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Abstract

Detecting influential features in non-linear and/or
high-dimensional data is a challenging and in-
creasingly important task in machine learning.
Variable selection methods have thus been gaining
much attention as well as post-selection inference.
Indeed, the selected features can be significantly
flawed when the selection procedure is not ac-
counted for. We propose a selective inference
procedure using the so-called model-free "HSIC-
Lasso” based on the framework of truncated Gaus-
sians combined with the polyhedral lemma. We
then develop an algorithm, which allows for low
computational costs and provides a selection of
the regularisation parameter. The performance
of our method is illustrated by both artificial and
real-world data based experiments, which empha-
sise a tight control of the type-I error, even for
small sample sizes.

1. Introduction

The choice of a relevant statistical model in light of the
observations prior to any statistical inference is ubiquitous
in statistics. This reduces computational costs and fosters
parsimonious models. For example, in linear regression
analysis, allowing for a subset of features to enter the
model, i.e. the sparsity assumption, is particularly suited
to high-dimensional data, which potentially provides more
robust predictions. Yet, should one follow the standard
procedure, which assumes a model specified a priori, the
data-driven nature of the selection procedure would be
tacitly overlooked. Therefore, applying classical inference
methods may entail seriously flawed results, as it was
highlighted by Leeb & Pétscher (2005; 2006), among others.
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The most straightforward remedy is sample splitting,
which uses one part of the data for model selection and the
other part for inference, cf. (Cox, 1975). However, this
approach leaves space for improvement as the selection-data
is outright disregarded at the inference step. In particular,
two major paradigms regarding the treatment of model
selection have evolved. Berk et al. (2013) developed a
post-selection inference (PSI) method, which enables to
circumvent distorting effects inherent to any selection
procedure. Yet, in practice this method often leads to
overly conservative confidence intervals and entails high
computational costs.

In contrast to this work, Lee et al. (2016) and Tibshirani
et al. (2016) only accounted for the actual selection outcome
by conditioning on the latter at the inference step. This
requires control over or at least insight into the selection
procedure in order to characterise the selection event. Under
the Gaussian assumption, it is possible to express this event
as a restriction on the distribution of the inference target,
using the so-called polyhedral lemma, and derive a pivotal
quantity. Due to its comparatively low computational cost
and general set-up, this method was applied with great
success to a variety of model selection approaches, e.g.
(Hyun et al., 2018) and (Taylor & Tibshirani, 2018).
Variable selection procedure methods typically include
step-wise procedures - see (Hocking, 1976) -, information
criteria, with the AIC and its extensions - see (Akaike, 1974)
-, and regularisation methods, pioneered by Tibshirani’s
work on the Lasso (1996). Their limitations, especially re-
garding assumptions such as linearity or certain probability
distributions, fostered a flourishing research on model-free
feature selection. The kernel-based Hilbert-Schmidt
independence criterion (HSIC) (2005), proposed by Gretton
et al., emerged as a key ingredient as it enables to quantify
the dependence between two random variables. This
allows for simple feature selection: For instance, one can
select a fixed number of covariates that exhibit the highest
HSIC-estimates with the response, which is referred to
as HSIC-ordering in the rest of the paper. HSIC-Lasso
(2014), proposed by Yamada et al., additionally accounts
for the dependence structure among the covariates and
selects features with an L'-penalty. Yamada et al. (2018)
developed a selective inference approach for the former
selection procedure; the analogous results for HSIC-Lasso,
however, are still an important blind spot in PSI.
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In this study, we are interested in the following problem:
Given n observations of a response variable and potential
features, select the relevant covariates using the HSIC-Lasso
screening procedure; then, based on the polyhedral lemma,
develop asymptotic inference given the Lasso selection
procedure in the same spirit as Lee et al. (2016). Our
contributions are as follows: First, we derive a tailored,
novel asymptotic pivot and characterise the selection
event of HSIC-Lasso in an affine linear fashion; then we
propose an algorithm that solves cumbersome issues arising
in applications, such as high computational costs and
hyper-parameter choice; finally, to illustrate our theoretical
results and the relevance of the proposed method, we
conduct an empirical analysis using artificial and real-world
data. To the best of our knowledge, this work is the first
approach to tackle the question of PSI with HSIC-Lasso.

2. Background

In this section the two theoretical cornerstones which our
work is founded on - namely PSI based on truncated Gaus-
sians and the Hilbert-Schmidt independence criterion - are
reviewed.

