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A Proofs

A.1 Proof of Lemma 3.1

Proof. This is a well-known result; we prove it for complete-
ness (see also Tibshirani et al. (2019) for an identical proof).
Given support points v1, . . . , vn ∈ R for a discrete distribu-
tion F , let q = Quantile(β;F ). Any points vi > q do not
affect this quantile, i.e., if we consider a new distribution
F̃ where all points vi > q are mapped to arbitrary values
also larger than q. then Quantile(β;F ) = Quantile(β; F̃ ).
Accordingly, for the nonconformity scores Vi, we have that

Vn+1 > Quantile(β;V1:n ∪ {∞})⇐⇒
Vn+1 > Quantile(β;V1:(n+1)).

Equivalently, we also have that

Vn+1 ≤ Quantile(β;V1:n ∪ {∞})⇐⇒
Vn+1 ≤ Quantile(β;V1:(n+1)).

Given the discrete distribution over the n + 1 Vi, Vn+1 ≤
Quantile(β;V1:(n+1)) implies that Vn+1 is among the
dβ(n + 1)e smallest of V1:(n+1). By exchangeability, this
event occurs with probability at least dβ(n+1)e

n+1 ≥ β.

A.2 Proof of Theorem 3.2

Proof. This is also a well-known result; we prove it here
for completeness (and see Tibshirani et al. (2019) for an
identical proof). For notational convenience, let Vi :=

V
(Xn+1,Yn+1)
i . Yn+1 is included in Cε(Xn+1) iff Vn+1 ≤

Quantile(1− ε;V1:n ∪ {∞}). As the nonconformity mea-
sure S preserves exchangeability by construction, if (Xi, Yi)
for i = 1, . . . , n + 1 are exchangeable, then so to are the
nonconformity scores Vi, i = 1, . . . , n + 1. We can then
apply Lemma 3.1 to complete the proof.

A.3 Proof of Lemma 4.2

Proof. Let the event {Ti = ti} indicate that task i has a
quantile prediction {Q̂i = qi) and distribution function
{Fi = fi} over meta nonconformity scores given Ŝ.

For notational convenience, assume tasks Ti, i ∈ Ical and
Tt+1 are indexed contiguously as i = 1, . . . , n+1. Next, de-
note byEt the event that {T1, . . . , Tn+1} = {t1, . . . , tn+1},
i.e., we observe an unordered set of task values. Exchange-
ability of tasks Ti implies that

P(Tn+1 = ti | Et) =
1

n+ 1
,

and, accordingly, that the distribution of Tn+1 | Et is uni-
form on the set {t1, . . . , tn+1}.

Again for notational convenience, let

V̂i := V̂
(Xtest

i ,Y test
i )

i,k+1

i.e., we use V̂i to denote the meta nonconformity score for
task i’s random test point.

For any scalar λ ∈ R, we can then write

P(V̂n+1 ≤ Q̂n+1 + λ | Et)

=

n+1∑
i=1

P(V̂n+1 ≤ Q̂n+1 + λ, Tn+1 = ti | Et)

=

n+1∑
i=1

P(V̂n+1 ≤ Q̂n+1 + λ | Tn+1 = ti)P(Tn+1 = ti | Et)

=
1

n+ 1

n+1∑
i=1

P(V̂n+1 ≤ Q̂n+1 + λ | Tn+1 = ti).

Since the event {Tn+1 = ti} implies {Q̂n+1 = qi, Fn+1 =
fi}, we can reduce this to

P(V̂n+1 ≤ Q̂n+1 + λ | Et) =
1

n+ 1

n+1∑
i=1

fi(qi + λ).

Furthermore, on the event Et, we have {T1, . . . , Tn+1} =
{t1, . . . , tn+1}, so (with slight abuse of notation)

P(V̂n+1 ≤ Q̂n+1 + λ | Et) =
1

n+ 1

n+1∑
i=1

Fi(Q̂i + λ).

As Fi is a distribution function with range [0, 1], we can
remove Tn+1 from the summation to get a lower bound,

P(V̂n+1 ≤ Q̂n+1 + λ | Et) ≥
1

n+ 1

n∑
i=1

Fi(Q̂i + λ).

For a fixed β, substitute Λ(β; Ical) for λ to derive

P(V̂n+1 ≤ Q̂n+1 + Λ(β; Ical) | Et)

≥ 1

n+ 1

n∑
i=1

Fi(Q̂i + Λ(β; Ical)) ≥ β.

Because this is true for anyEt, we can marginalize to obtain

P(V̂n+1 ≤ Q̂n+1 + Λ(β; Ical))

=

∫
Et

P(V̂n+1 ≤ Q̂n+1 + Λ(β; Ical) | Et) dP(Et)

≥ β
∫
Et

dP(Et) = β.
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Symbol Meaning

k The number of in-task examples used for few-shot learning.
ε The stipulated performance tolerance.
δ The stipulated secondary confidence tolerance for calibration conditional validity.

