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Abstract

Variational data assimilation optimizes for an ini-
tial state of a dynamical system such that its evo-
lution fits observational data. The physical model
can subsequently be evolved into the future to
make predictions. This principle is a cornerstone
of large scale forecasting applications such as nu-
merical weather prediction. As such, it is imple-
mented in current operational systems of weather
forecasting agencies across the globe. However,
finding a good initial state poses a difficult opti-
mization problem in part due to the non-invertible
relationship between physical states and their cor-
responding observations. We learn a mapping
from observational data to physical states and
show how it can be used to improve optimizability.
We employ this mapping in two ways: to better
initialize the non-convex optimization problem,
and to reformulate the objective function in bet-
ter behaved physics space instead of observation
space. Our experimental results for the Lorenz96
model and a two-dimensional turbulent fluid flow
demonstrate that this procedure significantly im-
proves forecast quality for chaotic systems.

1. Introduction

Variational data assimilation provides the basis for numer-
ical weather prediction (ECMWEF, 2019), integrating the
non-linear partial differential equations describing the atmo-
sphere. The core algorithm is an optimization problem for
the initial state of the system, such that when the equations
of motion are evolved over time, the resulting trajectories
are close to the measurements. Continuing to evolve the
physical system into the future then yields a forecast (Fig-
ure la). Over the last decades, these algorithms have led
to a steady improvement in forecast quality, though further
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Figure 1. Overview of the proposed method. (a) The principle
of variational data assimilation. The goal is to optimize for an
initial state (large blue dot) of a physical system such that the
evolution over an assimilation window (solid line) is close to
measurements (small gray dots). The model is subsequently used
to make predictions into the future (dashed line). (b) Improving
optimizability of variational data assimilation. We use a learned
inverse observation operator to better initialize the optimization
problem (red dots) and to transform the non-convex objective
function to be better behaved. (c¢) Data assimilation results of the
proposed method compared with a traditional algorithm. Depicted
is a vorticity prediction of a two-dimensional turbulent fluid flow.
The proposed method more accurately captures vorticity features
(yellow squares).

improvements are limited by computational resources. Data
assimilation accounts for a significant fraction of the compu-
tational cost for numerical weather prediction. This restricts
the amount of data that can be assimilated and only a small
volume of available satellite data is utilized for operational
forecasts (Bauer et al., 2015; Gustafsson et al., 2018).
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Weather forecasting systems are complex algorithmic
pipelines (Bauer et al., 2015). Recent work has shown that
in some cases forecasts can be improved by replacing the
entire system with a machine learned prediction (see, e.g.,
(Sgnderby et al., 2020; Ham et al., 2019)). This approach is
very powerful, but physical models remain more accurate
for global weather forecasting (Rasp et al., 2020). More-
over, they offer guarantees of generalization, interpretability
and physical consistency because they are built upon well-
known physical principles. In fact, some of the best pure
machine learning approaches rely upon pre-training with
simulation data due to insufficient historical observations
(Rasp & Thuerey, 2020; Ham et al., 2019). Additionally,
physical modeling facilitates the principled coupling of pro-
cesses on different characteristic spatial and time scales, e.g.,
the atmosphere, ocean, and land surfaces, which is critical
for complex forecasting applications (Bauer et al., 2015).
Consequently, a more promising approach may be to aug-
ment physical models with machine learning (Watt-Meyer
et al., 2021; Kochkov et al., 2021).

In this paper, we augment a traditional variational data as-
similation algorithm with machine learning. We use the
equations of motion to evolve the dynamical system, while
machine learning is used only to improve the optimization
problem for calculating the initial state. To this end, we
learn an approximate inverse to the observation operator.
Using this mapping, we provide an effective initialization
scheme for the non-convex optimization problem and trans-
form the objective function for the variational data assimila-
tion problem to be better behaved (Figure 1b). We generate
observational data from two model problems, a classical
model for data assimilation introduced by Lorenz (Lorenz,
1995), and a turbulent fluid flow in two spatial dimensions.
We demonstrate that the algorithm enhanced with machine
learning leads to a substantial performance improvements
over the baseline. Figure Ic shows an example of an im-
proved forecast.