2.1. PSI with Truncated Gaussians

We first review the PSI-approach (2016), which was pio-
neered by Lee et al. and which considers the distribution
of the quantity of interest, alias target, conditionally on a
selection event at the inference step. We denote the set of
potential models S, the model estimator S and suppose that
the response Y follows the distribution N (1, X)), where
is unknown and X is given. It is assumed that the inference
target can be expressed as 1% u for a vector ng that can
depend on the previously chosen model S. Consequently,
the distribution of interest is ngY\{S’ = S}. If the se-
lection event allows for an affine linear representation, i.e.
{8 = S} = {AY < b}, with A and b only depending on S
and the covariates, a specific model choice can be seen as a
restriction on the distribution of the inference target. This is
the object of the following result.

Lemma 1 (Polyhedral lemma). Ler Y ~ N (p,X) with
pERand ¥ € R™*", n € R", A c RF*" and b € RF.
Defining Z = (Id—Cn")Y and C' := (n"Xn)~'2n,
then

{AY <b} = (V= (2) <qTY <VH(2)},

holds almost surely with

. bj — (AZ),

Vi2)= max ey, M
by — (AZ);

T(Z) .= R 2

Vi) = e ao), @

Hence, selection restricts the values the inference target
can take, which gives rise to the definition of truncated
Gaussians.

Definition 2. Let 1 € R, 02 > 0 and a,b € R such that
a < b. Then the cumulative distribution function of a
Gaussian distribution N (11, 0%) truncated to the interval
[a, ] is given by

[a,b] _ a o
oy = )
w0 = 500 T

where ® denotes the cdf of A(0, 1).

Concluding the line of thought, we are now able to state a
pivotal quantity that can be used for inference.

Theorem 3. Under the assumptions of Lemma 1 it holds
that

FY @Y Ty {AY < b} ~ Unif (0,1),

nTpnTEn
where V™ and VT are given by (1) and (2), respectively.

This result corresponds to Theorem 5.2 of (Lee et al., 2016),
which characterises the distribution of 7Y conditionally
on Y belonging to the polyhedron {AY < b}.

2.2. Hilbert-Schmidt Independence Criterion

Gretton et al. proposed the Hilbert-Schmidt independence
criterion (2005) as a model-free measure for the depen-
dence between two random variables. It relies on em-
bedding probability measures P into a reproducing ker-
nel Hilbert space ) with associated kernel function k.
If k£ is universal, i.e. Hj is dense in the space of con-
tinuous functions, then the embedding P — i (P) is in-
jective. Hence, the squared distance between puy(IP) and
1 (Q) (maximum mean discrepancy) forms a metric so that
P=Q & [ur(P) — pur(Q)[3, = 0 for any probability
measures P and Q; see (Smola et al., 2007) for further de-
tails on RKHSs. The Gaussian kernel, which is universal, is
probably the most commonly used kernel, and is defined as

2
b =exp (-2 1) 02
g

A way to detect the dependence between two random vari-
ables X and Y is the comparison between the joint distri-
bution Px y and the product of the marginals P x Py~ using
the maximum mean discrepancy. This metric is precisely
the Hilbert-Schmidt independence criterion, which can also
be defined in terms of the involved kernels as follows.

Definition 4. Let X and Y be random variables, X’ and Y’
independent copies, and k and ! be bounded kernels. The
Hilbert-Schmidt independence criterion HSICy, ; is given
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by

HSIC, (X, Y) = Ex.x/yy/ [k(X,X") I(Y,Y")]
+ Ex x/[k(X, X)] By, y/[I(Y,Y")]
—2Ex y[Ex/[k(X, X")] Ev/[I(Y,Y")]].

Several approaches for estimating the Hilbert-Schmidt inde-
pendence criterion from a data sample {(z;, y;)}7_, have
been put forward. Gretton et al. (2005) proposed a V—StatlSth
based estimator H/SI\Cb(X ,Y'), which is biased, whereas
Song et al. (2012) provided an unbiased U-statistic ver-
sion H/SI\Cu(X ,Y). Regarding the asymptotic distribution,
Zhang et al. (2018) established that both these estimators
scaled by n'/2 converge to a Gaussian distribution if X and
Y are dependent. However for X L Y, the asymptotic
distribution is not normal. Since the true dependence be-
tween X and Y is unknown, we focus on estimators that are
asymptotically normal in either case.

In this respect, it is helpful to express the unbiased version
of the HSIC-estimator as a U-statistic of degree 4 with ker-
nel function h provided, e.g. in Theorem 3 in Song et al.
(2012). Zhang et al. (2018) and Lim et al. (2020) suggested
the following estimators.