T The space of potential tasks to be solved in a few-shot learning setting.
X × Y The joint input (X’s) and output (Y ’s) space.
Itrain The set of auxiliary tasks used for meta-learning nonconformity scores and quantile predictors.
Ical The set of auxiliary tasks used to calibrate the quantile predictor.

Tt+1 The target few-shot test task to be solved.
Ŝ A meta-learned nonconformity measure.
P̂1−ε A meta-learned regressor of the 1− ε quantile of Ŝ’s scores on Tt+1 given k in-task samples.
V̂

(x,y)
i,j The meta nonconformity score for example j of task i, given the current candidate output (x, y).

Fi, F̂mi The true vs. mi-sample empirical distribution function over nonconformity scores of task i.
Q̂i, Quantile(1− ε, Fi) The predicted vs. true nonconformity score 1− ε quantiles for task i.

Λ(1− ε, Ical) The 1− ε meta quantile correction factor, computed using calibration tasks.

Cε,Mε Output label sets for standard and meta conformal prediction, respectively, at level 1− ε.

Table A.1. Definitions of selected common notations used in this paper.

A.4 Proof of Theorem 4.3

Proof. Again, for notational convenience, let

V̂i := V̂
(Xtest

i ,Y test
i )

i,k+1

Y test
t+1 is included inMε(X

test
t+1) iff V̂t+1 ≤ Q̂t+1 + Λ(1−

ε; Ical). As Ŝ and P̂ are trained on the disjoint proper train-
ing set Itrain, they preserve exchangeability, and produce
exchangeable Q̂i. We can then apply Lemma 4.2.

A.5 Proof of Proposition 4.5

Proof. Again, for notational convenience, let

V̂i := V̂
(Xtest

i ,Y test
i )

i,k+1 .

As stated in the claim, assume that as k →∞,∣∣P̂1−ε(Zi,1:k;φmeta)−Quantile(1− ε, Fi)
∣∣ = oP(1),

where Fi is the distribution of V̂i. That is, the quantile
converges in probability to the true quantile where ∀α, µ
there exists Kα,µ such that

P
(∣∣P̂1−ε(Zi,1:k;φmeta)−Quantile(1− ε, Fi)

∣∣ ≥ µ) ≤ α,
∀k > Kα,µ. This is a standard property of consistent esti-
mators (e.g., see Lei et al. (2018) for similar assumptions).

As Λ(1−ε; Ical) ≥ 0, for any target task tt+1 ∈ T , we have
that the corrected quantile, Q̃t+1 = Q̂t+1 + Λ(1− ε; Ical),
is always conservative for large enough k, i.e.,

1
{
Q̃t+1 ≥ Quantile(1− ε, Ft+1) | Tt+1 = tt+1

}
= 1− oP(1).

(10)

In other words, this is to say that if P̂1−ε converges in
probability to the true quantile, then P̂1−ε + some nonzero
factor converges in probability to at least the true quantile.

Next, if V̂t+1 ≤ Q̃t+1, then Y test
t+1 is included inMε(X

test
t+1)

(according to the definition ofMε). Furthermore, by the
definition of Quantile, the event that V̂t+1 ≤ Quantile(1−
ε, Ft+1) happens with probability at least 1− ε. Therefore,
if Q̃t+1 ≥ Quantile(1− ε, Ft+1), then Y test

t+1 is included in
Mε(X

test
t+1) with probability at least 1− ε. Combining with

Eq. (10) completes our proof.

A.6 Proof of Proposition 4.7

Proof. Let F̂mi be the mi-sample ECDF for Ti. Define the
empirical correction, Λ′(β, Ical), when plugging in F̂mi as

inf

{
λ :

1

|Ical|+ 1

∑
i∈Ical

F̂mi
(
V̂ test
i,k+1 ≤ Q̂i + λ

)
≥ β

}
(11)

where the ECDF is calculated as

F̂mi :=

mi∑
j=1

1{V̂ (j)
i,k+1 ≤ Q̂i + λ},

where V̂ (j)
i,k+1 are i.i.d. and V̂ (j)

i,k+1
d
= V̂ test

i,k+1.

We now proceed in two parts. First, we prove that if the ap-
proximation error incurred by using Λ′(β, Ical) is bounded
by τ with probability 1− δ, thenMε−τ is (δ, ε) valid. Sec-
ond, we prove that the error is bounded according to Eq. (9).

