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Appendix

A. Proof of Theorem 1
Problem 2 (k − CenterUniform). Given a uniform metric space d : V × V 7→ R≥0 (d(u, v) = 1 in case (u 6= v)) and a
set of requests R1, . . . , Rm ⊆ V . Select F ⊆ V such as |F | = k and

∑m
s=1 CRs(F ) is minimized where p is∞.

Lemma 6. Any c-approximation algorithm for k − CenterUniform implies a c-approximation algorithm for Min− p−
Union.

Proof. Given the collection U = {S1, . . . , Sm} of the Min− p−Union, we construct a uniform metric space V of size m,
where each node of V corresponds to a set Si.

For each elements e ∈ E of the Min − p − Union we construct a request Re ⊆ V for the k − CenterUniform that is
composed by the nodes corresponding to the sets Si that containt e. Observe that due to the uniform metric and the fact that
p =∞, for any V ′ ⊆ V ∑

e∈E
CRe(V

′) = | ∪Si /∈V ′ Si|

Lemma 7. Any polynomial time c-regret algorithm for the online k-Center implies a (c + 1)-approximation algorithm
(offline) for the k − CenterUniform.

Proof. Let assume that that there exists a polynomial-time online learning algorithm such that for any request sequence
R1, . . . , RT ,

T∑
t=1

E[CRt(Ft)] ≤ c min
|F∗|=k

T∑
t=1

E[CRt(F
∗)] + Θ(poly(n,D) · Tα)

for some α < 1.

Now let the requests lie on the uniform metric, p =∞ and that the adversary at each round t selects uniformly at random
one of the requests R1, . . . , Rm that are given by the instance of k − CenterUniform. In this case the above equation takes
the following form,

T∑
t=1

1

m

m∑
s=1

E[CRs(Ft)] ≤ c
T

m

m∑
s=1

E[CRs(OPT∗)] + Θ(nβ · Tα)

where OPT∗ is the optimal solution for the instance of k − CenterUniform and Ft is the random set that the online
algorithm selects at round t.

Now consider the following randomized algorithm for the k − CenterUniform.

1. Select uniformly at random a t from {1, . . . , T}.

2. Select a set F ⊆ V according to the probability distribution Ft.

The expected cost of the above algorithm, denoted by E[ALG], is

1

T

T∑
t=1

m∑
i=1

EF∼Ft [CRi(F )] = m ·

(
1

T

T∑
t=1

m∑
i=1

1

m
EF∼Ft [CRi(F )]

)

≤ c ·m
T
· T
m

m∑
i=1

CRi(OPT∗)

+ Θ

(
m · nβ

T 1−α

)
By selecting T = Θ(m

1
1−α · n

β
1−α ) we get that E[ALG] ≤ (c+ 1) ·OPT∗.
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B. Omitted Proof of Section 3
B.1. Proof of Lemma 2

The Langragian of the convex program of Definition 2 is,

L(β, y, x,A, k, λ) =

∑
j∈R

βpj

1/p

+
∑
j∈R

λj · (dijxij − βj) +
∑
j∈R

Aj ·

(
1−

∑
i∈V

xij

)
+

∑
i∈V

∑
j∈V

kij · (xij − yi)−
∑
i∈V

∑
j∈R

µij · xij

Rearranging the terms we get,

L(β, y, x,A, k, λ) =
∑
j∈R

Aj −
∑
i∈V

∑
j∈R

kij · yi

+
∑
i∈V

∑
j∈R

xij · (kij − µij + dij · λj −Aj)

+

∑
j∈R

βpj

1/p

−
∑
j∈R

λj · βj

In order for the function g(A, k, λ) = minβ,y,x,M+,M− L(β, y, x,A, k, λ) to get a finite value the following constraints
must be satisfied,

• kij + dij · λj −Aj = µij

• ||λ||∗p ≤ 1 since otherwise
(∑

j∈R β
p
j

)1/p

−
∑
j∈R λj · βj can become −∞.

Using the fact that the Lagragian multipliers µij ≥ 0, we get the constraints of the convex program of Lemma 2. The
objective comes from the fact that once g(A, k, λ) admits a finite value then g(A, k, λ) =

∑
j∈RAj −

∑
i∈V

∑
j∈R kij · yi.

B.2. Proof of Lemma 3

Let λ∗j , A
∗
j , k
∗
ij denote the values of the respective variables in the optimal solution of the convex program of Lemma 2

formulated with respect to the vector y = (y1, . . . , yn). Respectively consider λ′j , A
′
j , k
′
ij denote the values of the respective

variables in the optimal solutions of the convex program of Lemma 2 formulated with respect to the vector y′ = (y′1, . . . , y
′
n).

FCR(y′) =
∑
j∈R

A′j −
∑
i∈V

∑
j∈R

k′ij · y′i (3)

≥
∑
j∈R

A∗j −
∑
i∈V

∑
j∈R

k∗ij · y′i (4)

=
∑
j∈R

A∗j −
∑
i∈V

∑
j∈R

k∗ij · y′i +
∑
i∈V

∑
j∈R

k∗ij · yi −
∑
i∈V

∑
j∈R

k∗ij · yi (5)

= FCR(y) +
∑
i∈V

∑
j∈R

k∗ij · (yi − y′i) (6)

Equations 5 and 6 follow by strong duality, more precisely FCR(y) =
∑
j∈RA

∗
j −

∑
i∈V

∑
j∈R k

∗
ij · yi since the

convex program of Lemma 2 is the dual of the convex program the solution of which defines FCR(y′) (respectively for
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FCR(y′) =
∑
j∈RA

′
j −

∑
i∈V

∑
j∈R k

′
ij · y′i). Equation 4 is implied by the fact that the solution (λ′, k′, A′) is optimal

when the objective function is
∑
j∈RAj −

∑
i∈V

∑
j∈R kij · y′i. Notice that the constraints of the convex program in

Lemma 2 do not depend on the y-values. As a result, the solution (λ∗, k∗, A∗) (that is optimal for the dual convex program
formulated for y) is feasible for the dual program formulated for the values y′. Thus Equation 4 follows by the optimality of
(λ′, k′, A′).