Definition 5. Let B € Nand subdivide the data into folds of
size B, {{(z?,y")} 2, 17:/1 The block estimator HSICpjock
with block size B is given by

n/B

®%Mmj5§@MW%m
b=1

where HSIC, (X", Y') denotes the unbiased estimate on the
data {(2%,9y?)}B . Let S,, 4 be the set of all 4-subsets of
{1,...,n} and let D be a multiset containing m elements
of S, 4 randomly chosen with replacement. Further, sup-
pose m = O(n) and define | := lim,, ;0o m/n. The
incomplete U-statistic estimator H/SI\Cm of size [ is defined
by

1 .

. Z h(17]7q77n)' (4)

ASIC;(X,Y) =
m
(i,5,¢,7)€ED

Both estimators are asymptotically normal.

Theorem 6. Let {(x§1), ce ;p),y])}? 1 be an iid
data sample and define Hy = (HSIC(X™M,Y),...

.,HSIC(X(p),Y))T, and Hyoex and Hi, accordingly.
Assume that B and | are the same for all entries of Hyjock
and Hiy, respectively, let n/ B — oo and choose D for all

elements of Hi, independently. Then
v/n/B(Hyioek — Ho) 2y N (0, Stiock)s
\/E(Hinc - HO) £> N(O, Einc)a

with positive definite matrices Ypjock and Jine.

The first statement is a direct consequence of the multidi-
mensional central limit theorem; to prove the second asymp-
totic result, we use the framework of U-statistics. The details
are deferred to the supplementary material.

3. PSI for HSIC-Lasso

This section contains our main theoretical results for PSI
with HSIC-Lasso and addresses the difficulties arising in
practical applications.

3.1. Feature Selection with HSIC-Lasso

Yamada et al. introduced the model-free HSIC-Lasso (2014)
feature selection method as follows.

Definition 7. Let {(z\", ..., 2", y;)}7_ beaniid. data
sample, k and [ be kernels, let K and L be given by K;; =
k(:cz,xj) and L;; = l(y;,y;) ford,j € {1,...,n} and set

=1Id — 1117, Denoting L = I'LT and KO = IK®T,

B is given by

ﬁ—argmm 7HL ZﬁsK(Q)HFrob"i_)‘HBHlv
BER s=1

where A > 0 and Ry = [0, 00). The HSIC-Lasso selection
procedure is defined by S = {s: 55 > 0}.

For our purposes, however, we consider the following alter-
native representation of 3:

3 = argmin — Z Bs HSICb(X(S) Y)
BERY s—1

1 —
+§Zm@mmaWXM+W%-@

s,r=1

It becomes apparent that feature selection is driven by three
competing components. Considering the first and third term
together, we notice that covariates with high dependence
to the response achieve positive ﬁ values, whereas the /3-
entries of non-influential features are forced to zero by the
regularisation term. Moreover, the second term penalises the
selection of covariates showing high dependence on other
features.

Taking (5) as a starting point, we replace the biased V-
statistic based estimators with asymptotically normal ones
and allow for a more general weighted Lasso-penalty.

Definition 8. Let H be an asymptotically Gaussian and
H be any HSIC-estimator and define H and M by H, =
H(X®)Y), My, = H(X®) X)) for s,r € {1,...,p}.
The normal weighted HSIC-Lasso selection procedure is
givenby S = {s: f#, > 0} with

B = argmin —87TH + - ﬂTMB +ATw,  (6)
BGRP
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where w € Rf_ is a fixed weight vector.

Using the asymptotically normal response H, the framework
of the polyhedral lemma can be applied; however, we need
to provide an asymptotic pivot.

~

Theorem 9. Let (Hp)nen, (Mn)nen and (X,)nen be
sequences of random vectors and matrices, respectively,
such that H, — N (u,X) in distribution, M, — M,
in — X almost surely and in 1 (H,,M,). Fora se-
lected model S and S C S, let ng, AS and bg be a.s.
continuous functions of M and assume that the selection
events are given by {Ag(My,)H, < bg(M,)} and that
int({Ag(M)H < bg(M)}) # 0. Then

V™ (Zn) VT (Zn D .
F,,ETN}(,,]T%HWH( )](UZHTL)HAan < bn} — Unif (O, 1),
)

as n — oo where n, = ng(M,), A, = Ag(M,) and
by, = bg(M,).

