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Abstract
Quantization is promising in enabling powerful
yet complex deep neural networks (DNNs) to
be deployed into resource constrained platforms.
However, quantized DNNs are vulnerable to ad-
versarial attacks unless being equipped with so-
phisticated techniques, leading to a dilemma of
struggling between DNNs’ efficiency and robust-
ness. In this work, we demonstrate a new per-
spective regarding quantization’s role in DNNs’
robustness, advocating that quantization can be
leveraged to largely boost DNNs’ robustness, and
propose a framework dubbed Double-Win Quant
that can boost the robustness of quantized DNNs
over their full precision counterparts by a large
margin. Specifically, we for the first time iden-
tify that when an adversarially trained model is
quantized to different precisions in a post-training
manner, the associated adversarial attacks transfer
poorly between different precisions. Leveraging
this intriguing observation, we further develop
Double-Win Quant integrating random precision
inference and training to further reduce and uti-
lize the poor adversarial transferability, enabling
an aggressive “win-win” in terms of DNNs’ ro-
bustness and efficiency. Extensive experiments
and ablation studies consistently validate Double-
Win Quant’s effectiveness and advantages over
state-of-the-art (SOTA) adversarial training meth-
ods across various attacks/models/datasets. Our
codes are available at: https://github.com/RICE-
EIC/Double-Win-Quant.

1. Introduction
Recent DNN breakthroughs and the advent of Internet of
Things (IoT) devices have triggered an explosive demand
for DNN-powered intelligent IoT devices (Liu et al., 2018;
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Wu et al., 2018). However, DNNs’ deployments into IoT
devices still remain challenging. First, powerful DNNs often
come at a prohibitive cost, whereas IoT devices often suffer
from stringent resource constraints. Second, while DNNs
are vulnerable to adversarial attacks, many IoT applications
require strict security. Therefore, techniques boosting both
DNNs’ efficiency and robustness are highly desired.

As quantization is one of the most promising techniques
for developing efficient DNNs and generally applicable to
a variety of algorithms, the robustness of quantized DNNs
has gained increasing attentions. It was originally believed
that quantization’s rounding effect may help eliminate small
adversarial perturbations, and early works (Galloway et al.,
2017; Panda et al., 2019) indeed showed that binary net-
works (Galloway et al., 2017; Panda et al., 2019) or tanh-
based quantized DNNs (Rakin et al., 2018) are even more
robust than their full precision counterparts. Later, (Gupta &
Ajanthan, 2020; Lin et al., 2019) found that these methods
actually suffer from the obfuscated gradient problem (Atha-
lye et al., 2018; Papernot et al., 2017), leading to a false
sense of robustness. (Lin et al., 2019) further raised the
community’s awareness about quantized DNNs’ inferior
robustness, and identified that the main cause is the error
amplification effect, i.e., the magnitude of adversarial per-
turbations is amplified when passing through DNN layers.
Recently, pioneering works (Lin et al., 2019; Song et al.,
2020; Shkolnik et al., 2020) tried to compress this amplifi-
cation effect for achieving both robust and efficient DNNs.

In this work, we ask an intriguing question: “Can quantiza-
tion be properly leveraged to boost DNNs’ robustness?” This
is inspired by the recent findings that (1) random smoothing
or transformations on the inputs (Cohen et al., 2019; Li et al.,
2018; Xie et al., 2017; Guo et al., 2017) can defend DNNs
against adversarial attacks, and (2) weight perturbations
are a good complement for input perturbations (Wu et al.,
2020), because they can narrow the robust generalization
gap as the weights can globally influence the losses of all
examples. We conjecture that quantization noise can be
leveraged to provide similar effects as perturbations to the
weights and activations. Specifically, we make the following
contributions:

• We provide a new perspective regarding the role of
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quantization in DNNs’ robustness, and advocate that
quantization, if properly exploited, can even enhance
DNNs’ robustness by a notable margin over their full-
precision counterparts, instead of merely improving
the robustness of quantized models.

