Appendix

A. Proof of Theorem 1

Problem $2\left(k\right.$ - CenterUniform). Given a uniform metric space $d: V \times V \mapsto \mathbb{R}_{\geq 0}(d(u, v)=1$ in case $(u \neq v))$ and a set of requests $R_{1}, \ldots, R_{m} \subseteq V$. Select $F \subseteq V$ such as $|F|=k$ and $\sum_{s=1}^{m} C_{R_{s}}(F)$ is minimized where p is ∞.
Lemma 6. Any c-approximation algorithm for k - CenterUniform implies a c-approximation algorithm for Min - $p-$ Union.

Proof. Given the collection $U=\left\{S_{1}, \ldots, S_{m}\right\}$ of the Min - p - Union, we construct a uniform metric space V of size m, where each node of V corresponds to a set S_{i}.

For each elements $e \in E$ of the Min $-p$ - Union we construct a request $R_{e} \subseteq V$ for the k - CenterUniform that is composed by the nodes corresponding to the sets S_{i} that containt e. Observe that due to the uniform metric and the fact that $p=\infty$, for any $V^{\prime} \subseteq V$

$$
\sum_{e \in E} C_{R_{e}}\left(V^{\prime}\right)=\left|\cup_{S_{i} \notin V^{\prime}} S_{i}\right|
$$

Lemma 7. Any polynomial time c-regret algorithm for the online k-Center implies a $(c+1)$-approximation algorithm (offline) for the k - CenterUniform.

Proof. Let assume that that there exists a polynomial-time online learning algorithm such that for any request sequence R_{1}, \ldots, R_{T},

$$
\sum_{t=1}^{T} \mathbb{E}\left[C_{R_{t}}\left(F_{t}\right)\right] \leq c \min _{\left|F^{*}\right|=k} \sum_{t=1}^{T} \mathbb{E}\left[C_{R_{t}}\left(F^{*}\right)\right]+\Theta\left(\operatorname{poly}(n, D) \cdot T^{\alpha}\right)
$$

for some $\alpha<1$.
Now let the requests lie on the uniform metric, $p=\infty$ and that the adversary at each round t selects uniformly at random one of the requests R_{1}, \ldots, R_{m} that are given by the instance of k-CenterUniform. In this case the above equation takes the following form,

$$
\sum_{t=1}^{T} \frac{1}{m} \sum_{s=1}^{m} \mathbb{E}\left[C_{R_{s}}\left(F_{t}\right)\right] \leq c \frac{T}{m} \sum_{s=1}^{m} \mathbb{E}\left[C_{R_{s}}\left(\mathrm{OPT}^{*}\right)\right]+\Theta\left(n^{\beta} \cdot T^{\alpha}\right)
$$

where OPT^{*} is the optimal solution for the instance of k - CenterUniform and F_{t} is the random set that the online algorithm selects at round t.

Now consider the following randomized algorithm for the k - CenterUniform.

1. Select uniformly at random a t from $\{1, \ldots, T\}$.
2. Select a set $F \subseteq V$ according to the probability distribution F_{t}.

The expected cost of the above algorithm, denoted by $\mathbb{E}[A L G]$, is

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \mathbb{E}_{F \sim F_{t}}\left[C_{R_{i}}(F)\right] & =m \cdot\left(\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \frac{1}{m} \mathbb{E}_{F \sim F_{t}}\left[C_{R_{i}}(F)\right]\right) \\
& \leq \frac{c \cdot m}{T} \cdot \frac{T}{m} \sum_{i=1}^{m} C_{R_{i}}\left(\mathrm{OPT}^{*}\right) \\
& +\Theta\left(\frac{m \cdot n^{\beta}}{T^{1-\alpha}}\right)
\end{aligned}
$$

By selecting $T=\Theta\left(m^{\frac{1}{1-\alpha}} \cdot n^{\frac{\beta}{1-\alpha}}\right)$ we get that $\mathbb{E}[$ ALG $] \leq(c+1) \cdot$ OPT *.