This statement is tailored to selection with normal weighted
HSIC-Lasso and generalises Theorem 3 as it relaxes the
requirements of a normal response and known covariance
>3 Under the assumption of an asymptotically Gaussian
response and a consistent estimator for 3, we obtain an
asymptotic pivot. R

To prove this result, we show that (H,,, M,,, ¥,,)|[{A,H, <
bpt — (H,M,X)|{AH < b} in distribution and then apply
the continuous mapping theorem to the a.s. continuous
function F. The details of the proof can be found in the
supplement.

3.2. Inference Targets and Selection Event

We now define the inference targets and characterise the
selection events of the normal weighted HSIC-Lasso. To
do so, we first introduce the following notations. For any
matrix B € R9%%, v € R? and index sets I, J C {1,...,q},
we define 1€ := {1,...,¢} \ I. Moreover, v; contains all
entries at positions in I and B;; € RII*I/| is given by
the rows and columns of B whose indices are in I and J,
respectively.

For a selected model S and j € S, we consider the
HSIC-target H; := e] H and the partial target ijag =
e Mg, & Hg, where e; denotes the j-th unit vector. The for-
mer target describes the dependence between response Y
and feature X 7). In the same spirit of a partial regression
coefficient, the latter can be interpreted as the degree of
influence of X %) on Y adjusted to the dependence structure
among the covariates. Expressing both targets in the form
of nk H, the respective n-vectors for the HSIC- and partial
target are e; and (Mgg |0)Te;.

We notice that the HSIC-target is influenced by the selection
information {j € S} only, whereas the partial target is, by
definition, affected by the entire chosen set of covariates

{ S=9 }. We characterise these selection events as follows.

Theorem 10. Assume the same framework as in Definition
8, suppose that M is positive definite and let n) € RP. Then
{S =S} ={A(Hgs,Hs:)T < b} holds, where

A:_l( M5 o) b:( ~Mgdws )
A \ MgesMgg [1d )’ wge—MgesMggws )’

®)
and 0 denotes a matrix of size |S| x |S°| filled with zeros.
Moreover, {j € S} = {AH < b} holds for

A:—e;‘r, b:—efMB,j—ij, )
where B,j denotes B with the j-th entry set to zero.

To prove these statements, we use the Karush-Kuhn-Tucker
(KKT) conditions, which characterise the solution of (6)
by a set of inequalities. Manipulating these, we obtain the
affine linear representation of {S = S} and {j € S}. The
details can be found in the supplementary material.
Theorem 10 is the key result that allows us to carry out
post-selection inference with HSIC-Lasso. In summary,
we have to consider the distributions ejTH [{j € S } and
e;‘F(MgslH 10)| {S = S} for the HSIC- and partial target,
respectively, in order to account for the selection. With
the affine linear representations (8) and (9), we can apply
Theorem 9 and get an asymptotic pivot for inference.

3.3. Practical Applications

Equipped with these theoretical results, we now propose
an algorithm that handles difficulties arising in practical
applications.

3.3.1. POSITIVE DEFINITENESS

Theorem 10 requires M to be positive definite. For the
original version of HSIC-Lasso (5), this condition is always
fulfilled by the structure of the biased HSIC-estimates. How-
ever, there is no guarantee for other estimation procedures.
For this reason, we project M onto the space of positive def-
inite matrices, as proposed by Higham (1988): The spectral
decomposition of M is computed and all negative eigenval-
ues are replaced with a small positive value € > 0.

3.3.2. COMPUTATIONAL COSTS

HSIC-Lasso is frequently applied to high-dimensional data
where the number of covariates p exceeds the sample size
n. The resulting high computational costs are caused by the
calculation of the HSIC-estimates, where H grows as O(p)
and M as O(p?). Therefore, we introduce an upstream
screening stage identifying a subset of potentially influential
features so that HSIC-Lasso only has to deal with these. Fol-
lowing the approach of Yamada et al. (2018), we compute
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the HSIC-estimates H/SI\C(Y, X)), j€{1,...,p}, and se-
lect a pre-fixed number p’ < p of the covariates having the
highest estimates. We call this HSIC-ordering.

In order to ensure valid inference results, we have to ad-
just for the screening step as well because it affects feature
selection. To do so, we split the data into two folds, one
dedicated to screening, the other dedicated to HSIC-Lasso
selection among the screened variables, cf. (Cox, 1975).
Thus, potentially distorting effects of the screening step are
separated from inference on the second fold. Moreover, un-
biased HSIC-estimates can be used for screening, which are
more precise than block or incomplete U-statistic estimates.

