A. Explanation of metrics / Hyperparameters

In this section, we explain the computation of our met-
rics used to characterize computation and parallelism (max
speedup and new ops per task (%) and we detail the hyper-
parameters used for searching/final fine-tuning.

A.1. Metrics explanations

In Table 1 and Table 3, we report the new operations per
task, total operations, and max speedup. In this subsection,
we detail the computation equations of these two metrics.

New operations per task We first compute the new op-
erations (FLOPs or Floating-point operations) introduced
by the sub-task based on the searched result and weight
mask. We normalize the new operations of the task s; (where
i € {1,...,N}) using the total number of operations required
for a single BERT arGE/BaSE as Eq. (10):

ops(s;)
ops(BERT ARGE)

This percentage opsg, indicates that you only need extra
opsg, new operations compared to the operations of an entire
transformer (100%) when adding the sub-task to your multi-
task system.

x 100%

opsq,(si) = (10)

New operations per task (%) reported in Table 1 and Table
3 is the average of opsq, for each GLUE sub-task:
YV opsq(si)

new_ops_per_task(%) = N (11)

Total operations (%) For LeTS, total operations include
the extra operations from the nine tasks and the overhead
operations from computing pretrained weight and input:

YN ops(s;) + overhead
Total ops(%) = ==
otal-ops(%) ops(BERT)

x 100% (12)
For example, the total operations of the traditional
fine-tuning method will be 9x (nine GLUE tasks) of
the operation of BERT arge (100% x9=900%) and the
overhead/ops(BERT argEg) is 0%. For freezing bottom-
12 layers (Sec.4.1), the new operations per task are 50%
and the overhead/ops(BERT| srGE) is 50% !, thus the total
normalized operations would be 40% x9 + 50% = 500%.

Max speedup When the sub-tasks are independent of each
other, the user can leverage the computation reduction to
achieve speedup. Yet, in many cases, the sub-tasks are de-
pendent on each other and must be executed in order. In this
scenario, LeTS’s design space can yield fruitful speedup
as we decouple the computation of different attention lay-
ers inside each transformer. We first identify the critical

IThis overhead is to compute the top 12 layers between the
pre-trained weights and input.

== Fine-tuning == lets-G-4 = = Freeze Bot-12
3000 3000
2500 2500
2000 2000
1500 1500

1000 1000

Total Operations (%)
Total Parameters (%)

500 500

1 6 11 16 21 26 31 36 41 46 51 1 6 11 16 21 26 31 36 41 46 51
Number of sub-tasks (N) Number of sub-tasks (N)
Figure 6: Anticipated total operation (%) and total parame-

ters (%) v.s. the number of sub-tasks for BERT[ArGE.-

0

path (Hennessy & Patterson, 2011) (example computing of
max speedup for LeTS is showed in Figure 2(b) and Sec. 2
) of evaluating the 9 GLUE tasks. The max speedup in this
case would be computed as:

ops(BERT) x N
ops(critical _path)

max_speedup = (13)
Taking freezing Bot-12 as an example,
ops(s;))/ops(BERT asrge) = 50%. Thus, the critical
path would be the sum of overhead (50%) and the
computation time (50%) for each sub-task (max_speedup =
900%/500% = 1.8 %).

Note that both the freezing Bot-12 and original fine-tuning
architecture are included in our search space. Yet, the fine-
tuning approach is computationally inefficient, and freezing
Bot-12 sacrifices the task performance a lot. LeTS pushes
the Pareto frontier between task performance and computa-
tion reduction when multiple tasks co-exist.

A.2. Hyperparameters and Training Overheads

Final Fine-tuning Hyperparameters. Table 4 shows the
hyperparameters for training our final searched model on
GLUE tasks. For final testing, we select the model that
achieves the best validation (dev set) result. We use two
learning rate schedulers for the bias term in the transformer
and all other parameters (including the aggregation linear
and Bi-LSTM layers).

Another thing worth mention is that the max input length (1,,,)
in our evaluation is set to 128 to match previous baselines.
With larger /,, (e.g., 512), the computation overhead of the
aggregation layers / pretrained layers and input computation
would take less portion to the overall computation cost. The
computation reduction of LeTS will also be more explicit.
That is because the computation complexity of a transformer
is proportional to the input length 7 (9(12)).

Temperature scheduling and searching setup. During
the search, the initial temperature 7 in Eq. 14 is set to 4.0
and exponentially annealed by exp(—0.065) ~ 0.936 for
every % epoch. We use an early stop mechanism that ter-
minates the searching phase when the selected model does

not change for % epochs. Because the model parameters
start from pretrained BERT, the searching phase converges
much faster than traditional DNAS. For the loss function
in Sec.3, E,p; is represented in billion operations. We set
o to 0.5 and B to 0.5. The learning rate of a is initialized
to Se — 4 which is updated using an Adam optimizer (de-
fault optimizer settings in huggingface (Wolf et al., 2020)).
The learning rate for W7 is 2¢ — 5 for all tasks. We do not
use another optimizer for the bias parameters in the search
phase.

Training Time. For all tasks, we set the final fine-tuning
to 7-10 epochs, which is larger than the original fine-tuning
(~ 1.5-2.5x longer fine-tuning time). This is because the
additional Bi-LSTM takes more time to converge.

GPU memory overhead. LeTS does not explicitly re-
quire more memory during final fine-tuning (1.2x than the
traditional fine-tuning) as the pre-trained parameters are
frozen (no gradient consumption) and the pruning mask is
generated ahead of fine-tuning. For DiffPruning, the prun-
ing mask is searched during fine-tuning. As such, it takes
more GPU memory consumption (~ 2x) than traditional
fine-tuning approach.

