Supplementary Material

Bayesian Quadrature on Riemannian Data Manifolds

A.1l. Riemannian Geometry

A manifold M of dimension D is a topological space which does not carry a global vector space structure. As opposed to
the familiar R”, a manifold lacks the possibility of adding or scaling vectors globally. Instead, an atlas it used to cover the
manifold in charts, which only locally give a Euclidean view of the manifold. If transition maps between overlapping charts
are smooth, we call M a smooth manifold, which provides the means for doing calculus. Our analysis is heavily simplified
by viewing R” as a manifold and employing the identity map as a global chart map, which covers the whole R, thereby
endowing the manifold automatically with the smoothness property. We use global Euclidean coordinates, which implies
that we can solve the geodesic equations directly in this global chart.

A.1.1. Geodesic Equations

The energy or action functional of a curve « with time derivative () is defined as

1
E(y) =1 / (0, MY (D)F() dt. (12)

In physics, the argument of the integral is known as Lagrangian and we therefore abbreviate the inner product as
Z = (J(t),M(y(t))¥(t)). Geodesics are the stationary curves of this functional. We are interested in the mini-
mizers, i.e., shortest paths. Minimizing curve energy instead of length avoids the issue of arbitrary reparameterization.
Let 7% denote the i-th coordinate of the curve ~ at time ¢ and M;;, the metric component at row 7 and column £, if it is
represented as a matrix. We leave sums over repeated indices implicit (Einstein summation convention). Applying the
Euler-Lagrange equations to the functional FE results in a system of equations involving .Z

0 00%
— = —7—, forkel,...,D. 13
ok ok (13)
which is a system of 2" order differential equations. We first consider the left-hand side
0L 10Mij ;. ;
= =-—77 14
which holds due to independence of the coordinates. The right-hand side is
B L OMy, .
II:=— Mi A = — AtAd Mi e 15
o7 [Mir'] oy 11+ Mad (15)
We expand this using a small index rearrangement trick
1OMiy ;. ; 10Mjg .,
II = - =40 4 ———224547 4 My A 16
2873/7+287177+ kY (16)

This allowsustowrite [= Il < II — 1 =0 as

i 1 (O0My, OM;, OM,;, .
MpA' + = : 2=) A7 = 0. 17
kY +2<377 By 3’Yk>7 (17)
the next step is to left multiply with the inverse metric tensor and plug in the Christoffel symbols defined as follows
1 1 (OM;, OM;, OM,,
Ik = - M} : o 18
voakh (i oy oyt) 1o

Bayesian Quadrature on Riemannian Data Manifolds

so we finally obtain the geodesic equations in the canonical form
ik +TE4I40 =0, forkel,...,D. (19)

We assume our manifold to be geodesically complete (Pennec, 2006), which means that geodesics can be infinitely extended,
i.e., their domain is R. As a consequence, the exponential map is then defined on the whole tangent space. In theory,
the exponential map Exp ”() is a diffeomorphism only in some open neighborhood around g and thus it only admits a
smooth inverse, i.e., Log “(-), in said neighborhood. However, we assume this to be true on the whole manifold in practice
to keep the analysis tractable. For long geodesics on high-curvature data manifolds, often Log,, (Exp “(v)) # v. This is
rather unproblematic since if || Log,, (x,)| is high, the responsibility r,,; will be low (see A.2), so this logarithmic map will
play a minimal role in the Mahalanobis distance of the LAND density. Thus, the optimization process on its own favors
mean and covariances such that the density is concentrated in sufficiently small neighborhoods where the exponential map
approximately admits an inverse.

A.1.2. Covariance and Precision Matrices

We here elaborate on Footnote 1 of the paper. The Riemannian normal distribution (Pennec, 2006) is defined using the
precision matrix . This matrix lives on the tangent space 7,,M, i.e., it may be represented as a matrix in R”*?_ where D
is the dimension of the tangent space, which is equal to the topological dimension of the manifold. In our applied setting,
D matches the dimension of the data space, as we view the whole R” as the manifold. We can use the tangent space
“covariance” matrix £ = I for our reasoning and the optimization process. However, to obtain the true covariance on the
manifold M, a subtle correction is necessary (Pennec, 2006)

1 1
Tu=E [Log” (x) Log”(x)T] =z /M Log,,(x) Log,, (x)T exp (—5 <Logu(x), I Log,, (x)>> dM(x), (20)
with respect to the density on the manifold. For conceptual ease, we focus on the tangent space view in the paper. To plot the
eigenvectors of the ADK LAND covariance (Fig. 10), we used the exponential map on the tangent space covariance matrix,
i.e., we evaluate and plot Exp“(vl;g), where v;.5 are the eigenvectors of 2.