• We are the first to identify that even if an adversarially
trained model is directly quantized to a different preci-
sion in a post-training manner, the adversarial attacks
still transfer poorly between different precisions, i.e.,
adversarial attacks generated with one precision usu-
ally achieve a lower success rate when attacking the
same model quantized to other precisions.

• We propose a simple yet surprisingly effective frame-
work dubbed Double-Win Quant, which integrates Ran-
dom Precision Inference (RPI) and Random Precision
Training (RPT) to achieve an aggressive “win-win” in
terms of DNNs’ robustness and efficiency. Specifi-
cally, RPI randomly selects an inference precision as
a random perturbation at run-time for an adversarially
trained model, while RPT adopts switchable batch nor-
malization in training to further reduce the poor adver-
sarial transferability and thus boost DNNs’ achievable
robustness.

• Extensive experiments and ablation studies show that
our method is generally effective as evaluated across
four commonly used adversarial training methods, four
DNN models, and three datasets, e.g., achieving a
12.14% higher robust accuracy under PGD-20 attack
with a 88.9% reduction in computational cost when us-
ing PGD-7 training for WideResNet32 on CIFAR-10.
Furthermore, our method shows even larger improve-
ments under more aggressive perturbations.

2. Related Works and Background
DNN quantization. Quantization has become one main-
stream technique for developing efficient DNNs by repre-
senting weights/activations/gradients using lower floating-
point precision (Wang et al., 2018; Sun et al., 2019) or fixed-
point precision (Zhu et al., 2016; Li et al., 2016; Jacob et al.,
2018; Mishra & Marr, 2017; Mishra et al., 2017; Park et al.,
2017; Zhou et al., 2016). In particular, (Jacob et al., 2018)
proposes quantization-aware training to learn the weight
distribution for minimizing the accuracy degradation after
quantization. Later, learnable quantizers (Jung et al., 2019;
Bhalgat et al., 2020; Esser et al., 2019; Park & Yoo, 2020)
featuring trainable quantization parameters further improve
the accuracy of quantized DNNs under very low precision.
In parallel, mixed-precision quantization methods (Wang
et al., 2019; Xu et al., 2018; Elthakeb et al., 2020; Zhou
et al., 2017) are proposed to assign different precisions to
different layers. However, quantized DNNs have been found
to be more vulnerable to adversarial attacks due to DNNs’
error amplification effect (Lin et al., 2019). It is thus highly

desirable to develop quantization techniques that can favor
both DNNs’ efficiency and robustness.

Adversarial attack & defense. DNNs are known to be vul-
nerable to adversarial attacks (Goodfellow et al., 2014), i.e.,
small perturbations on the inputs can mislead the models’
decisions. To enhance DNNs’ robustness, many defense
methods (Guo et al., 2017; Buckman et al., 2018; Song
et al., 2017; Xu et al., 2017; Liao et al., 2018; Metzen et al.,
2017; Feinman et al., 2017; Li et al., 2018; Wu et al., 2020)
have also been proposed, while many of them have been
defeated later by stronger attacks. In particular, adversarial
training (Shafahi et al., 2019; Madry et al., 2017; Wong
et al., 2019; Tramèr et al., 2017) is currently the most effec-
tive defense method. Specifically, it augments the training
set with adversarial samples generated by different attacks,
thus enabling the models to correctly classify similar un-
seen adversarial samples. Examples of adversarial training
methods can be found in Sec. 3.1. In this work, we rethink
the role of quantization in DNNs’ robustness and leverage
it to enhance DNNs’ robustness by a notable margin over
their full-precision counterparts.

