
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

A. Explanation of metrics / Hyperparameters
In this section, we explain the computation of our met-
rics used to characterize computation and parallelism (max
speedup and new ops per task (%) and we detail the hyper-
parameters used for searching/final fine-tuning.

A.1. Metrics explanations

In Table 1 and Table 3, we report the new operations per
task, total operations, and max speedup. In this subsection,
we detail the computation equations of these two metrics.

New operations per task We first compute the new op-
erations (FLOPs or Floating-point operations) introduced
by the sub-task based on the searched result and weight
mask. We normalize the new operations of the task si (where
i ∈ {1, ...,N}) using the total number of operations required
for a single BERTLARGE/BASE as Eq. (10):

ops%(si) =
ops(si)

ops(BERTLARGE)
×100% (10)

This percentage ops% indicates that you only need extra
ops% new operations compared to the operations of an entire
transformer (100%) when adding the sub-task to your multi-
task system.

New operations per task (%) reported in Table 1 and Table
3 is the average of ops% for each GLUE sub-task:

new ops per task(%) =
∑

N
i ops%(si)

N
(11)

Total operations (%) For LeTS, total operations include
the extra operations from the nine tasks and the overhead
operations from computing pretrained weight and input:

Total ops(%) =
∑

N
i ops(si)+overhead

ops(BERT)
×100% (12)

For example, the total operations of the traditional
fine-tuning method will be 9× (nine GLUE tasks) of
the operation of BERTLARGE (100%×9=900%) and the
overhead/ops(BERTLARGE) is 0%. For freezing bottom-
12 layers (Sec.4.1), the new operations per task are 50%
and the overhead/ops(BERTLARGE) is 50% 1, thus the total
normalized operations would be 40%×9 + 50% = 500%.

Max speedup When the sub-tasks are independent of each
other, the user can leverage the computation reduction to
achieve speedup. Yet, in many cases, the sub-tasks are de-
pendent on each other and must be executed in order. In this
scenario, LeTS’s design space can yield fruitful speedup
as we decouple the computation of different attention lay-
ers inside each transformer. We first identify the critical

1This overhead is to compute the top 12 layers between the
pre-trained weights and input.

Figure 6: Anticipated total operation (%) and total parame-
ters (%) v.s. the number of sub-tasks for BERTLARGE.

path (Hennessy & Patterson, 2011) (example computing of
max speedup for LeTS is showed in Figure 2(b) and Sec. 2
) of evaluating the 9 GLUE tasks. The max speedup in this
case would be computed as:

max speedup =
ops(BERT)×N

ops(critical path)
(13)

Taking freezing Bot-12 as an example,
ops(si)/ops(BERTLARGE) = 50%. Thus, the critical
path would be the sum of overhead (50%) and the
computation time (50%) for each sub-task (max speedup =
900%/500% = 1.8×).

Note that both the freezing Bot-12 and original fine-tuning
architecture are included in our search space. Yet, the fine-
tuning approach is computationally inefficient, and freezing
Bot-12 sacrifices the task performance a lot. LeTS pushes
the Pareto frontier between task performance and computa-
tion reduction when multiple tasks co-exist.

A.2. Hyperparameters and Training Overheads

Final Fine-tuning Hyperparameters. Table 4 shows the
hyperparameters for training our final searched model on
GLUE tasks. For final testing, we select the model that
achieves the best validation (dev set) result. We use two
learning rate schedulers for the bias term in the transformer
and all other parameters (including the aggregation linear
and Bi-LSTM layers).

Another thing worth mention is that the max input length (lm)
in our evaluation is set to 128 to match previous baselines.
With larger lm (e.g., 512), the computation overhead of the
aggregation layers / pretrained layers and input computation
would take less portion to the overall computation cost. The
computation reduction of LeTS will also be more explicit.
That is because the computation complexity of a transformer
is proportional to the input length l (O(l2)).

Temperature scheduling and searching setup. During
the search, the initial temperature T in Eq. 14 is set to 4.0
and exponentially annealed by exp(−0.065) ≈ 0.936 for
every 1

10 epoch. We use an early stop mechanism that ter-
minates the searching phase when the selected model does

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

not change for 3
10 epochs. Because the model parameters

start from pretrained BERT, the searching phase converges
much faster than traditional DNAS. For the loss function
in Sec.3, Eops is represented in billion operations. We set
α to 0.5 and β to 0.5. The learning rate of a is initialized
to 5e− 4 which is updated using an Adam optimizer (de-
fault optimizer settings in huggingface (Wolf et al., 2020)).
The learning rate for W τ is 2e−5 for all tasks. We do not
use another optimizer for the bias parameters in the search
phase.

Training Time. For all tasks, we set the final fine-tuning
to 7-10 epochs, which is larger than the original fine-tuning
(∼ 1.5-2.5× longer fine-tuning time). This is because the
additional Bi-LSTM takes more time to converge.

GPU memory overhead. LeTS does not explicitly re-
quire more memory during final fine-tuning (1.2× than the
traditional fine-tuning) as the pre-trained parameters are
frozen (no gradient consumption) and the pruning mask is
generated ahead of fine-tuning. For DiffPruning, the prun-
ing mask is searched during fine-tuning. As such, it takes
more GPU memory consumption (∼ 2×) than traditional
fine-tuning approach.

B. Gumbel Softmax and Second-order
approximation

Gumbel Softmax. The architecture parameters discussed
in Sec.3.2 will be converted to a probability vector using
Gumbel Softmax equations which controlled by a tempera-
ture parameter T . Specifically, the architecture parameters
ai j associate with the ith selector in jth layer are computed
as Eq. (14).