A.1.3. Geodesic Solvers

To solve the geodesic equations, we combine two solvers, which have different strengths and weaknesses. By chaining them
together, we obtain a more robust computational pipeline.

First, we make use of the fast and robust fixed-point solver (FP) introduced by Arvanitidis et al. (2019a). This solver
pursues a GP-based approach that avoids the often ill-behaved Jacobians of the geodesic ODE system. However, the resulting
logarithmic maps are subject to significant approximation error, depending on the curvature of the manifold. The parameters
of this solver are as follows:

Parameter Value Description

iteryax 1000 maximum number of iterations

N 10 number of mesh nodes.

tol 0.1 tolerance used to evaluate solution correctness.
o 10~* noise of the GP.

For MNIST, we set itery,y = 500, and tol = 0.2, since this high-curvature manifold easily leads to failing geodesics.

The second solver we employ is a precise, albeit less robust one. This is the BVP solver available in the module
scipy.integrate.solve_bvp. On high-curvature manifolds, this solver often fails (especially for long curves)
and takes a significant amount of time to run. When it succeeds, however, the logarithmic maps are reliable. For this solver,
we set the maximum number of mesh nodes to 100 and the tolerance to 0.1. We empirically found that choosing a high
maximum number of mesh nodes (e.g., 500) can lead to high runtimes for failing geodesic computations.

To obtain fast and robust geodesics, these solvers may be chained together, i.e., we initialize the BVP solver with the FP
solution, which is often worth the extra effort for speedup and improved robustness. For initialization, we use 20 mesh
nodes, evenly spaced on the FP solution. If the FP solver already failed, it is very unlikely for the BVP solver to succeed, so
we abort the computation.

Bayesian Quadrature on Riemannian Data Manifolds

Algorithm 1 LAND mixture main loop
Input: data x;., manifold M with Exp and Log operators, max. number of iterations 4,
initial stepsize a}b € R, gradient tolerance €V, likelihood tolerance ¢,
Output: estimates (ft;, X, Ci, Tr) ;. ;¢
Initialize LAND parameters(u}, X;,C}, Th) e b 1
repeat
Expectation step: 7, =

T P(Zn| My, Tk)
K
SR TCTED

Maximization step:
for k =1to K do
Compute C} (11} 1)
Compute d,,, L(p}, X},) using Eq. (22)
if ||dy, L]| < ev,, then
Continue
end if
uZ‘H — EXpNi (aLde L)
Compute LOg“ZJrl (x1:n)
Compute C; ™ (pb™, XF)
Z?‘l — updatezz using Alg. 2
T = % 21]:[:1 T'nk
end for
if £!*1 < L' then
ol 1.1 af, {optimism}
else
ol 0.75 - o, {pessimism}
end if
t—t+1
until ||LF — L] < e ort = tpmas

Furthermore, we exploit previously computed BVP solutions: assume we want to compute Log,, (x). We search for past
results Log,, (x), with t* < ¢, t* = argmin |[pr, — p,. || and ||p, — p, || < €q, where we choose €q = 0.5. Since we
compute logarithmic maps for data points x;., which do not change during LAND optimization, we can use them as hash
keys in a dictionary, where we store the solutions. Looking up the solution is then linear in the number of previous LAND
iterations. If such a solution is found, the FP is skipped and the solution is used to directly initialize the BVP solver.

For the exponential maps, we use scipy.integrate.solve_ivp with a tolerance of 1073.

A.2. The LAND Objective and Gradients

Given a dataset x;. 5 assumed to be i.i.d., the negative log-likelihood of the Locally Adaptive Normal Distribution (LAND)
mixture can be stated as (Arvanitidis et al., 2016)

K N
Ly Zabir) = DDk B(Log“k (%n), Zy, ' Log,,, (xn)) +log (C (g, Ei)) — log(m) 2D

k=1n=1

TP (Tn |1y, Ek)
Zszl mp(Tn |y, Xr)
component for the n™ datum. The maximum likelihood solution can be obtained by non-convex optimization, alternating
between gradient descent updates of 1 and ¥ and cycling through the components &, as described in Alg. 1.

where T, is the weight of the k™ component, Zszl mr = land rpp = is the responsibility of the k"

Bayesian Quadrature on Riemannian Data Manifolds

For pu, we use the steepest descent direction as in Arvanitidis et al. (2016)

N
2y, - Ry, /
d, L= Tk LO Xp) — ———— v VN (v;0,X;) dv, (22)
Mk 7;1 kLogy, (xn) Cro(1s Ti) m 9 (N ¥
where the vector-valued integral stems from BQ and Ry = 21]:[:1 Toks 2k = \/ (2m) | k).