Robust and efficient DNNs. Efficiency and robustness are
both critical for most DNN applications, and there have been
pioneering works that aim to achieve both. For example, (Ye
et al., 2019; Sehwag et al., 2020; Guo et al., 2018; Rakin
et al., 2019) prune DNNs to derive sub-networks that can
maintain or improve the robustness, and (Hu et al., 2020)
balances both robustness and efficiency via input-adaptive
inference. In parallel, as quantization is promising in en-
hancing the efficiency, other works strive to design robust
quantized DNNs. Specifically, (Galloway et al., 2017; Panda
et al., 2019) propose robust binary neural networks which,
however, suffer from the obfuscated gradient problem (Atha-
lye et al., 2018; Papernot et al., 2017). (Rakin et al., 2018)
adopts tanh-based quantization, which also suffers from the
obfuscated gradient problem as observed in (Lin et al., 2019).
Later, (Lin et al., 2019) finds that quantized networks are
more vulnerable to adversarial attacks due to the error ampli-
fication effect. To tackle this effect, (Lin et al., 2019; Shkol-
nik et al., 2020) add new regularization terms to model loss
functions and (Song et al., 2020) retrains the network via
feedback learning (Song et al., 2019). In addition, (Panda,
2020) searches for layerwise precision and (Gui et al., 2019)
constructs a unified formulation to balance and enforce the
robustness and compactness, respectively. However, exist-
ing works have not considered leveraging quantization to
enhance robustness. Our Double-Win Quant for the first
time makes use of quantization to boost DNNs’ robustness,
largely surpassing the full-precision counterparts.

Transferability of adversarial examples among quan-
tized DNNs. The transferability of adversarial examples
between quantized models with different precision has been
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studied by (Bernhard et al., 2019; Gupta & Ajanthan, 2020).
In particular, (Gupta & Ajanthan, 2020) finds that quantized
models are generally robust to adversarial samples gener-
ated by their full precision counterparts and (Bernhard et al.,
2019) identifies the poor transferability of adversarial exam-
ples between full-precision and quantized models as well as
between quantized models with different bitwidths. Built
upon prior works, our work further makes new contribu-
tions in that (1) we find that even for the same adversarially
pretrained model, if we directly quantize it to different pre-
cisions in a post-training manner, the adversarial examples
still transfer poorly between models with different bitwidths;
and (2) we propose two simple and effective techniques (i.e.,
RPI and RPT) based on the observation in (1) to practically
win both DNNs’ robustness and efficiency.

3. The Double-Win Quant Framework
In this section, we first introduce the preliminaries of ad-
versarial training in Sec. 3.1, then present and analyze the
motivating observations of our Double-Win Quant (DWQ)
in Sec. 3.2, and finally describe DWQ’s integrated tech-
niques, i.e., RPI and RPT, in Sec. 3.3 and 3.4, respectively.

3.1. Preliminaries of Adversarial Training

DNNs are known to be vulnerable to adversarial at-
tacks (Goodfellow et al., 2014), i.e., a small perturbation
X (‖X‖ ≤ n) applied to the inputs can mislead DNNs to
make wrong predictions, where n is a scalar that limits the
perturbation’s magnitude. To enhance DNNs’ adversarial
robustness, adversarial training is currently the strongest
defense method (Athalye et al., 2018). For example, the
adversarial perturbation X under the ℓ∞ attack (Goodfellow
et al., 2014) is generated by maximizing the objective:

max
‖X ‖∞≤n

ℓ( 5\ (G + X), H) (1)

where \ denotes the weights of a DNN 5 , G and H denote
the input and the corresponding label, respectively, and ℓ is
the loss function.

Adversarial training improves the model robustness by opti-
mizing the following minimax problem:

min
\

∑
8

max
‖X ‖∞≤n

ℓ( 5\ (G8 + X), H8) (2)

Different adversarial training methods differ in how they
solve Eq. 2’s inner optimization. Specifically, the Fast Gra-
dient Sign Method (FGSM) (Goodfellow et al., 2014) uses
the sign of one-step gradient as an approximation:

X = n · B86=(∇Gℓ( 5\ (G + X), H)) (3)

Projected Gradient Decent (PGD) (Madry et al., 2017) is
a stronger variant of FGSM by iterating FGSM multiple

times with a small step size U, where the C-th iteration can
be formulated as:

XC+1 = 2;8? n {XC + U · B86=(∇XC ℓ( 5\ (G + XC ), H))} (4)

FGSM-RS (Wong et al., 2019) introduces random initializa-
tion to FGSM for increasing the adversarial diversity:

X = *=8 5 >A<(−n, n)
X = 2;8? n {X + U · B86=(∇Xℓ( 5\ (G + X), H))}

(5)

where 2;8? n denotes the clipping function that enforces its
input to the interval [−n, n].