2. Related Work

Data assimilation is a suitable formalism for combining
physical modeling with machine learning since large scale
applications are characterized by rich physics and large
amounts of data. Both approaches can be viewed in the
framework of Bayesian inference (Geer, 2020). Machine
learning approaches to modify the physical model for data
assimilation include a learned correction to an approximate
model (Farchi et al., 2020; Brajard et al., 2020a), training a
machine learning model to completely emulate the physics
(Brajard et al., 2020b), and learning a forcing term within
the weak-constraint 4D-Var formulation (Bonavita & Laloy-
aux, 2020). In contrast, we use an exact physical model
and modify the representation of observations using ma-

chine learning. Mack et al. (2020) formulate variational
data assimilation in a latent space derived by training an
autoeconder. The dimensionality reduction allows for sig-
nificantly faster optimization. However, this approach loses
physical guarantees for decoded states.

Integration of dynamical systems is a central component
of data assimilation. However, simulating high-resolution
dynamics quickly becomes computationally intractable. To
ameliorate this issue, several recent works combine tradi-
tional numerical solvers with machine learning to obtain
high-resolution physics from coarser simulations. Mesh-
freeFlowNet (Jiang et al., 2020) continuously parameterizes
the spatial domain by learning an interpolation function for
each grid cell. Um et al. (2020) incorporate a correction op-
erator directly into the numerical solver and train this func-
tion to nudge an inaccurate solution towards a more accurate
one. The authors of (Bar-Sinai et al., 2019; Zhuang et al.,
2020) learn a discretization scheme for PDEs that better
captures the unresolved physics, leading to improvements
over ad hoc finite difference discretization methods. Using
a fully differentiable computational fluid solver, Kochkov
et al. (2021) demonstrate that with this approach the grid
resolution can be reduced by an order of magnitude without
sacrificing accuracy. Similarly, we use a fully differentiable
solver for our model systems and our approach may there-
fore be complemented by such ideas.

Variational data assimilation requires solving a difficult op-
timization problem. Our approach of improving optimiz-
ability of this problem with machine learning can be con-
textualized with other works that employ machine learning
to transform a physics constrained optimization problem.
In the context of simulating mechanical materials, Beatson
et al. (2020) approximate the inner problem of a bi-level
optimization problem by a learned function, thus crucially
reducing the the computation cost. To optimize photonic de-
vice designs, Kudyshev et al. (2021) train for a compressed
design space with an adversarial autoencoder. This space is
then explored using an evolutionary algorithm. Ackmann
et al. (2020) learn a preconditioner to improve the solu-
tion of a linear system arising during the integration of a
shallow-water model. As with our approach, the precondi-
tioned system does not suffer from generalization issues of
the machine learning model. We can guarantee a certain per-
formance level by defaulting to a classical method. Various
works improve optimization problems not with a compo-
nent learned from training data, but by reparameterizing
the objective function with a neural network architecture.
The neural network here acts as an overparameterization
with a specific inductive bias, e.g., convolutional neural net-
works for building hierarchical, multi-scale representations
(Hoyer et al., 2019; Ulyanov et al., 2018) or fully-connected
networks for continuous representations (Mildenhall et al.,
2020).
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3. Variational Data Assimilation

The state of the art variational data assimilation algorithm is
called 4D-Var (Bannister, 2017). It minimizes an objective
function of the form

J(x0) =(z0 — xb)TB_l(xO - xb)
T
+ ) (H(xe) —y0) "R (H () — )
t=0

Tt41 :M(J?t) (1)

The goal is to produce a maximum likelihood estimate of the
initial state x¢ of a trajectory (x1, ..., xr) that is evolved
through a physics model M, given a sequence of obser-
vations (y1,...,yr). The observation operator #, maps
physical states into the space of observations. As an ex-
ample, the physics model could be the Navier Stokes equa-
tions for evolving a weather system, and the observation
operator could measure the state of the atmosphere at dis-
crete weather stations. The loss J(xo) models the initial
condition and conditional distribution of observations as
a multi-variate normal distribution. The first term incor-
porates a guess for the initial state z (the so-called back-
ground state °), where B is the background covariance
matrix, representing the uncertainty about this assumption,
ie.,zog ~ N (xb, B). Similarly, the matrix R models the
observation error covariance, i.e., yx ~ N (H(z;), R). The
simplifying assumption of Gaussian background and obser-
vation errors may suffer from model misspecification when
applied to real-world data (Bocquet et al., 2010). Altogether,
this amounts to solving a non-linear least squares problem.
We denote the initialization of this optimization problem by
initial condition and refer to an initial state to describe the
first state z of a physics trajectory.

