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Appendix

A. Proof of Theorem 1

Problem 2 (k — CenterUniform). Given a uniform metric space d : V x V +— Rsq (d(u,v) = 1 in case (u # v)) and a
set of requests Ry, ..., Ry, C V. Select F CV suchas |F|=kand .., Cr,(F) is minimized where p is cc.

Lemma 6. Any c-approximation algorithm for k — CenterUniform implies a c-approximation algorithm for Min — p —
Union.

Proof. Given the collection U = {Sj,...,S,,} of the Min — p — Union, we construct a uniform metric space V' of size m,
where each node of V' corresponds to a set .S;.

For each elements e € E of the Min — p — Union we construct a request R, C V for the k — CenterUniform that is
composed by the nodes corresponding to the sets .S; that containt e. Observe that due to the uniform metric and the fact that
p = oo, forany V! CV
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Lemma 7. Any polynomial time c-regret algorithm for the online k-Center implies a (¢ + 1)-approximation algorithm
(offline) for the k — CenterUniform.

Proof. Let assume that that there exists a polynomial-time online learning algorithm such that for any request sequence
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ZE[CR,(Ft)] <c ‘}nln_l E[Cgr, (F*)] + ©(poly(n, D) - T)

for some o < 1.

Now let the requests lie on the uniform metric, p = co and that the adversary at each round ¢ selects uniformly at random
one of the requests Ry, ..., R, that are given by the instance of k¥ — CenterUniform. In this case the above equation takes
the following form,
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where OPT™ is the optimal solution for the instance of k& — CenterUniform and F; is the random set that the online
algorithm selects at round ¢.

Now consider the following randomized algorithm for the £ — CenterUniform.

1. Select uniformly at random a ¢ from {1,...,7}.

2. Selectaset F' C V according to the probability distribution F}.

The expected cost of the above algorithm, denoted by E[ALG], is
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By selecting T' = @(mﬁ . n%) we get that E[ALG] < (¢ + 1) - OPT™. O
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B. Omitted Proof of Section 3
B.1. Proof of Lemma 2

The Langragian of the convex program of Definition 2 is,
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Rearranging the terms we get,
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In order for the function g(A, k, \) = ming , , apr+ am— L(B,y,2, A, k, \) to get a finite value the following constraints
must be satisfied,

¢ kij 4 di - A — Aj =
. . . » 1/p
* [|Al]5 < 1 since otherwise (ZJ—GRﬁj) — 2 jerAj - Bj can become —oo

Using the fact that the Lagragian multipliers 1;; > 0, we get the constraints of the convex program of Lemma 2. The
objective comes from the fact that once g(A, k, A) admits a finite value then g(A, k,A) = > cr Aj — > icy D iep kij - Y-

B.2. Proof of Lemma 3

Let A}, A7, k; denote the values of the respective variables in the optimal solution of the convex program of Lemma 2

formulated w1th respect to the vector y = (y1, ..., yn). Respectively consider \};, A%, k;; denote the values of the respective

variables in the optimal solutions of the convex program of Lemma 2 formulated W1th respect to the vector y' = (1, ...,y )
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Equations 5 and 6 follow by strong duality, more precisely FCr(y) = > ;cp A7 — Doicv Do jer kij - vi since the
convex program of Lemma 2 is the dual of the convex program the solution of Wthh defines FCr(y’) (respectively for
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FCr(Y') = X jenA) — 2icv 2_jer kij - ¥i)- Equation 4 is implied by the fact that the solution (\", k', A’) is optimal
when the objective function is > jerAi — Yiev 2 jerkij - y;. Notice that the constraints of the convex program in
Lemma 2 do not depend on the y-values. As a result, the solution (A*, k*, A*) (that is optimal for the dual convex program
formulated for y) is feasible for the dual program formulated for the values y’. Thus Equation 4 follows by the optimality of
(N, KA.

Up next we prove the correctness of Algorithm 1. Notice that the the solution /3, = that Algorithm 1 constructs is feasible for
the primal convex program of Definition 2. We will prove that the dual solution that Algorithm 1 constructs is feasible for
the dual of Lemma 2 while the exact same value is obtained.
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* [|A[]5, = 1: Tt directly follows by the fact that \; = [Hgﬁ} and [[A][; = [ZjeR AT 1} .

* dij - Aj +kij > Aj s Incase d;; < Dj, Algorithm 1 implies that z;; = y; and the inequality directly follows. In case
dij < D7 the inequality holds trivially since k;; = 0.

Now consider the objective function,
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where Equation 8 follows by the fact that z;; = O forall j ¢ Vj+ and thus 3+ x;; = 1. Finally notice that [\;| < 1 and
J
thus k;; < D where D is the diameter of the metric space.

B.3. Proof of Theorem 6
il = 1= > ;cr: k5| < Drsince |R'| < r. Applying Theorem 1.5 of (Hazan, 2016) we get that

ZZQZ yi—y) <O (kDr\/logW)

t=14ieV
Applying Lemma 3 for ¢y’ = y*,

Z FCp, (y') — FCp, (y Z S gyl -y <e (ksz/log nT)
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C. Omitted Proof of Section 4
C.1. Proof of Lemma 4

The following claim trivially follows by Step 10 of Algorithm 4.
Claim 1. For any node j € V, d(j, F,,)) < 6k - 3.
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We are now ready to prove the first item of Lemma 4. Let a request R C V,
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Cr(Fy) = | D_dG.F) | < (D (6k)F-57) =6k |> 5"

JER JER jER
We proceed with the second item of Lemma 4. For a givennode j € S,let B, = {i € V : d;; < 3k - BJ*} It is not hard to

see that for any j € F),,
1
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Observe that in case the latter is not true then Zi¢ B, i = 7> which would imply that B; > B5.

The second important step of the proof is that for any 7, 7' € F,,,
Bj M Bj/ = 0.

Observe that in case there was m € B; N Bjs would imply d(j,m) < 3k - 8 and d(j',m) < 3k - 8},. By the triangle
inequality we get d(j, j') < 6k - 3}, (without loss of generality 37 < 7). The latter contradicts with the fact that both j
and j’ belong in set Fy.

Now assume that |[F,| > k + 1. Then Zier yi > |Fy|- (1= 3%) = (k+1)- (1 — 5) > k. But the latter contradicts with
the fact that ) .\, y; = k. As aresult, |F},| < k.

D. Omitted Proofs of Section 5

Proof of Theorem 4. To simplify notation the quantity Ep cr(y,)[Cr, (F)] is denoted as E[C, (F})]. At first notice that
by the first case of Lemma 5, Algorithm 5 ensures that exactly k facilities are opened at each round ¢.

Concerning its overall expected connection cost we get,
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where the fist inequality is due to the fact that 3, 5 d(j, F)P < (Z jer, 40, F)) and the second is derived by applying
the second case of Lemma 5. We overall get,
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where inequality 3 follows by the fact that FCy;y(y) < FCg)(y) for all j € R and the last two inequalities follow by
Theorem 6 and Lemma 1 respectively. O