Up next we prove the correctness of Algorithm 1. Notice that the the solution β, x that Algorithm 1 constructs is feasible for
the primal convex program of Definition 2. We will prove that the dual solution that Algorithm 1 constructs is feasible for
the dual of Lemma 2 while the exact same value is obtained.

• ||λ||∗p = 1: It directly follows by the fact that λj =
[

βj
||β||p

]p−1

and ||λ||∗p =
[∑

j∈R λ
p
p−1

j

] p−1
p

.

• dij · λj + kij ≥ Aj : In case dij < D∗j , Algorithm 1 implies that xij = yi and the inequality directly follows. In case
dij ≤ D∗j the inequality holds trivially since kij = 0.

Now consider the objective function,

∑
j∈R

Aj −
∑
i∈V

∑
j∈R

yi · kij =
∑
j∈R

Aj −
∑
j∈R

∑
i∈V +

j

yi · kij

=
∑
j∈R

λj ·Dj −
∑
j∈R

∑
i∈V +

j

yi

[
λj ·

xij
yi

(Dj − dij)
]

=
∑
j∈R

λj
∑
i∈V +

j

dij · xij (7)

=
∑
j∈R

λj · βj

=

∑
j∈R

βpj

1/p

where Equation 8 follows by the fact that xij = 0 for all j /∈ V +
j and thus

∑
j∈V +

j
xij = 1. Finally notice that |λj | ≤ 1 and

thus kij ≤ D where D is the diameter of the metric space.

B.3. Proof of Theorem 6

By Lemma 3, |gti | = | −
∑
j∈Rt k

t∗
ij | ≤ Dr since |Rt| ≤ r. Applying Theorem 1.5 of (Hazan, 2016) we get that

T∑
t=1

∑
i∈V

gti(y
t
i − y∗i ) ≤ Θ

(
kDr

√
log nT

)
Applying Lemma 3 for y′ = y∗,

T∑
t=1

(
FCRt(y

t)− FCRt(y
∗)
)
≤

T∑
t=1

∑
i∈V

gti(y
t
i − y∗i ) ≤ Θ

(
kDr

√
log nT

)

C. Omitted Proof of Section 4
C.1. Proof of Lemma 4

The following claim trivially follows by Step 10 of Algorithm 4.

Claim 1. For any node j ∈ V , d(j, Fy) ≤ 6k · β∗j .
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We are now ready to prove the first item of Lemma 4. Let a request R ⊆ V ,

CR(Fy) =

∑
j∈R

d(j, Fy)p

1/p

≤

∑
j∈R

(6k)p · β∗pj

1/p

= 6k ·

∑
j∈R

β∗pj

1/p

We proceed with the second item of Lemma 4. For a given node j ∈ S, let Bj = {i ∈ V : dij ≤ 3k · β∗j }. It is not hard to
see that for any j ∈ Fy , ∑

i∈Bj

yi ≥ 1− 1

3k

Observe that in case the latter is not true then
∑
i/∈Bj x

∗
ij ≥ 1

3k , which would imply that β∗j > β∗j .

The second important step of the proof is that for any j, j′ ∈ Fy ,

Bj ∩Bj′ = ∅.

Observe that in case there was m ∈ Bj ∩ Bj′ would imply d(j,m) ≤ 3k · β∗j and d(j′,m) ≤ 3k · β∗j′ . By the triangle
inequality we get d(j, j′) ≤ 6k · β∗j′ (without loss of generality β∗j ≤ β∗j′). The latter contradicts with the fact that both j
and j′ belong in set Fy .

Now assume that |Fy| ≥ k + 1. Then
∑
i∈Fy yi ≥ |Fy| · (1−

1
3k ) ≥ (k + 1) · (1− 1

3k ) > k. But the latter contradicts with
the fact that

∑
i∈V yi = k. As a result, |Fy| ≤ k.

D. Omitted Proofs of Section 5
Proof of Theorem 4. To simplify notation the quantity EF∼CL(yt)[CRt(F )] is denoted as E[CRt(Ft)]. At first notice that
by the first case of Lemma 5, Algorithm 5 ensures that exactly k facilities are opened at each round t.

Concerning its overall expected connection cost we get,

E [CRt(Fyt)] ≤
∑
j∈Rt

E[C{j}(Fyt)] ≤ 4
∑
j∈Rt

FC{j}(yt)

where the fist inequality is due to the fact that
∑
j∈Rt d(j, F )p ≤

(∑
j∈Rt d(j, F )

)p
and the second is derived by applying

the second case of Lemma 5. We overall get,

T∑
t=1

E[CRt(Fyt)] ≤ 4

T∑
t=1

∑
j∈Rt

FC{j}(yt)

≤ 4

T∑
t=1

|Rt| · FCRt(yt) (8)

≤ 4rmin
y∗

T∑
t=1

FCRt(y
∗)

+ Θ
(
kDr

√
log nT

)
≤ 4r min

|F∗|=k

T∑
t=1

E[CRt(F
∗)]

+ Θ
(
kDr

√
log nT

)
where inequality 3 follows by the fact that FC{j}(y) ≤ FC{R}(y) for all j ∈ R and the last two inequalities follow by
Theorem 6 and Lemma 1 respectively.