(1) Following the proof of Lemma 4.2, we have that

P(V̂t+1 ≤ Q̂t+1 + Λ′(β; Ical) | Et)

≥ 1

|Ical|+ 1

∑
i∈Ical

Fi(Q̂i + Λ′(β; Ical)).
(12)
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For ease of notation, let

A :=
1

|Ical|+ 1

∑
i∈Ical

F̂mi(Q̂i + Λ′(β; Ical)),

B :=
1

|Ical|+ 1

∑
i∈Ical

Fi(Q̂i + Λ′(β; Ical)).

Next, assume that (to be proved) for some τ > 0

P(A−B < τ) ≥ 1− δ. (13)

By construction—see Eq. (11)—we have A ≥ β. Then by
Eq. (13), we have that with probability 1− δ,

B > A− τ ≥ β − τ.

Choose β ≥ 1 − ε + τ . Then B ≥ 1 − ε. By convention,
this corresponds to β := 1− ε′ ≥ 1− (ε− τ), or ε′ ≤ ε− τ
as in Eq. (9). Combining this with Eq. (12), we have

P(V̂t+1 ≤ Q̂t+1 + Λ′(β; Ical) | Et) ≥ 1− ε.

This is true for all Et, so we can marginalize to obtain

P(V̂t+1 ≤ Q̂t+1 + Λ′(β; Ical)) ≥ 1− ε.

(2) We now prove the assumption stated in Eq. (13). Given
an m-sample ECDF, F̂m(u), for some random variable
U , the Dvoretsky-Kiefer-Wolfowitz inequality allows us
to build a confidence interval for the value of the true distri-
bution function, F (u), where

P
(

sup
u∈R
|F̂m(u)− F (u)| > γ

)
≤ 2e−2nγ2

.

Alternatively stated, with probability at least 1−α, F (u) ∈

[F̂m(u)− γ, F̂m(u) + γ], where γ =

√
log 2

α

2n .

We combine this result with Hoeffding’s inequality.

Let Yi := F̂mi(V̂i ≤ Q̂i + λ) − Fi(V̂i ≤ Q̂i + λ). Once
again for notational convenience, assume tasks Ti, i ∈ Ical

and Tt+1 are indexed contiguously as i = 1, . . . , n + 1.
The difference, A−B, is then equivalent to 1

n+1

∑n
i=1 Yi.

According to our assumptions, Yi’s are i.i.d., E[Yi] =

E[F̂mi ] − E[Fi] = 0, and Yi ∈ [−γi, γi] w.p. 1 − α. As

above, we define γi =

√
log 2

α

2mi
.

Applying Hoeffding’s inequality gives

P
( 1

n+ 1

n∑
i=1

Yi < τ
)

≥ P
( n∑
i=1

Yi < nτ,

n⋂
i=1

Yi ∈ [−γi, γi]
)

≥ P
( n∑
i=1

Yi < nτ
∣∣∣ n⋂
i=1

Yi ∈ [−γi, γi]
)
P
( n⋂
i=1

Yi ∈ [−γi, γi]
)

≥
(

1− e
− 2n2τ2∑n

i=1
(2γi)

2
)(

1− α
)n
.

Solving for τ given the target 1− δ error probability yields

1− δ =
(

1− e
− 2n2τ2∑n

i=1
(2γi)

2
)(

1− α
)n

τ =

√√√√−2

n2

( n∑
i=1

γ2
i

)
log
(

1− 1− δ
(1− α)n

)
This is valid for any choice of α (as long as the log term is
defined), so we are free to choose α that minimizes τ .

B Meta Conformal Prediction Details

B.1 Meta-Learning algorithms

Prototypical networks (Snell et al., 2017). We use pro-
totypical networks for our classification tasks. We assume
that for each task we have N total classes with K examples
per class (for a total of k = N ×K training examples). In
this model, an encoder, h = enc(x; θ) is trained to produce
vector representations. Thereafter, a “prototype” for each
class is computed by averaging the representations of all
instances of that class. Let Sj denote the support set of
training examples for class j. Then the prototype cj is

cj :=
1

|Sj |
∑

(xi,yi)∈Sj

enc(xi; θ).

The likelihood of each class is then calculated using a soft-
max over the euclidean distance to each prototype:

pθ(y = j | x) :=
exp(−d(cj , enc(x; θ)))∑
j′ exp(−d(cj′ , enc(x; θ)))

, (14)

where d(·, ·) denotes the euclidean distance.

During training, random training “episodes” are created by
sampling N classes from the training set. For each class, K
examples are randomly sampled to construct the prototypes.
An additional Q examples are then sampled to simulate
queries. The optimization objective is to then minimize the
cross entropy loss across queries.

After training, we use−pθ(y = j | x) as defined in Eq. (14)
as the nonconformity measure for label y = j.