Pai j = Gumbel(ai jt |ai j) =
exp((ai jt +gi jt)/T))

∑t exp((ai jt +gi jt)/T))
(14)

Here, gi jt ∼ Gumbel(0,1) is a random noise following the
Gumbel distribution. The output is a probability vector Pai j

(2×1).

Second-order approximation equations. As discussed
in Sec.3.2, we iteratively update weight and architecture
parameters of the super network (a and W τ). The gradient
of weight parameters (denote W τ as W in appendix for
simplicity) are updated using traditional gradient descent.
And the gradient of architecture parameters (a) is computed
through a second-order approximation. Specifically, we
split the training dataset into two parts (D1 takes 80%, D2
takes 20%). The gradient of the architecture parameters can
be approximated as Eq. (15):

∇aL(Wa,a)≈ ∇αLD2(W −ξ ∇WLD1(W,a),a) (15)

Here, Wa is the final pre-trained model given architecture
parameter a. The l.h.s of Eq. (15) means we need to fine-
tuning the entire model before training a for only one step.

To reduce the search cost, the idea of differentiable NAS
(DNAS) is to approximate the final Wa by adapting W using
only a single training step (Liu et al., 2019). To prevent the
searched model from over-fitting to the training dataset, we
split the training datasets (D1, D2) to update weight and
architecture parameters, respectively. The r.h.s of Eq. (15)
can be expanded into Eq. (16) as:

∇aLD2(W ′,a)−ξ ∇
2
a,WLD1(W,a)∇W ′LD2(W ′,a) (16)

where W ′ =W −ξ ∇WLD1(W,a). The second term can be
computed through a finite difference approximation. As-
sume ε is a small scalar and W± = W ± ε∇W ′LD2(W ′,a).
Then:

∇
2
a,WLD1(W,a)∇W ′LD2(W ′,a)≈

∇αLD1(W+,a)−∇αLD1(W−,a)
2ε

(17)

In summary, during the architecture parameter update, we
first compute the ∇aLD1(w+,α)/∇aLD1(w−,α) through
two forward and backward passes and approximate the sec-
ond term in Eq. (16) using Eq. (17). Due to the small size
of a in the super network, the second-order approximation
is feasible and is more accurate than gradient descent (i.e.,
when ξ = 0).

C. Ablation study of gradient-accumulation
initialization

Task-specific initialization and sparsity. For the initial-
ization of W δ in Delta-Pruning (Sec.3.1), we show that
using an accumulate gradients method to initialize W̃ δ can
represent the final fine-tuned W δ . We visualize the weight
mask c generated from final W δ (computed from fully fine-
tuned W f and W p by W δ =W f −W p) and gradient accumu-
lation W̃ δ (Nsteps=100) for selected tasks with the sparsity
ratio k=0.5% as shown in Figure 8.

We also conduct an ablation study by replacing the gradient
accumulation initialization with random initialization to
generated mask c (visualized in Figure 8). The mask c
generated from randomly initialized W̃ δ is very distinct
from the mask generated from final W δ .

D. Detailed Delta-pruning algorithm.
Due to the space limitation of the paper, we put the summary
of Delta-pruning algorithm (Sec. 3.1) here as shown in
Algorithm 2.

References
Hennessy, J. L. and Patterson, D. A. Computer architecture:

a quantitative approach. Elsevier, 2011.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Table 4: Hyperparameters for final fine-tuning. We use the default learning rate scheduler in transformer ((Vaswani et al.,
2017)) on the two learning rate.

QNLI SST-2 MNLI CoLA MRPC STS-B RTE QQP
Epochs 7 7 7 10 10 10 10 7

Batch size 16 16 16 16 16 16 16 16
Learning Rate (bias terms) 5e-4 5e-4 5e-4 1e-3 1e-3 1e-3 1e-3 5e-4

Learning Rate (other parameters) 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Warm-up steps 1986 1256 7432 420 350 720 350 28318

Algorithm 2 Delta-pruning

input Pre-trained parameter W p, offset parameter W δ , the
desired W δ sparsity constraint k, training dataset D

output Mask c
1: Warn up fine-tuning W p for 100 epochs and get W̃ f

2: W̃ δ ← W̃ f −W p, c← 1d

3: Set trainable mask and perform one mini-batch training
to get ∆L(W̃ f ;D) (Eq. (3) in the paper).

4: for i in {1...d} do
5: score se =

|ge(W̃ f ;D)|
∑

d
k=1 |gk(W̃ f ;D)|

6: end for
7: Descending sort all the score s.
8: for i in {1...d} do
9: ci← 1[si− s̃k ≤ 0]

10: end for

Liu, H., Simonyan, K., and Yang, Y. DARTS: Differ-
entiable architecture search. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1eYHoC5FX.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2020.

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Figure 7: Visualization of weight mask generated using (1) final W δ computed from W f −W p and (2) W̃ δ initialized using
the gradient accumulation for 100 steps (the method used in Delta-Pruning) (3) W̃ δ initialized randomly. We show the
weight mask c of W q/W v/W k in the middle (12th) layer of BERTLARGE on SST-2. Yellow pixels indicate the unmasked
parameters.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Figure 8: Visualization of weight mask generated from MRPC task using (1) final W δ and (2) W̃ δ initialized using the
gradient accumulation for 100 steps (the method used in Delta-Pruning) (3) W̃ δ initialized randomly.