Since the PGD attack is one of the most strongest white-
box attacks, we adopt it as our mainly considered attack for
evaluating DNNs’ adversarial robustness in this work.

3.2. DWQ: Motivating Observations

The transferability of adversarial attacks between differ-
ent compressed models has been studied (Matachana et al.,
2020; Bernhard et al., 2019; Gupta & Ajanthan, 2020). How-
ever, it is still an open question about how to leverage such
transferability to design robust DNNs against adversarial
attacks. In this work, we ask the question: “How well is the
transferability of adversarial attacks between different preci-
sions of an adversarially trained model?”, considering that
the precision of a pretrained model can be instantaneously
switched (Jin et al., 2020). We find that the adversarial
attacks transfer poorly between different precisions of an
adversarially trained model even if it is directly quantized
to different precisions in a post-training manner, regardless
of its adversarial training methods and training precisions.

Experiment settings. Here we conduct experiments to eval-
uate transferability of adversarial attacks between different
precisions of the same adversarially trained model under dif-
ferent adversarial training methods and training precisions.
We apply PGD-20 (20-step PGD (Madry et al., 2017)) at-
tacks on PreActResNet18 (following (Wong et al., 2019))
which is adversarially trained using different adversarial
training methods and training precisions using a linear quan-
tizer (Jacob et al., 2018) with training settings introduced
in Sec. 4.1. In Fig. 1, (a)∼(e) directly quantize the model to
different precisions (the same for weights and activations)
in a post-training manner for both generating adversarial
examples and inference, and (f) utilizes PGD-20 attacks
generated by different quantized models trained on clean
images, which is to emulate a black-box attack. Note that
the goal of experiments in (f) is to check if there exists the
obfuscated gradient problem (Athalye et al., 2018), instead
of exploring the transferability as in (a)∼(e).

Experiment observations. Four observations can be made:

• (1) Adversarial attacks generated with one precision
achieve a lower success rate when attacking the same
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(b) Trained with PGD-7 / 8-bit
     Avg Robust Acc: 59.2%

(c) Trained with PGD-7 / 32-bit
     Avg Robust Acc: 56.4%

(a) Trained with PGD-7 / 4-bit
     Avg Robust Acc: 58.7%

(d) Trained with FGSM / 4-bit
     Avg Robust Acc: 49.8%

(e) Trained with FGSM-RS / 4-bit
     Avg Robust Acc: 56.6%

(f) Trained with PGD-7 / 4-bit
     (Black-box) Avg Robust Acc: 78.0%

Figure 1. Visualizing the transferability of adversarial attacks between different precisions of the same adversarially trained
model, where the robust accuracy under PGD-20 attack is annotated for three adversarial training methods, three training precisions,
and six inference/attacking precisions. Specifically, experiments (a)∼(c) adopt PGD-7 training with different training precisions;
experiments (d) and (e) adopt another two adversarial training methods, i.e., FGSM (Goodfellow et al., 2014) and FGSM-RS (Wong
et al., 2019), respectively; and (f) adopts PGD-20 attacks generated by different quantized models trained on clean images, and uses the
corresponding precisions to attack the adversarially trained model using PGD-7/4-bit training, which aims to emulate a black-box attack.

adversarially trained model quantized to a different
precision especially under the commonly adopted low
precisions, which is consistent across different adver-
sarial training methods and training precisions of the
quantized model;

• (2) The average robust accuracies under white-box at-
tacks (see Fig. 1(a)∼(e)) are consistently higher than
the full-precision models trained with the correspond-
ing adversarial training methods, indicating that ran-
domly selecting an inference precision can potentially
provide effective defense. The full-precision accuracies
of PreActResNet18 trained with PGD-7/FGSM/FGSM-
RS are 51.2%/41.5%/47.1%, respectively;

• (3) The poor transferability does not come from the
obfuscated gradient problem as the model shows a
better robustness under black-box attacks than that of
white-box attacks, according to (Athalye et al., 2018);

• (4) Training and attacking at the same lower preci-
sions indeed notably degrades the robust accuracy, as
shown in the diagonals of Fig. 1(a)∼(e), aligning with
the observations in (Lin et al., 2019) due to the error
amplification effects.