B. Omitted Proof of Section 3

B.1. Proof of Lemma 2

The Langragian of the convex program of Definition 2 is,

$$
\begin{aligned}
L(\beta, y, x, A, k, \lambda) & =\left(\sum_{j \in R} \beta_{j}^{p}\right)^{1 / p} \\
& +\sum_{j \in R} \lambda_{j} \cdot\left(d_{i j} x_{i j}-\beta_{j}\right)+\sum_{j \in R} A_{j} \cdot\left(1-\sum_{i \in V} x_{i j}\right) \\
& +\sum_{i \in V} \sum_{j \in V} k_{i j} \cdot\left(x_{i j}-y_{i}\right)-\sum_{i \in V} \sum_{j \in R} \mu_{i j} \cdot x_{i j}
\end{aligned}
$$

Rearranging the terms we get,

$$
\begin{aligned}
L(\beta, y, x, A, k, \lambda) & =\sum_{j \in R} A_{j}-\sum_{i \in V} \sum_{j \in R} k_{i j} \cdot y_{i} \\
& +\sum_{i \in V} \sum_{j \in R} x_{i j} \cdot\left(k_{i j}-\mu_{i j}+d_{i j} \cdot \lambda_{j}-A_{j}\right) \\
& +\left(\sum_{j \in R} \beta_{j}^{p}\right)^{1 / p}-\sum_{j \in R} \lambda_{j} \cdot \beta_{j}
\end{aligned}
$$

In order for the function $g(A, k, \lambda)=\min _{\beta, y, x, M^{+}, M^{-}} L(\beta, y, x, A, k, \lambda)$ to get a finite value the following constraints must be satisfied,

- $k_{i j}+d_{i j} \cdot \lambda_{j}-A_{j}=\mu_{i j}$
- $\|\lambda\|_{p}^{*} \leq 1$ since otherwise $\left(\sum_{j \in R} \beta_{j}^{p}\right)^{1 / p}-\sum_{j \in R} \lambda_{j} \cdot \beta_{j}$ can become $-\infty$.

Using the fact that the Lagragian multipliers $\mu_{i j} \geq 0$, we get the constraints of the convex program of Lemma 2. The objective comes from the fact that once $g(A, k, \lambda)$ admits a finite value then $g(A, k, \lambda)=\sum_{j \in R} A_{j}-\sum_{i \in V} \sum_{j \in R} k_{i j} \cdot y_{i}$.

B.2. Proof of Lemma 3

Let $\lambda_{j}^{*}, A_{j}^{*}, k_{i j}^{*}$ denote the values of the respective variables in the optimal solution of the convex program of Lemma 2 formulated with respect to the vector $y=\left(y_{1}, \ldots, y_{n}\right)$. Respectively consider $\lambda_{j}^{\prime}, A_{j}^{\prime}, k_{i j}^{\prime}$ denote the values of the respective variables in the optimal solutions of the convex program of Lemma 2 formulated with respect to the vector $y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$.

$$
\begin{align*}
\mathrm{FC}_{R}\left(y^{\prime}\right) & =\sum_{j \in R} A_{j}^{\prime}-\sum_{i \in V} \sum_{j \in R} k_{i j}^{\prime} \cdot y_{i}^{\prime} \tag{3}\\
& \geq \sum_{j \in R} A_{j}^{*}-\sum_{i \in V} \sum_{j \in R} k_{i j}^{*} \cdot y_{i}^{\prime} \tag{4}\\
& =\sum_{j \in R} A_{j}^{*}-\sum_{i \in V} \sum_{j \in R} k_{i j}^{*} \cdot y_{i}^{\prime}+\sum_{i \in V} \sum_{j \in R} k_{i j}^{*} \cdot y_{i}-\sum_{i \in V} \sum_{j \in R} k_{i j}^{*} \cdot y_{i} \tag{5}\\
& =\mathrm{FC}_{R}(y)+\sum_{i \in V} \sum_{j \in R} k_{i j}^{*} \cdot\left(y_{i}-y_{i}^{\prime}\right) \tag{6}
\end{align*}
$$