Remark. In future applications, random Fourier features
could be used to speed up the kernel computation of the
objective function (5), allowing for a larger p’. However, it is
not immediately clear whether we can recover the theoretical
guarantees for our method when using approximated kernel
functions.

3.3.3. HYPER-PARAMETER CHOICE

In practice, a suitable choice of the regularisation parameter
A and the weight vector w is key for meaningful results.
Since the data generating process is unknown, we have
to estimate these hyper-parameters. In order to prevent
this from affecting inference results, we use the first fold
for hyper-parameter selection. In doing so, we can apply
any estimation method for A, such as cross-validation, e.g.
(Stone, 1974), or the AIC, cf. (Akaike, 1974), and get a
valid procedure that is easy to implement. Moreover, we
can employ Zou’s adaptive Lasso penalty (2006), that uses
the weight vector w = 1/|3|7. ~ is typically set to 1.5
or 2 and B is a 4/n -consistent estimator, e.g. the ordinary
least squares estimator. Contrary to the vanilla Lasso, this
method satisfies the oracle property, that is the sparsity-
based estimator recovers the true underlying sparse model
and has an asymptotically normal distribution. Yet, this
property was only proven for a covariance matrix of the
form ¥ = o2Id. Hence, we have to evaluate the usefulness
of the adaptive Lasso in empirical simulations.

3.3.4. ALGORITHM

We summarise our proposed PSI method for a normal
(weighted) HSIC-Lasso selection procedure as follows. To
begin with, we split the data into two subsets. On the first
fold, we compute the HSIC-estimates between all covariates
and the response, determine the most influential p’ features
(screening) and estimate the hyper-parameters A and w with
the methods previously specified. On the second fold, we
compute the estimates of H, M and X for the screened
features and solve the optimisation problem (6). For all
j € {1,...,p} such that /3’]- > 0, we find the truncation
points for the specified targets with Theorem 10 and Lemma

1 and test with the asymptotic pivot (7) if the targets are
significant at a given level «v. The supplementary material
contains a more detailed description of the algorithm in
pseudocode.

Remark. Although Theorem 9 requires independence be-
tween the covariance- and the (H, M )-estimate we could
not observe any detrimental influence if S is computed as
outlined above.

4. Experiments

In this section, we illustrate our theoretical contribution and
the proposed algorithm on artificial and real-world data. The
source code for the experiments was implemented in Python
and relies on Lim et al.’s mskernel-package (2020). We
use the Lasso optimisation routines of scikit-learn
which implements the cyclical gradient descent algorithm,
cf. (Friedman et al., 2007), and the least angle regression
algorithm (LARS) (2004), proposed by Efron et al.. The
source code for the following experiments is available on
Github: tobias—-freidling/hsic—-lasso-psi.

4.1. Artificial Data

We examine the achieved type-I error of the proposed al-
gorithm, compare its power to other approaches for post-
selection inference and briefly discuss additional experi-
ments.

For continuous data, we use Gaussian kernels where the
bandwidth parameter is chosen according to the median
heuristic, cf. (Scholkopf & Smola, 2018); for discrete data
with n. samples in category ¢, we apply the normalised
delta kernel which is given by

ify=y'=c,

0, otherwise.

Ky,yﬁi=:{1/nm

Moreover, we use a quarter of the data for the first fold, se-
lect the hyper-parameter A applying 10-fold cross-validation
with MSE, use a non-adaptive Lasso-penalty and do not
conduct screening as the number of considered features is
already small enough. On the second fold, we estimate M
with the block estimator of size B = 10 as it is compu-
tationally less expensive than the unbiased estimator and
leads to similar results. The covariance matrix 3 of H is
estimated based on the summands of the block (3) and in-
complete U-statistic (4) estimator, respectively. To this end,
we use the oracle approximating shrinkage (OAS) estimator
(2010), which was presented by Chen et al. and is particu-
larly tailored for high-dimensional Gaussian data. We fix
the significance level at o = 0.05 and simulate 100 datasets
for each considered sample size.
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4.1.1. TYPE-I ERROR

In order to simulate the achieved type-I error we use the toy
models

Y~ Ber(g(X12, Xi)), X ~ N (050,2),
g(x) = e*/(1+¢%),
Y =30 X Xiys +e, X ~N(05,E),
e~ N(0,07),

M1)

M2)

where 059 € R% and = € R?°%%0, to generate the data.