4D-Var minimizes objective functions of the form (1)
via gradient based optimization. To forecast a trajectory
(21,...,x7), the objective (1) is minimized to estimate z
over a fixed-length window of observations, the so-called
assimilation window, which is shifted in time. The fore-
cast state from a previous assimilation window becomes the
background state for the next assimilation window. Mini-
mizing (1) is a difficult optimization problem for various
reasons (Andersson et al., 2005): First, the physics model
M is in general non-linear or even chaotic, so that small
changes in the initial state can lead to large changes in an
integrated state. Secondly, the observation operator 7 that
reduces information from physics trajectories to observa-
tions is usually non-invertible and possibly non-linear.

In what follows, we focus on the difficulty posed by the
observation operator H, and learn an approximate inverse to
‘H that maps the observational data to the space of physical
states. For simplicity, we focus our analysis on a fixed time
horizon without a shifting assimilation window. Moreover,

we neglect prior modeling of the initial state, so that we
omit the first term in (1). Finally, we neglect an explicit
observation noise model, i.e., we set R to be the identity
matrix. This amounts to studying the following simplified
version of the 4D-Var model:

T
J(wo) = Z 1M (1) = yel 5, T = M(zi) (2)
t=0

The method presented in this paper is not restricted to this
setting, but equally applies to the general 4D-Var problem.
However, to study the effect of the observation operator
‘H on the optimization problem, additional aspects of the
problem are not necessary.

4. Learning an Inverse Observation Operator

To be precise, we distinguish the space P of physical states
or physics space and the space O of observations or observa-
tion space. The observation operator H : P — O maps the
physics space P to the observation space O. The variational
data assimilation objective (2) is formulated in observation
space. However, the non-invertibility (and potential non-
linearity) of H makes minimizing this objective difficult.
The key idea of this paper is to parameterize an approximate
inverse hg : O — P and to use machine learning to train
the parameters 0. The training target is to map observations
to corresponding physical states, in our notation to obtain
hg(y:) ~ x¢. While in practice there is ample training
data from historical observations, in this work we revert to
simulations for generating training data.

In order to exploit both spatial and temporal correlations,
we construct a fully-convolutional architecture in space and
time. Fully-convolutional architectures are natural for sev-
eral reasons: they use local filters and therefore enforce the
locality of the underlying equations of motion. Addition-
ally, the number of parameters in a convolutional layer does
not increase with input size. This is vital because typical
physics models M are discretized over large grids.

We implement our models for the approximate inverse in
JAX (Bradbury et al., 2018) and use Flax as neural network
library, with the Adam optimizer (Kingma & Ba, 2015) and
learning rate of 10~2 for training!. We also use JAX to im-
plement differentiable simulators for the physics model M
that arises inside the objective function (2) (Kochkov et al.,
2021). Operational numerical weather prediction models
similarly make use of differentiable simulators, where they
are known as adjoint models. All models can be trained and
optimized on a single NVIDIA V100 GPU.

We use the trained inverse observation operator for two
aspects of the optimization problem. First, we map the

'https://github.com/googleinterns/
invobs-data-assimilation
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Figure 2. Variational data assimilation with a learned inverse ob-
servation operator. The learned inverse observation mapping is
denoted by red, hollow arrows. We approximately invert an ob-
servation trajectory and choose its first state as an initialization of
the non-convex optimization problem. The hybrid optimization
approach first minimizes (3) in physics space and subsequently
uses the optimization result to initialize refinement minimization
of (2) in observation space.

earliest trajectory of observations to a trajectory in physics
space and then use its first state as an initialization to the
optimization problem. Secondly, we substitute (2) with a
reformulated objective function in physics space:

T
J(xo) = Z |lze — ha(ye)][3, T = M(z) (3)
=0

An overview of this method is depicted in Figure 2. The ob-
jective functions (2) and (3) are not equivalent, rather we use
(3) as a proxy for (2). As we will show in Section 5, mini-
mizing (3) is a more benign optimization problem compared
to minimizing (2). However, the caveat with minimizing (3)
is that we can only expect hy to be an approximation that
does not even guarantee to map to a physical state, i.e., a
state that one could encounter under the statistically station-
ary dynamics of the model. As a consequence, we adopt a
hybrid approach where we first minimize (3) and use the
optimization result to initialize minimizing (2) for further
refinement.