Differentiable ridge regression (Bertinetto et al.,
2019). We use differentiable ridge regression networks
for our regression tasks. We assume that for each task we
have k labeled (xi, yi) pairs, where y ∈ R. In this model,
like the prototypical networks, an encoder, h = enc(x; θ),
is trained to produce vector representations of dimension
d. We then solve a least-squares regression to obtain our
prediction, ŷ = w · enc(x; θ), where

w = X>(XX> + λI)−1Y
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with X ∈ Rk×d, Y ∈ Rk, and λ a meta regularization
parameter that we optimize. We optimize MSE by back-
propagating through the least-squares operator to the en-
coder. We train using the same episode-based procedure
that we described for the prototypical networks.

After training, we use the absolute error, |ŷ − y|, as the
nonconformity score for candidate y ∈ R.

Deep sets (Zaheer et al., 2017). We use a simple deep sets
architecture for all of our quantile predictors. Deep sets are
of the form

f(X) := dec
(∑
x∈X

enc(x;φ1);φ2

)
where X is an input set of elements, enc is an element-
wise encoder, and dec is a decoder that operates on the
aggregated encoded set elements. Importantly, the deep sets
model f is invariant to permutations of the elements in X .

B.2 Implementation details

Image classification. Each image is first resized to 84 ×
84 pixels. We use a CNN encoder with 4 layers. Each
layer contains a 3× 3 convolution kernel with 64 channels
and a padding of size 1, followed by batch normalization
layer, ReLU activation, and a 2× 2 max pooling filter. The
final output is of size 1600, which we use to compute the
prototypes and as the query representations. We train the
model for 100 epochs with an Adam optimizer and a batch
size of 256. In each epoch, we run 100 episodes in which we
sample 10 support images and 15 query images per class.

Relation classification. We use GloVe (Pennington et al.,
2014) word embeddings of size 50 to convert the sentence
into vectors. To each word embedding, we also concate-
nate two learned position embeddings of size 5, where the
positions are relative to the location of the two entities in
the sentence. Thereafter, a 1D convolution is applied with
230 output channels, a kernel size of 3 and padding size 1,
followed by a ReLU activation. Finally, a max pooling filter
is applied. The resultant sentence representation of size 230
is used to compute the prototypes and query representations.
We train the model for a total of 20k episodes with a SGD
optimizer and a batch size of 32. In each episode, we sample
10 support sentences and 5 query sentences per class.

Chemical property prediction. Our ridge regression net-
work uses directed message passing networks (Yang et al.,
2019) to compute enc(x; θ). The message passing network
uses graph convolutions to learn a deep molecular represen-
tation that is shared across property predictions. We also
include additional RDKit features as inputs.6 We map inputs
with a FFNN with hidden size 200, and then apply 3 layers
of graph convolutions with a hidden size of 256. Finally, we

6www.rdkit.org

map the output representation to a hidden size of 16, and
apply least-squares regression. We train the network using
an Adam optimizer for 15 epochs with 8 meta episodes per
batch, each with 32 queries (for a total batch size of 256).

Quantile prediction. For all of our quantile predictors,
we use a 2-layer FFNN for both the element-wise encoder,
enc(·;φ1), and the aggregated set decoder, dec(·;φ2). Each
FFNN has a hidden size of 256 and uses ReLU activations.
We train the network using an Adam optimizer for 15 epochs
with batch size 64.

B.3 Training strategy

We adopt a cross-fold procedure for training our meta non-
conformity measure Ŝ and meta quantile predictor P̂1−ε
in a data efficient way, as outlined in §4.2. Figure B.1
illustrates this cross-fold process, in which we train a meta-
nonconformity measure on each training fold and aggregate
their predictions as input data for the quantile predictor.

Since we train in a cross-fold manner but ultimately use
a meta-nonconformity measure Ŝ that is trained on all of
the training data, there is a train-test mismatch in the data
supplied to the quantile predictor. Nevertheless, any error
induced by this discrepancy (and any other sources of error,
for that matter) is handled during meta-calibration (§4.3).

All experiments took 1-5 hours to run on an Nvidia 2080
Ti GPU. As absolute performance is not the primary goal
of this work, little hyperparameter tuning was done (most
hyperparameters were taken from prior work). Datasets are
available for miniImageNet7, FewRel 1.08, and ChEMBL9.

Figure B.1. An illustration of our strategy for learning meta non-
conformity measures, Ŝ, and meta quantile predictors, P̂1−ε. As
P̂1−ε is trained on the outputs of Ŝ, we adopt a cross-fold proce-
dure where we first train Ŝ on a fraction of the data, and evaluate
nonconformity scores on the held-out fold. We repeat this process
for all kf folds, and then aggregate them all for training P̂1−ε.

7https://github.com/yaoyao-liu/
mini-imagenet-tools

8https://thunlp.github.io/1/fewrel1.html
9https://github.com/chemprop/chemprop
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