These are clearly non-linear and cover categorical and
continuous responses. In (M2), we choose o2 such that the
variance of ¢ is a fifth of the variance of the X-dependent
terms of Y amounting to a noise-to-signal ratio of 0.2. As
for the covariance matrix =, two cases are considered:

we either set = = Id or use decaying correlation, i.e.

Eij = 05“7]'

We simulate datasets with sample sizes n €
{400,800, 1200,1600} for all different settings of
models and covariance matrices and estimate /1 with block
estimators of sizes 5 and 10 as well as with an incomplete
U-statistics estimator of size [ = 1. Since the partial target
both depends on the entire set of selected variables and its
value cannot be directly inferred from the data-generating
mechanism, it is inherently hard to rigorously assess the
type-1 error of any given partial target. (However, the
false positive rate for testing different partial targets hints
that the type-I error is probably close to 0.05). For this

reason, we concentrate on the HSIC-target in our analysis.

For both models HSIC(Y, X@)) = 0,5 € {11,...,50},
holds which allows us to estimate the type-I error as
the ratio of null hypothesis rejections and tests among
the selected features with indices in {11,...,50}. If
influential variables are correlated with uninfluential ones,
the HSIC-value is not precisely zero; nonetheless, the use of
decaying correlation renders the bias of this effect ignorable.
Figure 1 illustrates that the type-I error is close to 0.05
across all estimators and data generating mechanisms, even
for small sample sizes.

4.1.2. POWER

In this set of experiments, we adapt the toy model (M1),
replacing X; by 6.X; and setting = = Id, and denote it
(M1’). Moreover, we introduce the following linear and
modified linear model

Y =0X,+ 310, X+, X ~N(050,1d),
e~ N(0,0%),

Y =0h(X)+ 00, Xi+e, X ~N(05,1d),
e~ N(0,07),

(M3)

M4
M h(z) = — 23,

where § € R. Our proposed algorithm is applied with
both a block estimator, B = 10, and an incomplete
U-statistics estimator, [ = 1, and is compared with the
so-called Multi PSI-approach, presented by Lim et al.
(2020): We select k features with HSIC-ordering and
carry out inference for the HSIC-targets. (Since M is
not involved in the feature selection, we cannot define
partial targets for HSIC-ordering.) It was empirically
shown that multiscale bootstrapping (2004), which was
first presented by Shimodaira and is abbreviated by Multi,
is a more powerful PSI-approach for HSIC-ordering than
truncated Gaussians. In our simulations, we set £k = 15 and
applied Multi with a block estimator, B = 10, as well as an
incomplete U-statistics estimator, [ = 1. Additionally, we
applied Lee et al.’s original PSI-method (2016), that relies
on Lasso-regularisation and assumes a linear regression
setting, to (M3) and (M4). The inference target in this case
is the partial regression coefficient.

We simulate datasets for values of 6 in
{0.00,0.33,0.67,1.00,1.33,1.67,2.00,2.33} and a
sample size of n = 800, and compute the ratio of rejections
of the null-hypothesis, i.e. the respective inference target
corresponding to X is zero, and the number of tests
carried out. Plotting the obtained ratios against 6 does not
correspond to the usual depiction of the power function as
6 is not the inference target for all considered procedures.
However, this allows for an intuitive understanding of how
strong X7 needs to influence Y in order to be detected.
Figure 2 exhibits that the power of our proposed algorithm
is similar to the Multi procedure, especially when using
the block estimator. This confirms that, even without a
manual choice of the number of selected features and
costly bootstrap sampling, it is possible to match the best
performing model-free PSI-methods. Moreover, we observe
that regularised linear regression clearly outperforms our
procedure as well as Multi for small values of 6 if the
data-generating process is indeed linear. However, when
X1 influences the outcome Y not only through a linear, but
also through a cubic term, that is (M4), we discern that
PSI based on a linear model has no power at all whereas
model-agnostic methods still achieve noticeable power.
This exemplifies that PSI procedures, built upon a certain
model, can only be confidently used if there is limited
uncertainty about the underlying data generation.

4.1.3. ADDITIONAL EXPERIMENTS

In our simulations, we focused on the statistical properties
of the proposed approach but also started investigating the
behaviour of the algorithm for different feature selection
set-ups. The conclusions we drew deserve a few comments.
Screening HSIC-ordering includes the influential features
into the screened set with high probability when p’ and
the size of the first fold are sufficiently large. Nonetheless,
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Figure 1. Type-I error for the HSIC-target in different toy models (from left to right): (M1) with = = Id, (M1) with Z;; = 0.5!791,
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Figure 2. Power of detecting X as influential feature in different toy models (from left to right):

screening is merely a method to reduce computational com-
plexity and can potentially weaken the performance of the
downstream HSIC-Lasso procedure. Therefore, the number
of screened features p’ should be set as high as computa-
tional resources allow.