5. Results

We demonstrate this approach on two chaotic dynamical sys-
tems, the Lorenz96 model (Lorenz, 1995) and Kolmogorov
flow (Chandler & Kerswell, 2013). As our baseline, we
follow a common approach (Bannister, 2008) and assimilate
in observation space over a set of uncorrelated variables,
i.e., we minimize (2) after a whitening transformation to
& = C~/2g, where C is the empirical covariance matrix

over a set of 10° independent samples from the stationary
distribution of the respective dynamical systems. The em-
pirical covariance matrix might not be positive definite, an
issue that is often encountered in applications (Tabeart et al.,
2020). To ensure positive definiteness, we threshold the
spectrum of C' at 10~°. To be precise, we solve

T
min " IH(CY26) ~ il €ir = CVIMCY).

o t=0
€]

We use L-BFGS (Nocedal & Wright, 2006) as an optimizer
for assimilation, retaining a history of 10 vectors for the
Hessian approximation. An optimization step in physics
and observation space incurs a comparable computational
cost, since the inverse observation operator is applied prior
to optimization to modify the fitting targets.

We measure the quality of forecasts by an L; point-wise
error metric £ between two states z1, 2s:

(21, 22) = |21 — 2z2ll1 /7 , (5)

where we scale this metric to a relative error by dividing
by a mean error vy of random independent states sampled
from the stationary distribution of the dynamical system.
This metric can be easily interpreted: an order unity error
implies the average performance of a random evolution of
the system. We compare the optimized forecasts with the
evolution from a ground truth initial state on a set of 100
test trajectories.

5.1. Lorenz96 Model

The single-level Lorenz96 model (Lorenz, 1995) is a pe-
riodic, one-dimensional model where each grid point is
evolved according to the equation of motion

% = —Xp1 (X2 = Xpp1) - X + F . (6)
Here, the first term models advection, the second term rep-
resents a linear damping, and F' is an external forcing. We
choose a grid of size K' = 40 and an external forcing F' = §,
parameters where the system is chaotic with a Lyapunov
time of approximately 0.6 time units. For an observation
operator, we use subsampling. We integrate trajectories over
an assimilation window of T' = 10 time steps with a time
increment of At = 0.1 time units starting from an initial
condition in the statistically stationary regime, i.e., where
>, X7 fluctuates around a constant mean value.

We now demonstrate how a learned inverse observation oper-
ator significantly improves forecast results by providing an
effective initialization scheme for the non-convex optimiza-
tion problem and by formulating a more benign objective
function in physics space P instead of observation space O.
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LAYER (T, X, C)
INPUT (10, 10, 1)
CoNv2D + BN + SILU (10, 10, 128)
UPSAMPLE + CONV2D + BN + SILU (10, 20, 64)
UPSAMPLE + CONV2D + BN + SILU (10, 40, 32)
Conv2D + BN + SILU (10, 40, 16)
CoNv2D (10,40, 1)

Table 1. Fully-convolutional network for training the inverse ob-
servation operator for the Lorenz96 model. The table shows a
layer with its respective output array dimensions time (T), space
(X), and channel (C). The CONV2D layer applies periodic con-
volution in the space dimension and zero-padded convolution in
the time dimension. The filter size for all convolutional layers is
(3,3). BN denotes batch normalization. To upscale the grid by a
factor of 2 in layers two and three, we use cubic interpolation. As
a non-linearity we use the sigmoid-weighted linear unit (SILU),
silu(z) = /(1 + exp(—=x)).

As an observation operator for the following experiments,
we observe every 4th grid point. To approximate the inverse
observation operator, we train a fully-convolutional network
as described in Table 1. We train on a dataset of 32000
independent observation trajectories with batch size 8 for
500 epochs.