Arvanitidis et al. (2016) decomposed the precision }:,;1 = ATA for unconstrained optimization using gradient descent. We
opt for a more principled approach by exploiting geometric structure of the symmetric positive definite (SPD) manifold,
to which the covariance is confined. More specifically, we use the bi-invariant metric (Bhatia, 2009). Under this metric,

t
geodesics from A to B may be parameterized asy(t) = Az (A_% B> A_%> A%, 0 <t < 1, and the distance from A to
Bisd(A,B) = HlogA iBIA-

any invertible square matrix =, i.e. d(A B) =d(=- A, = B). For manifold gradient descent, we calculate the Euclidean
gradient and then project it onto the manifold. We begin with the first term

. The name stems from the fact that this distance is invariant under multiplication with

N N
1 _ 1 _ —
Vs, (E Tk {ﬁ(Log“k (xn),}:leog“k(xn»]) =3 g kX, | Log,, (x,) Log,, (x,) X, T. (23)
n=1 n=1

For the gradient of the normalization constant we get

1 1 -
V):k lOg(C(/J,k, Zk)) = m /M Vzk exp <5<L0guk (X), > 1 Log“k (X)>> de

1 1
=—+—— [I,’L L X7 —=(L 'L d M,
SEOE [E 1o, 00 Lo, (0T T exp (5 (Lo, (0. E ' Log,, ()) dM
1 / B B 1,
=—— T, Twig, (WX, Texp (——(v,Z v>) dv.
2-Clus Xn) Sy " S 2
(24
Taking this together, we obtain the gradient
| N
Vs, L=— 3 Z kX, T Log,, (X,) Log,, (x,) T, T
n=1 (25)
+ L/ >, Twig, (WX, Texp <—l(v Z_1v>) dv
2-C(ue Zn) Sy " S 2" 7

2

where the matrix-valued integral again stems from BQ. To project the Euclidean gradient Vx, onto the tangent space of
a SPD matrix X, we simply calculate %Zk (Vzk + V}T:k) ¥ ;.. We optimize with gradient descent and a deterministic
manifold linesearch as a subroutine, which adaptively chooses its step lengths. This procedure as well as the SPD manifold
are conveniently available in the Pymanopt (Townsend et al., 2016) library.

In sum, the optimization process is as follows: we cycle through the components K. After taking a single steepest-direction
step for p;,, we perform two gradient descent steps for X, each of which may use up to 4 steps in the linesearch subroutine
to satisfy a sufficient decrease criterion. We provide pseudocode for the covariance update in Alg. 2. The optimizer has the
following hyperparameters:

Parameter Value Description

tmax - update each component t,, times.

ah - initial stepsize for mean updates.

€v,, - tolerance for mean gradients

€r 2 likelihood tolerance

tmaz,x 4 max. X linesearch steps.

aq 1.0 initial step size (X linesearch).

Co 0.5 sufficient decrease factor (X linesearch).

c1 0.5 contraction factor (X linesearch)

Bayesian Quadrature on Riemannian Data Manifolds

Cells with unspecified values (-) imply that the value of the respective parameter is not equal across all experiments and
problems. Experiment-specific parameter details are in A.4.

A.3. More Details on BQ
A.3.1. General BQ

Since we use the Matérn-5/2 kernel and we require further integrals for the LAND objective gradients, we use the GP as an
emulator of the function we wish to model; that is, we do not calculate integrals analytically, but use extensive Monte Carlo
(McC) sampling on top of the GP, which implies evaluating the posterior mean at the locations randomly drawn from the
integration measure. To compute the integral without loss of precision, we use S = 30,000 samples to estimate the integrals.
The time overhead and approximation error of this procedure are negligible in practice.

We optimize the marginal likelihood of the GP with respect to the hyperparameters and use their final values to initialize the
next iteration, since during the optimization the function changes smoothly from each step to the next. This information is
not shared across the K components, but kept separately.