Regularisation The use of an adaptive penalty term gener-
ally leads to fewer selected features than the vanilla Lasso
regularisation. Moreover, cross-validation and the AIC of-
ten choose similar values for .

Dependence structure In datasets with strong correlation
between influential and uninfluential features we observe
that the partial target is capable of correctly detecting the
uninfluential ones. How the dependence structure among
influential features materialises in rejections of the null hy-
pothesis, however, is a subtle and still open question.
Estimators In general, block estimators are computationally
less expensive than incomplete U-statistics estimators. For
the latter ones, the calculation costs, but also the power in-
creases with the size .

Split ratio In the experiments with artificial data, the size
of the first fold was set to be a third of the second fold as
this already suffices to obtain a decent estimate of the reg-
ularisation parameter. For most datasets it is advisable to
dedicate more data to the HSIC-Lasso procedure than to the
hyper-parameter selection; however, a reliable heuristic for
the split ratio remains subject to future research.
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4.2. Benchmarks

Now we proceed to applying our proposed algorithm to
benchmark datasets from the UCI Repository and the Broad
Institute’s Single Cell Portal, respectively. We provide an
additional, more in-depth experiment in the supplementary
materials.

4.2.1. TURKISH STUDENT DATASET

This dataset contains 5 820 course evaluation scores pro-
vided by students from Gazi University, Ankara, who an-
swered 28 questions on a five-level Likert scale, see further
(Gunduz & Fokoue, 2013). For our experiment we use the
perceived difficulty of the course as response variable.
This data was previously evaluated by Yamada et al. (2018)
who selected features with HSIC-ordering and used the fa-
miliar framework of the polyhedral lemma and truncated
Gaussians for PSI, denoted by Poly. We use the block esti-
mator of size 10 and set & = 10 for the Multi approach to
accord with Yamada et al. and report their findings along
with ours. For our proposal, the first fold contains 20% of
the data, we select A with 10-fold cross-validation and do
not carry out screening as the number of features (p = 28)
is manageable. Table 1 summarises our findings.

First, we notice that Multi and Poly pick different features
despite sharing the same selection procedure which can
probably be attributed to randomisation, carried out by Ya-
mada et al. (2018). Moreover, we observe that HSIC-Lasso
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Table 1. P-values of the HSIC-target for selected features in the

Turkish student dataset

Table 2. P-Values of the partial targets corresponding to selected

features in the single-cell RNAseq dataset

GENE P-VALUE GENE P-VALUE
ACTB 0.961 1GJ <0.001
CDIi4 0.026 LYZ <0.001
FCERIA <0.001 MTRNR2L2 0.420
FCGR3A 0.001 RPS3A <0.001
FTL 0.968 TMSB4X 0.012
HLA-DPAI | <0.001 TVASS 0.553
IFI30 0.002

FEATURE P-VALUE
PROPOSAL | MULTI PoLY
Q2 0.021 - 0.452
Q3 - 0.782 -
Ql1 0.004 - -
QI13 - - 0.018
Ql4 - 0.001 -
QIl15 - 0.095 -
Q17 <0.001 <0.001 0.033
QI18 - - 0.186
Q19 - <0.001 -
Q20 - 0.004 0.463
Q21 - 0.032 0.033
Q22 - <0.001 0.042
Q23 - - 0.037
Q25 - 0.002 -
Q26 - - 0.176
Q28 0.004 0.041 <0.001

chooses a very parsimonious model with only four covari-
ates whose associated HSIC-targets are highly significant.
Among the tested approaches, there is a moderate agreement
on the influential covariates where only Q17: The Instruc-
tor arrived on time for classes.” and *Q28: The Instructor
treated all students in a right and objective manner.” are
unanimously chosen and found to be significant. Consid-
ering the partial targets for HSIC-Lasso, we find that only
Bf;r < appears significant.

The different results that we obtain may hint that the Turkish
student data set is intrinsically noisy or that methods based
on HSIC-estimation and the polyhedral lemma are unstable.
However, the Lasso-selection of HSIC-Lasso, unlike Multi
or Poly, penalises correlated features which affects PSI as
well. Hence, different results for the compared methods do
not necessarily indicate incorrectness of either approach.