For data assimilation, we compare two initialization
schemes. The baseline averaging initialization scheme ini-
tializes the optimizer with the observed grid points and uses
the average over a data set of independent states as an es-
timate of the unobserved grid points. This is equivalent
to a least-squares fit of the unobserved grid points. The
inverse initialization scheme uses the learned inverse ob-
servation operator to create the initialization. To this end,
we map a sequence of observations to a physical trajectory
and use its first state for initialization as depicted in Fig-
ure 2. Figure 3 shows a qualitative comparison of these
two initialization schemes, demonstrating that the learned
inverse mapping leads to a much more accurate initializa-
tion. We found that first optimizing for an initial condition
from a previous assimilation window, as in 4D-Var, does
not improve baseline initialization. We compare optimizing
in observation space (baseline) with the hybrid approach
of first optimizing in physics space and then refining the
results in observation space. For a fair comparison, both
optimization methods are limited to 500 optimization steps
with the hybrid method assigning 100 of these steps to op-
timization in physics space and the remaining 400 steps to
refinement in observation space. The forecast results are
shown in Figure 4. Inverse initialization improves forecasts
for observation space optimization compared with average
initialization. For the inaccurate averaging initialization,
hybrid optimization significantly improves forecast quality
compared with observation space optimization. This sug-

average init

inverse init

0 grid 40 0 grid 40

Figure 3. Comparison of initialization (solid red) with the ground
truth initial state (dashed blue). The observed grid points are
marked as yellow dots. The learned inverse observation mapping
takes a trajectory of such subsampled states as input and gener-
ates the inverse initialization. Inverse initialization is much more
accurate than averaging initialization.
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Figure 4. Forecast quality with a learned inverse observation oper-
ator for the Lorenz96 model. Quality measure is the L forecast
error relative to a random evolution of the system. Depicted is
the mean error based on a sample of 100 trajectories. The vertical
dashed line separates the assimilation window from the forecast
window. Inverse initialization improves forecasts for observation
space optimization compared with average initialization. For the
inaccurate averaging initialization, hybrid optimization signifi-
cantly improves forecast quality compared with observation space
optimization. Adding inverse initialization to the hybrid optimiza-
tion approach leads to a small additional improvement, which is
significant with a p-value of p < 1074

gests that by first optimizing in physics space, we obtain
an initialization for refinement in observation space that is
located at a favorable basin of attraction. Adding inverse
initialization to the hybrid optimization approach leads to a
small additional improvement.

Figure 5 shows an example forecast of the system. The
hybrid method initialized with the learned inverse mapping
is able to capture the ground truth evolution of the system.
In contrast, for the baseline method a visible approximation
error remains throughout the system integration.
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Figure 5. Forecast trajectory for the Lorenz96 model optimized
from the initial conditions depicted in Figure 3. The forecast trajec-
tory based on optimization with the inverse observation operator
(inverse initialization, hybrid optimization) is qualitatively much
closer to the ground truth evolution of the system than the baseline
method (averaging initialization, observation space optimization).

5.2. Two-Dimensional Turbulence

Next, we study data assimilation for a two-dimensional tur-
bulent fluid (Boffetta & Ecke, 2012). Machine learning in
this setting requires modeling richer physics and poses a
much more demanding computational problem. Further-
more, having in mind the application of data assimilation to
numerical weather prediction, this class of models can be
considered as the simplest approximation to modeling the
flow of the atmosphere.

We consider the incompressible Navier-Stokes equation for
a velocity field u and a pressure field p:
Ju 9
a+uVu—qu+Vp—F:0 @)
V-u=0,

where v is the kinematic viscosity of the fluid. We choose
the external forcing F' to correspond to Kolmogorov flow
(Chandler & Kerswell, 2013), with linear damping (Boffetta
& Ecke, 2012) to ensure that the long-time behavior of the
solution is statistically stationary:

F =sin(kz)X — au 8)

For our experiments, we choose a domain [0, 27]? with peri-
odic boundary conditions, a wavenumber k = 4, a damping

LAYER (T, X, Y, C)
INPUT (10,4, 4,2)
Conv3D + BN + SILU (10, 4, 4, 64)
UPSAMPLE + CoNV3D + BN + SILU (10, 8, 8, 32)
UPSAMPLE + CoNnVv3D + BN + SILU (10, 16, 16, 16)
UPSAMPLE + CoNV3D + BN + SILU (10, 32, 32, 8)
UPSAMPLE + CONV3D + BN + SILU (10, 64, 64, 4)
Conv3D (10, 64, 64, 2)