Our implementation of BQ builds upon the bayesquad python library (Wagstaff et al., 2018), which is available at
https://github.com/OxfordML/bayesquad.

A.3.2. DCV - Derivations and Technical Details

The DCV acquisition function is

i) = [ulan) a5 = [ko(r som(en? a. 26)
0 0
with derivative
/ Bm(Pr) [2kp(,6’r ﬂr)%ﬂ'(,@r) +7T(,3I’)%kp(,8r ,Br)| dg. (27)
Since the integration measure is Gaussian, i.e., 7(8r) = N'(8r; 0, X), its derivative is
-1
Bﬂ m(Br) = —m(Br)Z" pr. (28)
For simplicity, we always use WSABI-L in combination with DCV, so the derivative of the variance of the warped GP is
3 (3,) = oo [(36K (B, 51)] = 2 (3r ko (5. 5r) 5 (91) + ko (B, fr)mp (612, 29)

The derivative of the DCV acquisition function is significantly more costly to evaluate than the objective, because it requires
predictive gradients of the underlying GP. Instead of using a quadrature routine like scipy.quad, which would evaluate
the integral for every dimension sequentially, we use Simpson’s rule on 50 evenly spaced points between 0 and o,y (defined
below). Since these are multiple univariate integrals of a smooth function, the errors are practically negligible.

The scalar oy, simultaneously constitutes an upper bound for the integration and the length of the exponential map. A
bound is reasonable since longer exponential maps are slower to compute and the integration measure concentrates the mass
near the center, so very far-away locations become irrelevant. For a sensible bound, we use the chi-square distribution:

(@ nZ o =2 (30)

by choosing a high value p = 99.5%, we make sure that there is no significant amount of mass outside of this isoprobability
contour. Note that this limit applies only to the computation of exponential maps and the collection of observations, not to
the main quadrature itself.

Since r is constrained to lie on the unit hypersphere, we employ manifold gradient descent with a linesearch subroutine.
Conveniently, the linesearch only evaluates the objective and not its gradient, which saves a significant amount of time.
Overall, optimizing this acquisition function is costly, however.

Bayesian Quadrature on Riemannian Data Manifolds

Table 1. Mean exponential map runtime in milliseconds, obtained by averaging over MC runtimes on the entire LAND fit.

CIRCLE CIRCLE5D MNIST ADK CIRCLE 3D CIRCLE4D CURLY 2-CIRCLES
60 50 238 68 32 45 62 36

(a) CURLY (b) 2-CIRCLES

Figure 12. Toy data LAND fits

For completeness, we briefly describe the geometry of the unit (hyper)sphere. If the tangent space of our data manifold is
TuM = RP then a direction in this tangent space is a point on SP~!, which we represent as a unit norm vector in R”.
For a point x on the sphere and a tangent vector &, which lies in the plane touching the sphere tangentially, the exponential
map is Exp, (&) = cos(||€]|2)x + sin(]|&€ ||2)ﬁ However, the optimizer uses a retraction map Retry(§) = ﬁ instead
of the exponential map to take a descent step. To obtain the gradient on the manifold, the Euclidean gradient is orthogonally

projected onto the tangent plane.

The gradient descent is allowed a maximum of 15 steps in the “error vs. runtime experiment”, whereas in the boxplot
experiment we decrease this number to 5, as this experiment focuses more on speed given a fixed number of samples. The
linesearch may use up to 5 steps. We set the optimism of the linesearch to 2.0 and the initial stepsize to 1.0. If a descent step
has norm less than 10719, the optimization is aborted.

After an exponential map is computed according to DCV, we discretize the resulting straight line in the tangent space into
30 evenly spaced points and sequentially select 6 points using the standard WSABI objective, updating the GP after each
observation.

A.4. More Details on the Experiments

In this supplementary section, we give details about the conducted experiments and report further results, not included in
the main paper due to space limitations. Fig. 13 and Fig. 15 follow the methodology as sketched in the main paper. The
runtimes belonging to Fig. 13 are displayed in Fig. 14. We here also report mean runtimes of exponential maps (Tab. 1).

A.4.1. Synthetic Experiments

We created two further synthetic datasets CURLY and 2-CIRCLES that are not shown in the main paper (Fig. 12).

