {(m;,z;)}?_, are
of type 5Ty + 5T (5 scalars and vectors) and outputs are
of type 75 (a matrix), both transform under the group. We
apply SO(3) and O(3) equivariant models to this problem.
For the baselines, we implement data augmentation for the
standard MLP for this equivariant task by simultaneously
transforming the input by a random matrix R € O(3) and
transforming the output accordingly by the inverse trans-
formation: § = RTMLP({(m;, Rx;}>_,)R. This kind of
equivariant data augmentation that transforms both the input
and the output according to the symmetry is strong baseline.

Lorentz Equivariant Particle Scattering: Testing the abil-
ity of the model to handle Lorentz equivariance in tasks
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Figure 6. Left: A double spring pendulum (12s sample trajectory is shown). The system has an O(2) symmetry about the z axis. Middle:
Conservation of angular momentum about the z-axis (the geometric mean of the relative error is computed over 30s rollouts and averaged
across initial conditions). Errorbars are 95% confidence interval over 3 runs. Right: The relative error in the state as the trajectory is
rolled out. Shaded regions show 1 standard deviation in log space across the different trajectories rather than models, showing the variance

in the data.

relevant to particle physics, we train models to fit the matrix
element in electron muon scattering e + u~ — e~ + pu~
which is proportional to the scattering cross-section. The
scattering matrix element is proportional to | M|?

YY) — (0°Ba — P"Pa) 1 [4(u) — (4 Ge — 4o )]

(Martin, 2012) where q,, and p,, are the four momenta for
the ingoing electron and muon respectively, while G,, and
Dy are the outgoing momenta, and parentheses (uv) de-
notes the symmetrization of indices and repeated indices
are contracted. While simple enough express in closed
form, the scalar output involves contractions, symmetriza-
tion, upper and lower indices, and a metric tensor. Here
the inputs are 47{; o) and the output is a scalar T{g ). We
evaluate EMLP with equivariance not just to the proper or-
thochronious Lorentz group SO™ (1, 3) from Bogatskiy et al.
(2020), but also the special Lorentz group SO(1, 3), and the
full Lorentz group O(1, 3) and compare a MLP baseline
that uses O(1, 3) data augmentation.

As shown in Figure 5, our EMLP model with the given
equivariance consistently outperform sthe baseline MLP
trained with and without data augmentation across the dif-
ferent dataset sizes and tasks, often by orders of magnitude.

7.2. Modeling dynamical systems with symmetries

Finally we turn to the task of modeling dynamical systems.
For dynamical systems, the equations of motion can be
written in terms of the state z € R and time ¢t as dz /dt =
F(z,t). Neural ODEs (Chen et al., 2018) provide a way
of learning these dynamics directly from trajectory data. A
neural network parametrizes the function Fy and the learned
dynamics can be rolled out using a differentiable ODE solver
(il, ceey iT) = ODESO]VG(Z07 Fg, (tl, tQ, ceey tT)) and fit

T
to trajectory data with the L2 loss L(0) = £ > ||z, —z ||3.
=1

Many physically occurring systems have a Hamiltonian
structure, meaning that the state can be split into general-
ized coordinates and momenta z = (g, p), and the dynam-
ics can be written in terms of the gradients of a scalar H(z)
known as the Hamiltonian, which often coincides with the

total energy. % = JVH with J = —OI é

in Greydanus et al. (2019) with Hamiltonian Neural Net-
works (HNNs), one can exploit this Hamiltonian structure
by parametrizing Ho (z) with a neural network, and then
taking derivatives to find the implied Hamiltonian dynamics.
For problems with Hamiltonian structure HNNs often lead
to improved performance, and better energy conservation.

} . As shown

A dynamical system can have symmetries such as the sym-
metries given by F'(p(g) z,t) = p(g)F(z,t) for some linear
representation, which is equivariance in the first argument.
Meanwhile Hamiltonian dynamics have symmetries accord-
ing to invariances of the Hamiltonian H(p(g) z) = H(z).
Continuous symmetries of the Hamiltonian are of special
significance since they produce conservation laws such as
conservation of linear and angular momentum or conser-
vation of charge as part of the Noether theorem (Noether,
1971).

We apply our EMLP model to the task of learning the dy-
namics of a double pendulum connected by springs in 3D
shown in Figure 6. The problem exhibits a O(2) rotational
and reflectional symmetry about the z-axis as well as Hamil-
tonian structure. As the state space cannot be traversed by
the group elements alone, it is not a homogeneous space, a
setting that has been explored very little in the equivariance
literature (Cohen et al., 2018a).

However, we can readily use EMLP on this problem and
we show in Table 1 and Figure 6 that exploiting the O(2)
symmetry (and subgroups SO(2), Dg) with EMLP leads
to improved performance for both Neural ODE and HNN
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0(2) SO(2) Ds MLP
N-ODEs: 0.019(1) 0.051(36) 0.036(25) 0.048
HNNs:  0.012(2) 0.0153) 0.013(2) 0.028

Table 1. Geometric mean of rollout errors (relative error) over
T=30s for the various EMLP-G symmetric HNNs and Neural
ODEs (N-ODE) vs ordinary MLP HNNs and N-ODEs. Errorbars
are 1 standard deviation computed over 3 trials, with notation
.012(2) meaning .012 £ .002.

models. Furthermore, enforcing the continuous rotation
symmetry in the EMLP-HNN models yields conservation
of angular momentum about the z-axis, a useful property
for learned simulations. Interestingly the dihedral group Dg
which is discrete does not satisfy Noether’s theorem and yet
it still yields approximate angular momentum conservation,
but the coarser Do symmetry does not. As expected, all
Neural ODE models do not conserve angular momentum
as Noether’s theorem only applies to the Hamiltonians and
not to the more general ODEs. While conservation laws
from learning invariant Hamiltonians was also explored in
Finzi et al. (2020b) with LieConv, LieConv models assume
permutation equivariance which is broken by the pivot in
this system. Because EMLP is general, we can apply it to
this non permutation symmetric and non transitively acting
rotation group that is embedded in the larger state space.

8. Discussion

We presented a construction for equivariant linear layers that
is completely general to the choice of representation and
matrix group. Convolutions, deep sets, equivariant graph
networks and GCNNS all fall out of the algorithm naturally
as solutions for a given group and representation. Through
an iterative MVM based approach, we can solve for the
equivariant bases of very large representations. Translating
these capabilities into practice, we build EMLP and apply
the model to problems with symmetry including Lorentz
invariant particle scattering and dynamical systems, showing
consistently improved generalization.

Though EMLP is not much slower than a standard MLP,
dense matrix multiplies in an MLP and our EMLP make
it slow to train models the size of convnets or large graph
networks which have specialized implementations. With
the right techniques, this apparent generality-specialization
tradeoff may be overcome. The flexibility of our approach
should lower the costs of experimentation and allow re-
searchers to more easily test out novel representations. Ad-
ditionally we hope that our constraint solver can help launch
a variety of new methods for learning symmetries, modeling
heterogeneous data, or capturing prior knowledge.
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