Analysis and discussion. The key conclusion is that for
white-box attacks, adversarial attacks generated at one pre-
cision transfer poorly to another precision. We hypothesize

that this poor transferability is because adversarial perturba-
tions are shielded by the quantization noise between the two
precisions, which can not be effectively learned by gradient-
based attacks. Specifically, considering a linear quantizer,
the :-bit quantized value �@ for an activation � (the same
for weights) can be formulated as �@ = (: b �(: e, where

b·e is the rounding operation and (: =
�<0G−�<8=

2:−1 is the
scale factor. For vanilla quantization, the rounding effect
can be effectively learned by gradient-based attacks through
straight-through estimation (Bengio et al., 2013; Yin et al.,
2019), i.e., m!

m�
≈ m!
m�@

, where ! is the loss function. How-

ever, the quantization noise (<b �(< e − (= b
�
(=
e between two

different precisions <-bit and =-bit cannot be effectively
learned by gradient-based attacks, thus adversarial perturba-
tions can be buried within the quantization noise, leading to
attack failures.

3.3. Vanilla DWQ: Random Precision Inference

Here we introduce the vanilla DWQ which integrates RPI,
and is simple and generally applicable to different DNNs.

Methodology. Given an adversarially trained model, RPI
randomly selects one precision from an inference precision
set to quantize the model’s weights and activations during
inference. The effectiveness of RPI is rooted in two facts:
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Algorithm 1 Vanilla DWQ: The RPI Algorithm
Require: model 5\ , inference precision set (4C& , adversarial

dataset �03E generated on 5\ by adversaries
1: for G03E ∈ �03E do
2: Randomly select a precision @ from (4C&

3: Obtain 5
@

\
by quantizing 5\ to @-bit

4: Evaluate Ĥ = 5
@

\
(G03E )

return {Ĥ}

(1) a quantization-aware-trained model has relatively stable
natural accuracies (on clean images) during inference when
being directly quantized to different precisions (Jin et al.,
2020; Guerra et al., 2020; Fu et al., 2021b), thus models
resulting from RPI can maintain a natural accuracy that
is comparable with their static precision counterparts; and
(2) randomly selecting an inference precision can greatly
degrade the effectiveness of adversarial attacks as long as
the attacks are not generated under the same precision, as
consistently observed in Fig. 1 under different adversarial
training methods and training precisions. Note that although
adversaries may select precisions with better attacking suc-
cess rates and RPI can adopt sampling strategies to favor the
probability of choosing precisions that is in general more
robust. Without loss of generality, we consider that both the
adversaries and RPI adopt random precision from the same
inference precision set in this work. The RPI algorithm is
summarized in Alg. 1.

Implementation. As the execution of RPI needs to switch
among different precisions during inference, we slightly
modify the quantization scheme inspired by (Jin et al., 2020)
to ensure the ease of implementation. Specifically, we quan-
tize the weights \ to \@ = (̂: <8=(b \

(̂:
e, 2: − 1), where

(̂: =
\<0G−\<8=

2:
. As a result, the switch between different

precisions only requires clipping the most significant bits
(MSBs) via shifting as b \

(̂<
e >> (< − =) is equal to b \

(̂=
e,

where >> is the right shift operation. Therefore, only one
copy of quantized models with the highest precision needs
to be stored.