A.4.2. MNIST

We sampled 5,504 random data points from the first three digits of MNIST (LeCun et al., 1998), which were preprocessed by
normalizing them feature-wise to [—1, +1] using sklearn.preprocessing.MinMaxScaler. We trained a simple
Variational-Autoencoder (VAE) to embed the 784 dimensional input in a latent space of dimension 2. The architecture uses
separate encoders ft,, 0 and decoders p1y, 9. In summary:

Bayesian Quadrature on Riemannian Data Manifolds

: —

g — — ——
gl —
o — == ———
g - —
E
810—2 — e ==

W-L W-M DCV MC W-L W-M DCV MC W-L W-M DCV MC W-L W-M DCV MC

(a) CIRCLE 3D (b) CIRCLE 4D (c) CURLY (d) 2-CIRCLES

Figure 13. Boxplot error comparison (log scale, shared y-axis) of BQ and MC on whole LAND fit for different manifolds. For MC, we
allocate the runtime of the mean slowest BQ method. Each box contains 16 independent runs.

18
1% N w-L Bem w-M B pev

14

8
1 I s

CURLY 2-CIRCLES CIRCLE 4D CIRCLE 3D

runtime in seconds
— —
o no

Figure 14. Mean runtime comparison (for a single integration) of the BQ methods. Errorbars indicate 95% confidence intervals w.r.t the 16
runs on each LAND fit. The reported runtimes belong to the boxplots in Fig. 13.

—_
1<)
b

relative error
|

L

=<

(|

5 z

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
runtime in seconds runtime in seconds runtime in seconds runtime in seconds

(a) CIRCLE 3D (b) CIRCLE 4D (c) CURLY (d) 2-CIRCLES

Figure 15. Comparison of BQ and MC errors (vertical log scale, shared legend and axes) for different manifolds, on the first integration
problem of the respective LAND fit. Shaded regions indicate 95% confidence intervals w.r.t. the 30 independent runs.

Bayesian Quadrature on Riemannian Data Manifolds

Encoder/Decoder Layer 1 Layer 2 Layer 3
Ko 128 (tanh) 64 (tanh) 2 (linear)
oy 128 (tanh) 64 (tanh) 2 (softplus)
Ky 64 (linear) 128 (linear) 784 (linear)
o’ 64 (linear) 128 (linear) 784 (softplus)

We trained the network for 200 epochs using ADAM with a learning rate of 10~3. The resulting latent codes were used to
construct the Aggregated Posterior Metric, with p = 0.001, such that the measure far from the data is 1000. The small
variances cause high curvature, which makes the integration tasks challenging and geodesic computations slow. To fit the
LAND, we used 250 subsampled points to lower the amount of time spent on BVPS. In contrast, the GMM was fitted on the
whole 5,504 points. Note that Fig. 9 shows this training data.

A.4.3. ADK

We obtained protein trajectory data of adenylate kinase from

https://www.mdanalysis.org/MDAnalysisData/adk_transitions.html#
adk-dims-transitions—ensemble-dataset

(Seyler et al., 2015). We use the DIMS variant, a dataset which comprises 200 trajectories and select a subset consisting of
the trajectories 160 — 200, which contain in total 2,038 data points. To model the assumed high curvature of the trajectory
space, we choose the kernel metric with o = 0.035 and p = 107°. To visualize spatial protein structure, we used the
software VMD (Humphrey et al., 1996) with the “new cartoon” representation, colored according to “residue type”.

According to Seyler et al. (2015), “AdK’s closed/open transition [..] is a standard test case that captures general, essential
features of conformational changes in proteins”. This well-studies transition involves the movement of the LID and NMP
domains against the rather stable core domain. As a consequence, it can be described by two angles 67 ;p and O prp. In
Fig. 11, it is visible how the LID opens to the top, whereas the NMP domain moves towards the bottom right (from this
particular perspective).

A.4.4. General Methodology
For the aforementioned manifolds we fitted the LAND mixture model with a pre-determined component number K.

As the ground truth, we obtained S' = 40,000 MC samples on each integration problem. Since obtaining a large number of
exponential maps is computationally extremely expensive, we subsampled from this pool of ground truth samples when MC
samples were required in the experiments, instead of running MC again. For example, in the “error vs. runtime” experiment,
we calculated the mean MC runtime per sample from the ground truth pool of this particular problem and then subsampled as
many samples as the given runtime limit affords. For the boxplot experiments, we averaged the MC runtimes over the whole
LAND fit and always obtained the same number of samples per integration. Note that the MC runtime practically corresponds
to the runtime of the exponential maps, since the overhead is minimal.

