Appendix

A. Proof of Theorem 1

Problem 2 (k - CenterUniform). Given a uniform metric space $d : V \times V \mapsto \mathbb{R}_{\geq 0}$ $(d(u, v) = 1 \text{ in case } (u \neq v))$ and a set of requests $R_1, \ldots, R_m \subseteq V$. Select $F \subseteq V$ such as |F| = k and $\sum_{s=1}^m C_{R_s}(F)$ is minimized where p is ∞ .

Lemma 6. Any *c*-approximation algorithm for k – CenterUniform implies a *c*-approximation algorithm for Min – p – Union.

Proof. Given the collection $U = \{S_1, \ldots, S_m\}$ of the Min -p – Union, we construct a uniform metric space V of size m, where each node of V corresponds to a set S_i .

For each elements $e \in E$ of the Min -p – Union we construct a request $R_e \subseteq V$ for the k – CenterUniform that is composed by the nodes corresponding to the sets S_i that containt e. Observe that due to the uniform metric and the fact that $p = \infty$, for any $V' \subseteq V$

$$\sum_{e \in E} C_{R_e}(V') = |\cup_{S_i \notin V'} S_i$$

Lemma 7. Any polynomial time c-regret algorithm for the online k-Center implies a (c + 1)-approximation algorithm (offline) for the k – CenterUniform.

Proof. Let assume that there exists a polynomial-time online learning algorithm such that for any request sequence R_1, \ldots, R_T ,

$$\sum_{t=1}^{T} \mathbb{E}[C_{R_t}(F_t)] \le c \quad \min_{|F^*|=k} \sum_{t=1}^{T} \mathbb{E}[C_{R_t}(F^*)] + \Theta(\operatorname{poly}(n, D) \cdot T^{\alpha})$$

for some $\alpha < 1$.

Now let the requests lie on the uniform metric, $p = \infty$ and that the adversary at each round t selects uniformly at random one of the requests R_1, \ldots, R_m that are given by the instance of k – CenterUniform. In this case the above equation takes the following form,

$$\sum_{t=1}^{T} \frac{1}{m} \sum_{s=1}^{m} \mathbb{E}[C_{R_s}(F_t)] \le c \frac{T}{m} \sum_{s=1}^{m} \mathbb{E}[C_{R_s}(OPT^*)] + \Theta(n^{\beta} \cdot T^{\alpha})$$

where OPT^* is the optimal solution for the instance of k – CenterUniform and F_t is the random set that the online algorithm selects at round t.

Now consider the following randomized algorithm for the k – CenterUniform.

- 1. Select uniformly at random a t from $\{1, \ldots, T\}$.
- 2. Select a set $F \subseteq V$ according to the probability distribution F_t .

The expected cost of the above algorithm, denoted by $\mathbb{E}[ALG]$, is

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \mathbb{E}_{F \sim F_{t}} \left[C_{R_{i}}(F) \right] = m \cdot \left(\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{m} \frac{1}{m} \mathbb{E}_{F \sim F_{t}} \left[C_{R_{i}}(F) \right] \right)$$

$$\leq \frac{c \cdot m}{T} \cdot \frac{T}{m} \sum_{i=1}^{m} C_{R_{i}}(OPT^{*})$$

$$+ \Theta \left(\frac{m \cdot n^{\beta}}{T^{1-\alpha}} \right)$$

By selecting $T = \Theta(m^{\frac{1}{1-\alpha}} \cdot n^{\frac{\beta}{1-\alpha}})$ we get that $\mathbb{E}[ALG] \le (c+1) \cdot OPT^*$.

B. Omitted Proof of Section 3

B.1. Proof of Lemma 2

The Langragian of the convex program of Definition 2 is,

$$L(\beta, y, x, A, k, \lambda) = \left(\sum_{j \in R} \beta_j^p\right)^{1/p} + \sum_{j \in R} \lambda_j \cdot (d_{ij} x_{ij} - \beta_j) + \sum_{j \in R} A_j \cdot \left(1 - \sum_{i \in V} x_{ij}\right) + \sum_{i \in V} \sum_{j \in V} k_{ij} \cdot (x_{ij} - y_i) - \sum_{i \in V} \sum_{j \in R} \mu_{ij} \cdot x_{ij}$$

Rearranging the terms we get,

$$L(\beta, y, x, A, k, \lambda) = \sum_{j \in R} A_j - \sum_{i \in V} \sum_{j \in R} k_{ij} \cdot y_i$$

+
$$\sum_{i \in V} \sum_{j \in R} x_{ij} \cdot (k_{ij} - \mu_{ij} + d_{ij} \cdot \lambda_j - A_j)$$

+
$$\left(\sum_{j \in R} \beta_j^p\right)^{1/p} - \sum_{j \in R} \lambda_j \cdot \beta_j$$

In order for the function $g(A, k, \lambda) = \min_{\beta, y, x, M^+, M^-} L(\beta, y, x, A, k, \lambda)$ to get a finite value the following constraints must be satisfied,

k_{ij} + d_{ij} · λ_j − A_j = μ_{ij}
||λ||^{*}_p ≤ 1 since otherwise (Σ_{j∈R} β^p_j)^{1/p} − Σ_{j∈R} λ_j · β_j can become −∞.