4.2.2. SINGLE-CELL RNASEQ DATA

Villani et al. (2017) isolated around 2 400 blood cells, en-
riched in two particular kinds of leukocytes: dendritic cells
(DCs) and monocytes. Then, they measured the gene ex-
pression on every cell using single-cell RNAseq aiming to
describe the diversity between, and within those two cell
types based on their gene expression profile. They end
up defining 10 different subclasses: 6 types of DCs and
4 types of monocytes. In our experiment, we use 1078
samples of this data aspiring to find the genes that separate
these 10 classes among the 26 593 genes. We standardise
the single-cell RNAseq data gene-wise and impute missing
gene expressions with MAGIC, see further (van Dijk et al.,
2018). Since the response is categorical, we use the nor-
malised delta kernel. Unlike the Turkish student dataset, we
are now confronted with a considerably high-dimensional
problem where the number of features greatly exceeds the

sample size. Therefore, screening becomes more challeng-
ing and we consequently split the data evenly into first and
second fold. We screen 1 000 potentially influential features
and apply the incomplete U-statistic estimator with a large
size of 20, hoping to better capture the potentially involved
dependence structure. The remaining parameters were set
as in the previous experiment. For an in-depth analysis of
the dataset, we recommend to conduct a sensitivity analysis
which investigates the behaviour of the method for different
values of the parameters, such as the split ratio, the number
of screened features or the size of the estimator.

We find that HSIC-Lasso selects 13 features and that all
of the associated HSIC-targets and most of the partial tar-
gets are significant, cf. Table 2. One of the traditionally
defining characteristics of monocytes is the expression of
the CD14 protein; encouragingly, HSIC-Lasso selected this
gene as a discriminating feature. In fact, it also selected
six other genes which Villani et al. used in multiple cell
signatures: FCGR3A (DC4), FCERIA (DC2 and DC3),
FTL (DC4), IFI30 (cDC-like), IGJ (pDC-like), and LYZ
(cDC-like). Jointly, this shows the ability of HSIC-Lasso to
recover multiple genes used to define the classes.

More exciting, however, are the genes which are selected by
HSIC-Lasso and were not used in the original study. These
might point to new molecular signatures and functions that
differentiate these cell types. For instance, one of these
genes play a role in immunity: HLA-DPAI, which present-
ing cells like DCs use to present exogenous proteins to other
immune cells. The proposed PSI framework adds nuance to
this picture by providing a soft ranking of the selected genes.
Notoriously, FTL and ACTB have p-values close to 1, which
suggests that most of the information they provide is already
captured by other selected genes. Hence, other genes should
be prioritised in hypothetical downstream experiments.
Our method contributes to the detection of discriminatory
features inasmuch it facilitates to formulate confidence state-
ments about the obtained results.

5. Discussion and Outlook

Post-selection inference was initially proposed for linear re-
gression models with Lasso regularisation and subsequently
expanded to generalised regression situations and Lasso
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variants, see for example (Taylor & Tibshirani, 2018) and
(Hyun et al., 2018). However, knowledge of an underlying
model seemed to be necessary in order to properly account
for the selection-process. Yamada et al. (2018) overcame
this limitation by capturing the unknown dependence be-
tween variables via the model-agnostic Hilbert-Schmidt
independence criterion and embedding the estimates into
the formerly proposed PSI-framework using asymptotic nor-
mality. However, this approach still requires the user to
decide how many features to select. Our method chooses
features in a data-driven manner and correctly accounts for
the selection process and is thus ideal for situations with
limited knowledge about the structure of the data.
Extending the theoretical framework to allow for a sequen-
tial application of HSIC-Lasso with different values of A,
similar to Tibshirani et al.’s least angle regression algorithm
(2016), is an interesting and practically relevant step for fu-
ture research. Moreover, Liu et al. (2018) hint that develop-
ing inference targets apart from the partial and HSIC-target
can be useful to reduce the length of confidence intervals.
Lastly, the incorporation of the choice of \ into the post-
selection framework for HSIC-Lasso would allow to analyse
the data on only one fold and render the proposed frame-
work fully in line with the PSI philosophy. Loftus (2015)
and Markovic et al. (2017) took first steps in this direction;
albeit, the application to HSIC-Lasso is still an open issue.
From an algorithmic point of view, establishing heuristics
for a good choice of hyper-parameters, such as the size of
the estimators or the split ratio, can as well be object of
future research.
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