Connections with prior works. The spirit behind RPI
aligns with the recent findings in DNN perturbations and
robustness. In particular, it has been shown that random
smoothing or transformations on the inputs (Cohen et al.,
2019; Li et al., 2018; Xie et al., 2017; Guo et al., 2017) can
help robustify DNNs against adversarial attacks, and (Wu
et al., 2020) finds that weight perturbations can serve as
a good complement for input perturbations to narrow the
robust generalization gap because weights of DNNs can
globally influence the losses of all input examples. (He
et al., 2019; Dhillon et al., 2018) also explicitly introduce
randomness and perturbations in the models’ weights or
activations. Drawing inspirations from these findings, we
conjecture that the effectiveness of RPI lies in the fact that
quantization noise due to random switches between different

Algorithm 2 Enhanced DWQ: RPT with PGD-7 training
Require: Training dataset �CA08=, model 5\ , training/inference

precision set (4C& , total training epochs ) , step size U
1: Equip 5\ with SBN
2: for 4?>2ℎ ∈ [1, )] do
3: for (G, H) ∈ �CA08= do
4: Randomly select a precision @ from (4C&

5: Obtain 5
@

\
by quantizing 5\ to @-bit

6: X = 0 or random initialized
7: for C ∈ [1, 7] do
8: X = 2;8?n {X + U · B86=(∇Xℓ( 5 @\ (G + X), H))}
9: end for

10: \ = \ − ∇\ℓ( 5 @\ (G + X), H)
11: end for
12: end for

precisions naturally injects random perturbations to both the
weights and activations, which can compensate for the influ-
ence of adversarial features and thus enhance the models’
adversarial robustness.

Hardware support for RPI. SOTA adaptive-precision
accelerators like Bit Fusion (Sharma et al., 2018) and
Stripes (Judd et al., 2016) are dedicated to support dynamic
precision inference, which can naturally support the execu-
tion of RPI. More potential hardware implementations for
RPI can be found in (Camus et al., 2019).

3.4. Enhanced DWQ: Random Precision Training

As described in the above subsection, our vanilla DWQ
simply manipulates the inference precision of adversarially
trained models to boost their robustness. In this subsec-
tion, we introduce the enhanced DWQ, which can further
enhance the adversarial robustness of DNNs by aggravating
the poor transferability between different precisions via RPT
equipped with switchable batch normalization (SBN).
Motivations. (Xie et al., 2020) adopts dual BNs for the
clean and adversarial examples to boost the natural accuracy,
motivating the necessity of separately handling the statistics
of clean and adversarial inputs. In addition, (Jin et al., 2020;
Guerra et al., 2020) propose to use separate BNs for different
precisions to enable instantaneous quantization of a trained
DNN to different bits which maintain the natural accuracy as
the same DNN separately trained using the corresponding
precision. These works motivate and inspire us to come
up with our enhanced DWQ, as applying independent BNs
for different precisions to record the specific statistics of
the adversarial examples generated under each precision
can potentially enlarge the gap between different precisions,
i.e., further increase the difficulty of transferring adversarial
examples between different precisions.

Methodology. Our enhanced DWQ adversarially trains a
model from scratch via randomly selecting a precision from
a candidate set in each iteration for generating adversarial
examples and updating the model with the selected preci-
sion, while equipping the model with SBN to independently
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record the statistics of different precisions. Although there
exist other training schemes, e.g., progressive precision (Fu
et al., 2020) or dynamic precision (Fu et al., 2021a), to
be considered, we find that RPT is sufficiently effective in
largely boosting the robustness of quantized models without
increasing the training complexity as validated in Sec. 4.4.
Additionally, we visualize the adversarial transferability
achieved by the enhanced DWQ in the Appendix, from
which we can observe a notably reduced transferability over
the vanilla one.

The RPT algorithm on top of PGD-7 (Madry et al., 2017)
training is summarized in Alg. 2, of which the algorithms
for other adversarial training methods (e.g., FGSM (Good-
fellow et al., 2014) and FGSM-RS (Wong et al., 2019)) are
similar. Note that one advantage of RPI and RPT is that
they are simple and consistently work well across differ-
ent DNN models, precision sets, and adversarial training
methods, without the necessity of cherry-picking the hyper-
parameters as validated in Sec. 4.