All experiments were run in a cloud setting on 8 virtual CPUs. We restricted the core usage of BLAS linear algebra
subroutines to a single core, so as not to create interference between multiple processes.
A.4.5. Manifold and Optimization Hyperparameters

In Table 2, we report the relevant hyperparameters for the metrics (o, p), which were used to construct the manifolds, and
those optimization parameters which are not equal across all problems.

Bayesian Quadrature on Riemannian Data Manifolds

Parameter =~ CIRCLE CIRCLE 3D CIRCLE 4D CIRCLE 5D MNIST ADK CURLY 2-CIRCLES
o 0.1 0.25 0.25 0.25 - 0.035 0.2 0.15
p 0.001 0.01 0.0316 0.063 0.001 0.00001 0.01 0.01
K 2 2 2 2 3 1 1 3
tmax 7 4 4 4 7 7 7 7
a}L 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3
€V, 0.01 0.01 0.01 0.01 0.015 0.01 0.01 0.01
integrations 67 39 40 34 105 36 33 111

Table 2. Manifold and LAND optimization hyperparameters and resulting number of integrations.

A.4.6. Boxplot Experiments (Fig. 5, Fig. 13)

These experiment were conducted on whole LAND fits, with 16 independent runs for each of the 3 BQ methods. From
Table 2, we can easily calculate the total number of runs as 48 - (67 + 39 + 40 4+ 34 4+ 105 + 36 + 33 + 111) = 22,320.

A.4.7. Error vs. Runtime Experiments (Fig. 7, Fig. 15)

We evenly space 30 runtime limits between 5 and 65 seconds using np . linspace (5., 65., 30). For each of these
runtime limits, we let each BQ method run 30 times. BQ will stop collecting more samples as soon as the runtime limit is
reached. After this, however, it will take some more time to finalize, as an ongoing computation is not interrupted. We then
record the actually resulting runtimes and average over the 30 runs. These averages are then used for the x-axes of the plots,
whereas the mean relative error is on the y-axes. In total, each BQ method thus has 900 runs on each problem. The 8 plots, 4
in the main paper and 4 in the supplementary, contain 3 - 900 - 8 = 21,600 runs. Together with the boxplot experiments, we
obtain 21,600 + 22, = 43,920 BQ runs, that is, 14,640 for each of the 3 methods.

In Fig. 7(c), we removed 4 extreme DCV outliers, where seemingly the GP “broke”. This amounts to %600 = 0.01852% of
the BQ runs in the 8 plots.

Bayesian Quadrature on Riemannian Data Manifolds

Algorithm 2 LAND updatey, on the symmetric positive definite manifold S

Input: Covariance):’,;, mean p;,, max. linesearch iterations ¢4, 5, last stepsize o, initial stepsize o1 = 1.0,
sufficient decrease factor ¢y = 0.5, contraction factor ¢; = 0.5
Output: Z?’l, ay, (for reuse)

{define the exp. map on the S; manifold, where X is an SPD matrix and = is a tangent vector, i.e., a symmetric matrix }
Function Expy, (2):

1 1 1 1 . .
return X2 exp (X_EEX_E) X2, where exp denotes the matrix exponential.

EndFunction

{define the norm of a vector = in the tangent space of X € S}

Function (|| - [|l5) (Z):
X« LLT {cholesky decomposition}
return |[L~'ZL7 T,

EndFunction

for : = 1 to 2 {outer gradient descent loop} do
Compute (or retrieve from cache) £(X})
Compute (or retrieve from cache) Euclidean gradient sz L(3}) using Eq. (25)
Obtain manifold gradient: g := Vgt g, = %}:2 (sz + VI%) !
if o, is None or o« = 0O then
Q< ”&
gll
end if
T EXp;':_Z (—ax - g)
Compute C (g, Zh)
Evaluate LAND objective £(X} ")
{Linesearch subroutine}
J+1
while £(Z1) > L(Zh) —co - oy - ||g]|? and j < tpa0 5 do
{while no sufficient decrease, contract}
Qf < Q- C1
ZZ‘H — Exp;Z (—ak - g)
Compute Cy (py,, Z4)
Evaluate LAND objective £(X5)
j<J+1
end while
if L(XiT) > £(X}) then
o < 0
end if
if j = 2 then
ay = 1.3 - oy, {optimism}
end if
t+—t+1
end for