Using the fact that the Lagragian multipliers $\mu_{ij} \ge 0$, we get the constraints of the convex program of Lemma 2. The objective comes from the fact that once $g(A, k, \lambda)$ admits a finite value then $g(A, k, \lambda) = \sum_{j \in R} A_j - \sum_{i \in V} \sum_{j \in R} k_{ij} \cdot y_i$.

B.2. Proof of Lemma 3

Let $\lambda_j^*, A_j^*, k_{ij}^*$ denote the values of the respective variables in the optimal solution of the convex program of Lemma 2 formulated with respect to the vector $y = (y_1, \ldots, y_n)$. Respectively consider $\lambda'_j, A'_j, k'_{ij}$ denote the values of the respective variables in the optimal solutions of the convex program of Lemma 2 formulated with respect to the vector $y' = (y'_1, \ldots, y'_n)$.

$$FC_R(y') = \sum_{j \in R} A'_j - \sum_{i \in V} \sum_{j \in R} k'_{ij} \cdot y'_i$$
(3)

$$\geq \sum_{j \in R} A_j^* - \sum_{i \in V} \sum_{j \in R} k_{ij}^* \cdot y_i' \tag{4}$$

$$= \sum_{j \in R} A_j^* - \sum_{i \in V} \sum_{j \in R} k_{ij}^* \cdot y_i' + \sum_{i \in V} \sum_{j \in R} k_{ij}^* \cdot y_i - \sum_{i \in V} \sum_{j \in R} k_{ij}^* \cdot y_i$$
(5)

$$= \operatorname{FC}_{R}(y) + \sum_{i \in V} \sum_{j \in R} k_{ij}^{*} \cdot (y_{i} - y_{i}')$$

$$\tag{6}$$

Equations 5 and 6 follow by strong duality, more precisely $FC_R(y) = \sum_{j \in R} A_j^* - \sum_{i \in V} \sum_{j \in R} k_{ij}^* \cdot y_i$ since the convex program of Lemma 2 is the dual of the convex program the solution of which defines $FC_R(y')$ (respectively for

 $FC_R(y') = \sum_{j \in R} A'_j - \sum_{i \in V} \sum_{j \in R} k'_{ij} \cdot y'_i$. Equation 4 is implied by the fact that the solution (λ', k', A') is optimal when the objective function is $\sum_{j \in R} A_j - \sum_{i \in V} \sum_{j \in R} k_{ij} \cdot y'_i$. Notice that the constraints of the convex program in Lemma 2 do not depend on the *y*-values. As a result, the solution (λ^*, k^*, A^*) (that is optimal for the dual convex program formulated for *y*) is feasible for the dual program formulated for the values *y'*. Thus Equation 4 follows by the optimality of (λ', k', A') .

Up next we prove the correctness of Algorithm 1. Notice that the the solution β , x that Algorithm 1 constructs is feasible for the primal convex program of Definition 2. We will prove that the dual solution that Algorithm 1 constructs is feasible for the dual of Lemma 2 while the exact same value is obtained.

- $\underline{||\lambda||_p^* = 1}$: It directly follows by the fact that $\lambda_j = \left[\frac{\beta_j}{||\beta||_p}\right]^{p-1}$ and $||\lambda||_p^* = \left[\sum_{j \in \mathbb{R}} \lambda_j^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}}$.
- $\frac{d_{ij} \cdot \lambda_j + k_{ij} \ge A_j}{d_{ij} \le D_j^*}$ in case $\frac{d_{ij}}{d_{ij}} < D_j^*$, Algorithm 1 implies that $x_{ij} = y_i$ and the inequality directly follows. In case $\frac{d_{ij}}{d_{ij}} \le D_j^*$ the inequality holds trivially since $k_{ij} = 0$.

Now consider the objective function,

$$\sum_{j \in R} A_j - \sum_{i \in V} \sum_{j \in R} y_i \cdot k_{ij} = \sum_{j \in R} A_j - \sum_{j \in R} \sum_{i \in V_j^+} y_i \cdot k_{ij}$$

$$= \sum_{j \in R} \lambda_j \cdot D_j - \sum_{j \in R} \sum_{i \in V_j^+} y_i \left[\lambda_j \cdot \frac{x_{ij}}{y_i} \left(D_j - d_{ij} \right) \right]$$

$$= \sum_{j \in R} \lambda_j \sum_{i \in V_j^+} d_{ij} \cdot x_{ij}$$

$$= \sum_{j \in R} \lambda_j \cdot \beta_j$$

$$= \left(\sum_{j \in R} \beta_j^p \right)^{1/p}$$
(7)

where Equation 8 follows by the fact that $x_{ij} = 0$ for all $j \notin V_j^+$ and thus $\sum_{j \in V_j^+} x_{ij} = 1$. Finally notice that $|\lambda_j| \le 1$ and thus $k_{ij} \le D$ where D is the diameter of the metric space.