4. Experiment Results
In this section, we first introduce the experiment setup in
Sec. 4.1 and then benchmark our DWQ with SOTA ad-
versarial training methods in Sec. 4.2. We next conduct
comprehensive ablation studies for DWQ’s integrated RPI
and RPT techniques in Sec. 4.3 and 4.4, respectively.

4.1. Experiment Setup

Networks & datasets. We evaluate our DWQ on
four networks and three datasets, i.e., PreActResNet18 (fol-
lowing (Wong et al., 2019)), WideResNet32 (follow-
ing (Madry et al., 2017; Shafahi et al., 2019)), and Mo-
bileNetV2 on CIFAR-10/100, and ResNet-50 (follow-
ing (Shafahi et al., 2019; Wong et al., 2019)) on ImageNet.

Training settings. We consider four SOTA adversarial train-
ing methods, including FGSM (Goodfellow et al., 2014),
FGSM-RS (Wong et al., 2019), PGD-7 (Madry et al., 2017),
and Free (Shafahi et al., 2019). We follow their original
papers for the adversarial training hyper-parameter settings,
i.e., we adopt a step size of 1.25n for FGSM-RS and 2
for PGD-7 training. We follow the model training settings
as (Madry et al., 2017) without resorting to other training
tricks for fairness. On CIFAR-10/100, we train the model
for 160 epochs with a batch size of 128 and an SGD op-
timizer with a momentum of 0.9, starting from an initial
learning rate of 0.1 decayed by 10 at both the 80-th and
120-th epochs. On ImageNet, we follow SOTA quantization
works on ImageNet (Jung et al., 2019; Bhalgat et al., 2020;
Esser et al., 2019; Park & Yoo, 2020) to start from a full-
precision pretrained model on clean images. In particular,
we adversarially train a full-precision pretrained ResNet-50
for 60 epochs with a batch size of 256 and an SGD optimizer

with a momentum of 0.9, starting from an initial learning
rate of 0.01 decayed by 10 at the 30-th epoch.

Attack settings. We mainly consider PGD attacks (Madry
et al., 2017) with different numbers of iterations/restarts and
perturbation strengths, and also evaluate DWQ’s general ro-
bustness under CW-L2/CW-Inf attacks (Carlini & Wagner,
2017), Auto-Attack (Croce & Hein, 2020), and a gradient-
free attack Bandits (Ilyas et al., 2018). In particular, for the
CW-L2/CW-Inf attacks we adopt the implementation in Ad-
verTorch (Ding et al., 2019) and follow the settings in (Chen
et al., 2021; Rony et al., 2019); for the Auto-Attack (Croce
& Hein, 2020) and Bandits (Ilyas et al., 2018), we adopt the
official implementation and default settings in their origi-
nal papers. We assume adversaries adopt random precision
from the same inference precision set as our DWQ with-
out losing generality since (1) any attack precision out of
DWQ’s inference precision set will merely increase DWQ’s
robust accuracy according to experiments in Sec. 3.2, and (2)
while adversaries may select precisions with better attacking
success rates, our DWQ can also increase the probability
of sampling more robust precisions for stronger defense,
here we assume both adversaries and DWQ adopt random
precision for simplicity.

Precision settings of RPI and RPT. Two precision set-
tings are involved in DWQ: (1) the training precision set
of RPT and (2) the inference precision set of RPI. With-
out cherry-picking the precision settings, we determine the
precisions for efficiency-robustness considerations. In par-
ticular, if not specifically stated, we use 4∼16-bit for train-
ing PreActResNet18 and WideResNet32, and 4∼8-bit for
training MobileNetV2, when adopting RPT, and employ the
same precision set for the corresponding inference. When
only RPI is enabled (i.e., DWQ without RPT), we adver-
sarially train the network with fixed-point 4-bit for PreAc-
tResNet18 and WideResNet32 and 8-bit for MobileNetV2
and use an inference precision set of 4∼8-bit. We validate
DWQ’s consistent benefits with different choices of infer-
ence and training precision sets in Sec. 4.3 and 4.4. In
addition, we use BitOPs (Bit OPerations) to measure the
computational cost as SOTA quantized DNN works.