B. Gumbel Softmax and Second-order
approximation

Gumbel Softmax. The architecture parameters discussed
in Sec.3.2 will be converted to a probability vector using
Gumbel Softmax equations which controlled by a tempera-
ture parameter 7. Specifically, the architecture parameters
a;; associate with the ith selector in jth layer are computed
as Eq. (14).

exp((aiji + 8ij)/T))
Yrexp((aiji +8ije)/T))
Here, g;j; ~ Gumbel(0, 1) is a random noise following the
Gumbel distribution. The output is a probability vector Fy,;
@2 x1).

Pllij = Gumbel(a,-jt|aij) = (14)

Second-order approximation equations. As discussed
in Sec.3.2, we iteratively update weight and architecture
parameters of the super network (a and W%). The gradient
of weight parameters (denote W' as W in appendix for
simplicity) are updated using traditional gradient descent.
And the gradient of architecture parameters (a) is computed
through a second-order approximation. Specifically, we
split the training dataset into two parts (D1 takes 80%, D2
takes 20%). The gradient of the architecture parameters can
be approximated as Eq. (15):

Vaﬁ(Wa,a)%Vaﬁpg(W—’g'Vwﬁm(W,a),a) (15)

Here, W, is the final pre-trained model given architecture
parameter a. The Lh.s of Eq. (15) means we need to fine-
tuning the entire model before training a for only one step.

To reduce the search cost, the idea of differentiable NAS
(DNAS) is to approximate the final W, by adapting W using
only a single training step (Liu et al., 2019). To prevent the
searched model from over-fitting to the training dataset, we
split the training datasets (D1, D2) to update weight and
architecture parameters, respectively. The r.h.s of Eq. (15)
can be expanded into Eq. (16) as:

Valpa(W,a) —EVEwLpi(W,a) Vi Lpa(Wa) (16)

where W =W — EVy Lp1(W,a). The second term can be
computed through a finite difference approximation. As-
sume € is a small scalar and W+ =W + eV Lpa(W' a).
Then:

Vﬁ,WLDl (W,a)VW/LDz(W',a) ~
Valpi(Wh,a)—VeLpi (W ,a (7
2¢e

In summary, during the architecture parameter update, we
first compute the V,Lpi(wh, a)/V,Lpi(w™,a) through
two forward and backward passes and approximate the sec-
ond term in Eq. (16) using Eq. (17). Due to the small size
of a in the super network, the second-order approximation
is feasible and is more accurate than gradient descent (i.e.,
when & = 0).

C. Ablation study of gradient-accumulation
initialization

Task-specific initialization and sparsity. For the initial-
ization of W9 in Delta-Pruning (Sec.3.1), we show that
using an accumulate gradients method to initialize W can
represent the final fine-tuned W®. We visualize the weight
mask ¢ generated from final W¢ (computed from fully fine-
tuned W/ and W? by W8 = W/ — W) and gradient accumu-
lation W9 (Nsteps=100) for selected tasks with the sparsity
ratio k=0.5% as shown in Figure 8.

We also conduct an ablation study by replacing the gradient
accumulation initialization with random initialization to
generated mask c¢ (visualized in Figure 8). The mask ¢
generated from randomly initialized W3 is very distinct
from the mask generated from final W?9.

D. Detailed Delta-pruning algorithm.

Due to the space limitation of the paper, we put the summary
of Delta-pruning algorithm (Sec. 3.1) here as shown in
Algorithm 2.

References

Hennessy, J. L. and Patterson, D. A. Computer architecture:
a quantitative approach. Elsevier, 2011.

Table 4: Hyperparameters for final fine-tuning. We use the default learning rate scheduler in transformer ((Vaswani et al.,
2017)) on the two learning rate.

QNLI SST-2 MNLI CoLA MRPC STS-B RTE QQP

Epochs 7 7 7 10 10 10 10 7
Batch size 16 16 16 16 16 16 16 16
Learning Rate (bias terms) Se-4 Se-4 Se-4 le-3 le-3 le-3 le-3 Se-4
Learning Rate (other parameters) 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 25
‘Warm-up steps 1986 1256 7432 420 350 720 350 28318

Algorithm 2 Delta-pruning

input Pre-trained parameter W7, offset parameter W5, the
desired W? sparsity constraint £, training dataset D
output Mask ¢
1: Warn up fine-tuning W for 100 epochs and get w/
2. W9 <—Wf—Wp,C(— 14
3: Set trainable mask and perform one mini-batch training
to get AL(W/;D) (Eq. (3) in the paper).
4: foriin {1...d} do
__ lge(W/ D)
5 score s, = m
6: end for
7: Descending sort all the score s.
8: foriin {1...d} do
9: ci<—]l[si—s~;<§0]
0: end for

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differ-
entiable architecture search. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1eYHoC5FX.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P, Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

STS-2 Layer = 12
K

c— W?

100200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 500 600 700

100 200 300 400 SO0 ROD 700

100

—~0
c— W random

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

Figure 7: Visualization of weight mask generated using (1) final W¢ computed from W/ — WP and (2) W¥ initialized using
the gradient accumulation for 100 steps (the method used in Delta-Pruning) (3) W9 initialized randomly. We show the
weight mask ¢ of Wa/W"/W* in the middle (12th) layer of BERT srge on SST-2. Yellow pixels indicate the unmasked
parameters.

MRPC Layer =12
K

~5
c— W

~5
c— W randoml’

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 1000200 300400 300600 700

Figure 8: Visualization of weight mask generated from MRPC task using (1) final W3 and (2) W9 initialized using the
gradient accumulation for 100 steps (the method used in Delta-Pruning) (3) W initialized randomly.