Equations 5 and 6 follow by strong duality, more precisely $\mathrm{FC}_{R}(y)=\sum_{j \in R} A_{j}^{*}-\sum_{i \in V} \sum_{j \in R} k_{i j}^{*} \cdot y_{i}$ since the convex program of Lemma 2 is the dual of the convex program the solution of which defines $\mathrm{FC}_{R}\left(y^{\prime}\right)$ (respectively for
$\left.\mathrm{FC}_{R}\left(y^{\prime}\right)=\sum_{j \in R} A_{j}^{\prime}-\sum_{i \in V} \sum_{j \in R} k_{i j}^{\prime} \cdot y_{i}^{\prime}\right)$. Equation 4 is implied by the fact that the solution $\left(\lambda^{\prime}, k^{\prime}, A^{\prime}\right)$ is optimal when the objective function is $\sum_{j \in R} A_{j}-\sum_{i \in V} \sum_{j \in R} k_{i j} \cdot y_{i}^{\prime}$. Notice that the constraints of the convex program in Lemma 2 do not depend on the y-values. As a result, the solution $\left(\lambda^{*}, k^{*}, A^{*}\right)$ (that is optimal for the dual convex program formulated for y) is feasible for the dual program formulated for the values y^{\prime}. Thus Equation 4 follows by the optimality of $\left(\lambda^{\prime}, k^{\prime}, A^{\prime}\right)$.
Up next we prove the correctness of Algorithm 1. Notice that the the solution β, x that Algorithm 1 constructs is feasible for the primal convex program of Definition 2. We will prove that the dual solution that Algorithm 1 constructs is feasible for the dual of Lemma 2 while the exact same value is obtained.

- $\|\lambda\|_{p}^{*}=1$: It directly follows by the fact that $\lambda_{j}=\left[\frac{\beta_{j}}{\|\beta\|_{p}}\right]^{p-1}$ and $\|\lambda\|_{p}^{*}=\left[\sum_{j \in R} \lambda_{j}^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}}$.
- $d_{i j} \cdot \lambda_{j}+k_{i j} \geq A_{j}:$ In case $d_{i j}<D_{j}^{*}$, Algorithm 1 implies that $x_{i j}=y_{i}$ and the inequality directly follows. In case $\overline{d_{i j} \leq D_{j}^{*}}$ the inequality holds trivially since $k_{i j}=0$.

Now consider the objective function,

$$
\begin{align*}
\sum_{j \in R} A_{j}-\sum_{i \in V} \sum_{j \in R} y_{i} \cdot k_{i j} & =\sum_{j \in R} A_{j}-\sum_{j \in R} \sum_{i \in V_{j}^{+}} y_{i} \cdot k_{i j} \\
& =\sum_{j \in R} \lambda_{j} \cdot D_{j}-\sum_{j \in R} \sum_{i \in V_{j}^{+}} y_{i}\left[\lambda_{j} \cdot \frac{x_{i j}}{y_{i}}\left(D_{j}-d_{i j}\right)\right] \\
& =\sum_{j \in R} \lambda_{j} \sum_{i \in V_{j}^{+}} d_{i j} \cdot x_{i j} \tag{7}\\
& =\sum_{j \in R} \lambda_{j} \cdot \beta_{j} \\
& =\left(\sum_{j \in R} \beta_{j}^{p}\right)^{1 / p}
\end{align*}
$$

where Equation 8 follows by the fact that $x_{i j}=0$ for all $j \notin V_{j}^{+}$and thus $\sum_{j \in V_{j}^{+}} x_{i j}=1$. Finally notice that $\left|\lambda_{j}\right| \leq 1$ and thus $k_{i j} \leq D$ where D is the diameter of the metric space.

B.3. Proof of Theorem 6

By Lemma 3, $\left|g_{i}^{t}\right|=\left|-\sum_{j \in R^{t}} k_{i j}^{t *}\right| \leq D r$ since $\left|R^{t}\right| \leq r$. Applying Theorem 1.5 of (Hazan, 2016) we get that

$$
\sum_{t=1}^{T} \sum_{i \in V} g_{i}^{t}\left(y_{i}^{t}-y_{i}^{*}\right) \leq \Theta(k D r \sqrt{\log n T})
$$

Applying Lemma 3 for $y^{\prime}=y^{*}$,

$$
\sum_{t=1}^{T}\left(\mathrm{FC}_{R_{t}}\left(y^{t}\right)-\mathrm{FC}_{R_{t}}\left(y^{*}\right)\right) \leq \sum_{t=1}^{T} \sum_{i \in V} g_{i}^{t}\left(y_{i}^{t}-y_{i}^{*}\right) \leq \Theta(k D r \sqrt{\log n T})
$$

C. Omitted Proof of Section 4

C.1. Proof of Lemma 4

The following claim trivially follows by Step 10 of Algorithm 4.
Claim 1. For any node $j \in V, d\left(j, F_{y}\right) \leq 6 k \cdot \beta_{j}^{*}$.