Table 2. Fully-convolutional network for training the inverse ob-
servation operator for Kolmogorov flow. The table shows a
layer with its respective output array dimensions time (T), space
(X and Y), and channel (C). The CONV3D layer applies peri-
odic convolution in the two space dimensions and zero-padded
convolution in the time dimension. The filter size for all con-
volutional layers is (3,3,3). BN denotes batch normalization.
We upsample the grid using bicubic interpolation by a factor
of 2 and correspondingly halve the number of channels. As a
non-linearity we use the sigmoid-weighted linear unit (SILU),
silu(z) = /(1 + exp(—=x)).

coefficient &« = 0.1, and a viscosity of v = 1072, We
discretize the solution on a 64 x 64 grid and use standard
numerical methods to solve the Navier-Stokes equation with
a differentiable solver written in JAX (Kochkov et al., 2021).
The Lyapunov time of the system is approximately 5.9 time
units. Our flows are initialized with a random velocity field
filtered with a spectral filter at a peak wavenumber 4, which
is then integrated to a statistically stationary regime of the
flow. We assimilate over trajectories of length 7' = 10
time steps, where the integration time between two such
snapshots is At ~ 0.18, consisting of 25 internal solver in-
tegration steps. To save memory when computing gradients,
we checkpoint the state from the forward pass only at each
internal integration step rather than storing intermediate val-
ues (Griewank, 1994). This requires evaluating the forward
pass twice, but reduces memory usage by two orders of
magnitude.

We carry out data assimilation on the velocity field u of the
flow. To analyze our forecasts, we use vorticity w, the curl
of the velocity field,

= (O Ou.
w._<8x ay>. ©)

Vorticity describes the local direction of movement of the
fluid. We visualize vorticity on a scale, which is cut off
at [—8, 8] with negative values (blue in Figures 6 and 9)
denoting clockwise rotation and positive values (red in Fig-
ures 6 and 9) denoting counter-clockwise rotation.

We again use equidistant subsampling for the observation
operator H. In contrast to the Lorenz96 model the solu-
tion is smooth over the grid points, so we can use bicubic
interpolation between observed grid points as the baseline
initialization scheme. We now demonstrate the effect of
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Figure 6. Comparison of initialization schemes with the ground
truth initial state for Kolmogorov flow with a 16-subsampling ob-
servation operator (yellow dots). The learned inverse observation
operator is trained on a trajectory of subsampled velocity fields.
The observed ground truth vorticity exemplifies the amount of
information of a single state of this trajectory. The trained model
predicts a good approximation to the ground truth state only from
a sequence of 4 x 4 points.

a learned inverse observation operator, when this operator
observes every 16th grid point. For training, we employ a
fully-convolutional network as shown in Table 2. We train
on a dataset of 32000 independent observation trajectories
with batch size 8 for 500 epochs.

For data assimilation, we compare bicubic interpolation
as the baseline interpolation initialization with inverse ini-
tialization derived from the learned inverse observation op-
erator, as depicted in Figure 2. Figure 6 compares these
initialization methods with the ground truth initial state. As
with the Lorenz96 model analyzed in Section 5.1, we also
compare optimizing in observation space with the hybrid
approach of first optimizing in physics space and subse-
quently refining this solution in optimization space. We
limit both optimization methods to 1000 steps, with the
hybrid approach using 100 of these steps to optimize in
physics space and the remaining 900 to refine in observation
space. Figure 7 shows the results, with three implications
analogous to experiments on the Lorenz96 model. First, hy-
brid optimization improves assimilation quality even when
using the inaccurate interpolation initialization. This im-
plies that by first optimizing in physics space, we arrive at a
favorable basin of attraction for optimization in observation
space. Secondly, using inverse initialization for optimizing
in observation space significantly improves forecasts. Fi-
nally, adding inverse initialization to hybrid optimization
does not improve performance. This is presumably because
the initialized state is already a good approximation to the
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Figure 7. Data assimilation results for Kolmogorov flow using a
learned inverse observation operator. Quality measure is the L1
forecast error relative to a random evolution of the system. De-
picted is the mean error based on a sample of 100 trajectories.
Trajectories are obtained by evolving the initial states returned by
corresponding optimization methods. Using the hybrid method for
optimization improves assimilation quality with inaccurate interpo-
lation initialization. The inverse initialization scheme significantly
improves forecasts for observation space optimization. Adding
inverse initialization to hybrid optimization does not improve per-
formance. The difference between observation space optimization
vs. hybrid optimization for both initialization schemes is signifi-
cant with a p-value of p < 1078,