B.3. Proof of Theorem 6

By Lemma 3, $|g_i^t| = |-\sum_{i \in \mathbb{R}^t} k_{ij}^{t*}| \le Dr$ since $|\mathbb{R}^t| \le r$. Applying Theorem 1.5 of (Hazan, 2016) we get that

$$\sum_{t=1}^{T} \sum_{i \in V} g_i^t (y_i^t - y_i^*) \le \Theta\left(k Dr \sqrt{\log nT}\right)$$

Applying Lemma 3 for $y' = y^*$,

$$\sum_{t=1}^{T} \left(\operatorname{FC}_{R_t}(y^t) - \operatorname{FC}_{R_t}(y^*) \right) \le \sum_{t=1}^{T} \sum_{i \in V} g_i^t(y_i^t - y_i^*) \le \Theta\left(k Dr \sqrt{\log nT} \right)$$

C. Omitted Proof of Section 4

C.1. Proof of Lemma 4

The following claim trivially follows by Step 10 of Algorithm 4. Claim 1. For any node $j \in V$, $d(j, F_y) \leq 6k \cdot \beta_j^*$. We are now ready to prove the first item of Lemma 4. Let a request $R \subseteq V$,

$$C_R(F_y) = \left(\sum_{j \in R} d(j, F_y)^p\right)^{1/p} \le \left(\sum_{j \in R} (6k)^p \cdot \beta_j^{*p}\right)^{1/p} = 6k \cdot \left(\sum_{j \in R} \beta_j^{*p}\right)^{1/p}$$

We proceed with the second item of Lemma 4. For a given node $j \in S$, let $B_j = \{i \in V : d_{ij} \leq 3k \cdot \beta_j^*\}$. It is not hard to see that for any $j \in F_y$,

$$\sum_{i \in B_j} y_i \ge 1 - \frac{1}{3k}$$

Observe that in case the latter is not true then $\sum_{i \notin B_j} x_{ij}^* \ge \frac{1}{3k}$, which would imply that $\beta_j^* > \beta_j^*$.

The second important step of the proof is that for any $j, j' \in F_y$,

$$B_i \cap B_{i'} = \emptyset.$$

Observe that in case there was $m \in B_j \cap B_{j'}$ would imply $d(j,m) \leq 3k \cdot \beta_j^*$ and $d(j',m) \leq 3k \cdot \beta_{j'}^*$. By the triangle inequality we get $d(j,j') \leq 6k \cdot \beta_{j'}^*$ (without loss of generality $\beta_j^* \leq \beta_{j'}^*$). The latter contradicts with the fact that both j and j' belong in set F_y .

Now assume that $|F_y| \ge k + 1$. Then $\sum_{i \in F_y} y_i \ge |F_y| \cdot (1 - \frac{1}{3k}) \ge (k+1) \cdot (1 - \frac{1}{3k}) > k$. But the latter contradicts with the fact that $\sum_{i \in V} y_i = k$. As a result, $|F_y| \le k$.

D. Omitted Proofs of Section 5

Proof of Theorem 4. To simplify notation the quantity $\mathbb{E}_{F \sim CL(y_t)}[C_{R_t}(F)]$ is denoted as $\mathbb{E}[C_{R_t}(F_t)]$. At first notice that by the first case of Lemma 5, Algorithm 5 ensures that exactly k facilities are opened at each round t.

Concerning its overall expected connection cost we get,

$$\mathbb{E}\left[C_{R_t}(F_{y_t})\right] \le \sum_{j \in R_t} \mathbb{E}[C_{\{j\}}(F_{y_t})] \le 4 \sum_{j \in R_t} \operatorname{FC}_{\{j\}}(y_t)$$

where the fist inequality is due to the fact that $\sum_{j \in R_t} d(j, F)^p \leq \left(\sum_{j \in R_t} d(j, F)\right)^p$ and the second is derived by applying the second case of Lemma 5. We overall get,

$$\sum_{t=1}^{T} \mathbb{E}[C_{R_t}(F_{y_t})] \leq 4 \sum_{t=1}^{T} \sum_{j \in R_t} \mathrm{FC}_{\{j\}}(y_t)$$

$$\leq 4 \sum_{t=1}^{T} |R_t| \cdot \mathrm{FC}_{R_t}(y_t) \qquad (8)$$

$$\leq 4r \min_{y^*} \sum_{t=1}^{T} \mathrm{FC}_{R_t}(y^*)$$

$$+ \Theta\left(kDr\sqrt{\log nT}\right)$$

$$\leq 4r \min_{|F^*|=k} \sum_{t=1}^{T} \mathbb{E}[\mathrm{C}_{R_t}(F^*)]$$

$$+ \Theta\left(kDr\sqrt{\log nT}\right)$$

where inequality 3 follows by the fact that $FC_{\{j\}}(y) \leq FC_{\{R\}}(y)$ for all $j \in R$ and the last two inequalities follow by Theorem 6 and Lemma 1 respectively.