We are now ready to prove the first item of Lemma 4 . Let a request $R \subseteq V$,

$$
\mathrm{C}_{R}\left(F_{y}\right)=\left(\sum_{j \in R} d\left(j, F_{y}\right)^{p}\right)^{1 / p} \leq\left(\sum_{j \in R}(6 k)^{p} \cdot \beta_{j}^{* p}\right)^{1 / p}=6 k \cdot\left(\sum_{j \in R} \beta_{j}^{* p}\right)^{1 / p}
$$

We proceed with the second item of Lemma 4. For a given node $j \in S$, let $B_{j}=\left\{i \in V: d_{i j} \leq 3 k \cdot \beta_{j}^{*}\right\}$. It is not hard to see that for any $j \in F_{y}$,

$$
\sum_{i \in B_{j}} y_{i} \geq 1-\frac{1}{3 k}
$$

Observe that in case the latter is not true then $\sum_{i \notin B_{j}} x_{i j}^{*} \geq \frac{1}{3 k}$, which would imply that $\beta_{j}^{*}>\beta_{j}^{*}$.
The second important step of the proof is that for any $j, j^{\prime} \in F_{y}$,

$$
B_{j} \cap B_{j^{\prime}}=\emptyset
$$

Observe that in case there was $m \in B_{j} \cap B_{j^{\prime}}$ would imply $d(j, m) \leq 3 k \cdot \beta_{j}^{*}$ and $d\left(j^{\prime}, m\right) \leq 3 k \cdot \beta_{j^{\prime}}^{*}$. By the triangle inequality we get $d\left(j, j^{\prime}\right) \leq 6 k \cdot \beta_{j^{\prime}}^{*}$ (without loss of generality $\beta_{j}^{*} \leq \beta_{j^{\prime}}^{*}$). The latter contradicts with the fact that both j and j^{\prime} belong in set F_{y}.
Now assume that $\left|F_{y}\right| \geq k+1$. Then $\sum_{i \in F_{y}} y_{i} \geq\left|F_{y}\right| \cdot\left(1-\frac{1}{3 k}\right) \geq(k+1) \cdot\left(1-\frac{1}{3 k}\right)>k$. But the latter contradicts with the fact that $\sum_{i \in V} y_{i}=k$. As a result, $\left|F_{y}\right| \leq k$.

D. Omitted Proofs of Section 5

Proof of Theorem 4. To simplify notation the quantity $\mathbb{E}_{F \sim \mathrm{CL}\left(y_{t}\right)}\left[C_{R_{t}}(F)\right]$ is denoted as $\mathbb{E}\left[C_{R_{t}}\left(F_{t}\right)\right]$. At first notice that by the first case of Lemma 5, Algorithm 5 ensures that exactly k facilities are opened at each round t.
Concerning its overall expected connection cost we get,

$$
\mathbb{E}\left[C_{R_{t}}\left(F_{y_{t}}\right)\right] \leq \sum_{j \in R_{t}} \mathbb{E}\left[C_{\{j\}}\left(F_{y_{t}}\right)\right] \leq 4 \sum_{j \in R_{t}} \operatorname{FC}_{\{j\}}\left(y_{t}\right)
$$

where the fist inequality is due to the fact that $\sum_{j \in R_{t}} \mathrm{~d}(j, F)^{p} \leq\left(\sum_{j \in R_{t}} \mathrm{~d}(j, F)\right)^{p}$ and the second is derived by applying the second case of Lemma 5. We overall get,

$$
\begin{align*}
\sum_{t=1}^{T} \mathbb{E}\left[C_{R_{t}}\left(F_{y_{t}}\right)\right] & \leq 4 \sum_{t=1}^{T} \sum_{j \in R_{t}} \mathrm{FC}_{\{j\}}\left(y_{t}\right) \\
& \leq 4 \sum_{t=1}^{T}\left|R_{t}\right| \cdot \mathrm{FC}_{R_{t}}\left(y_{t}\right) \tag{8}\\
& \leq 4 r \min _{y^{*}} \sum_{t=1}^{T} \mathrm{FC}_{R_{t}}\left(y^{*}\right) \\
& +\Theta(k D r \sqrt{\log n T}) \\
& \leq 4 r \min _{\left|F^{*}\right|=k} \sum_{t=1}^{T} \mathbb{E}\left[\mathrm{C}_{R_{t}}\left(F^{*}\right)\right] \\
& +\Theta(k D r \sqrt{\log n T})
\end{align*}
$$

where inequality 3 follows by the fact that $\mathrm{FC}_{\{j\}}(y) \leq \mathrm{FC}_{\{R\}}(y)$ for all $j \in R$ and the last two inequalities follow by Theorem 6 and Lemma 1 respectively.