optimization target, so there is no added advantage in opti-
mizing in physics space. In contrast, it is more sensible to
directly refine this state by optimizing in observation space.
This effect becomes evident when analyzing how each of
these optimization methods decreases the objective func-
tion in observation space during optimization, as depicted
in Figure 8. For the less accurate interpolation initializa-
tion, a more favorable basin of attraction can be reached for
some samples by first optimizing in physics space. However,
since inverting the observation space trajectory only approx-
imates the true trajectory, fitting against this target precludes
progress after an initial phase of optimization steps. Hence,
with a fixed budget of optimization steps there is a trade-off
between finding a favorable basin of attraction by optimiz-
ing in physics space and finding a higher-accuracy solution
by optimizing in observation space. Figure 9 qualitatively
compares vorticity forecasts for the baseline method (inter-
polation initialization, observation space optimization) with
our method based on the inverse observation operator for
initialization and hybrid space optimization. The dominant
features of the flow are visibly better predicted by the pro-
posed method. Note that the structure of initial states differs
from that of the following trajectories. Certain perturbations
vanish quickly during the evolution of the system and are
therefore not optimized to vanish in the initial state.
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Figure 8. Observation space data assimilation objective (2) during
optimization. Values are relative to the initial value on a log-scale
for two different samples (rows). Depicted are observation space
optimization (dashed blue) and hybrid optimization (solid red). For
both methods, we evaluate the same observation space objective
function along the optimization path. The vertical dashed line
signifies the change from physics space to observation space in
the hybrid method. For inaccurate interpolation initialization, a
favorable basin of attraction can be reached for some samples by
first optimizing in physics space. Inverse initialization provides
such a good initial condition that there is no added advantage of
first optimizing in physics space.

5.3. Result Summary

To summarize the results, we compare the relative perfor-
mance of each optimization setting for the first forecast state,
as depicted in Table 3. By using the learned inverse observa-
tion operator, the forecast error can be significantly reduced
for both models. The relative merit of exploiting this op-
erator for initialization and transformation of the objective
function depends on the properties of the physical model.
For the Lorenz96 model, hybrid optimization in addition
to inverse initialization notably improves performance. For
Kolmogorov flow, the learned inverse mapping already pro-
vides an extremely good initialization and hence optimizing
in physics space does not further reduce the forecast error.

6. Conclusion

Data assimilation is the perfect problem class to explore
the combination of physical modeling and machine learning
since applications naturally involve rich physics and vast
amounts of data. We demonstrate in this paper that a tra-

ground truth proposed
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Figure 9. Vorticity snapshots of a forecast trajectory for Kol-
mogorov flow. The proposed method (inverse initialization, hybrid
optimization) more accurately captures ground truth vorticity fea-
tures (yellow squares) compared with the baseline (interpolation
initialization, observation space optimization). Depicted are the
initial state and snapshots from the start and end of the forecast
window. Note that certain perturbations vanish quickly during the
evolution of the system and are therefore not optimized to vanish
in the initial state.

LORENZ96 KOLMOGOROV

OBS HYBRID | OBS HYBRID
BASELINE 1 0.08 1 0.88
INVERSE 0.25 0.07 0.20 0.23

Table 3. Mean L forecast error of the first forecast state. All val-
ues are relative to the baseline method for the respective model.
The table compares both initialization schemes (baseline, inverse)
and optimization methods (observation space, hybrid) for the
Lorenz96 model and Kolmogorov flow. The best optimization
setting is emphasized in bold face. Using the learned inverse
observation operator improves optimizability for both models.

ditional variational data assimilation pipeline is improved
by using a learned inverse observation operator. Exploiting
this operator, we transform the 4D-Var optimization prob-
lem and show significantly enhanced forecast quality on
two canonical chaotic models, the Lorenz96 model and a
two-dimensional turbulent fluid flow. More broadly, our
work shows that the core functionality of modern machine
learning frameworks — support for automatic differentiation,
hardware accelerators and deep learning — can advance re-
search for data assimilation and other physics constrained
optimization problems.
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