4.2. DWQ: Benchmark with SOTA Methods

Benchmark with SOTA adversarial training methods.
Here we benchmark our RPI and RPT techniques with SOTA
adversarial training methods trained with full precision to
validate their superior “win-win” in terms of boosting both
model robustness and efficiency.

Results on CIFAR-10: As summarized in Tab. 1, we can
see that (1) both RPI and RPT can consistently enhance
the robust accuracy under PGD attacks of different settings,
under all the networks and adversarial training methods; (2)
DWQ (i.e., RPI + RPT) always achieves the best robust-
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Table 1. Evaluating RPI and RPT on top of two networks (PreActResNet18 and WideResNet32) and three adversarial training methods
(FGSM, FGSM-RS, and PGD-7) on CIFAR-10 in terms of both natural accuracy and robust accuracy under different PGD attacks.

PreActResNet18 WideResNet32
Adversarial

Training Method
Natural
Acc (%)

PGD-20
(%)

PGD-100
(%)

PGD-20
10 Restart (%) BitOPs Natural

Acc (%)
PGD-20

(%)
PGD-100

(%)
PGD-20

10 Restart (%) BitOPs

FGSM 67.04 41.48 41.37 41.55 569.9 G 66.76 40.78 40.55 40.74 6824.6 G
FGSM + RPI 71.44 47.46 46.43 44.50 21.2 G 68.65 46.25 45.33 43.35 253.3 G

FGSM + RPI + RPT 80.58 64.08 63.56 60.28 63.5 G 64.09 50.70 48.72 48.68 759.8 G
FGSM-RS 86.08 41.76 41.13 41.67 569.9 G 89.95 45.33 44.77 45.12 6824.6 G

FGSM-RS + RPI 82.79 52.98 52.07 49.87 21.2 G 89.17 51.49 49.80 47.17 253.3 G
FGSM-RS + RPI + RPT 82.11 59.33 59.32 55.52 63.5 G 87.87 60.07 58.12 56.98 759.8 G

PGD-7 82.02 51.17 50.93 51.30 569.9 G 85.25 54.61 54.36 54.68 6824.6 G
PGD-7 + RPI 80.17 57.09 56.06 53.83 21.2 G 84.39 59.83 58.17 56.21 253.3 G

PGD-7 + RPI + RPT 82.16 65.15 64.88 61.82 63.5 G 81.52 66.75 66.28 64.17 759.8 G

Table 2. Evaluating RPI and RPT on PreActResNet18 and WideResNet32 trained with FGSM-RS and PGD-7 on CIFAR-100.
PreActResNet18 WideResNet32

Adversarial
Training Method

Natural
Acc (%)

PGD-20
(%)

PGD-100
(%)

PGD-20
10 Restart (%) BitOPs Natural

Acc (%)
PGD-20

(%)
PGD-100

(%)
PGD-20

10 Restart (%) BitOPs

FGSM-RS 57.60 26.14 25.88 26.36 569.9 G 67.29 25.35 24.78 25.25 6824.7 G
FGSM-RS + RPI 57.91 31.71 30.83 28.57 21.2 G 66.48 32.31 30.58 28.33 253.3 G

FGSM-RS + RPI + RPT 51.09 36.75 37.18 34.19 63.5 G 64.95 39.18 38.36 36.44 759.8 G
PGD-7 56.31 27.97 27.77 28.09 569.9 G 60.36 31.06 30.86 31.24 6824.7 G

PGD-7 + RPI 56.68 33.36 32.04 29.90 21.2 G 59.78 35.57 34.97 32.83 253.3 G
PGD-7 + RPI + RPT 56.20 41.74 42.10 39.19 63.5 G 58.41 40.45 40.50 39.51 759.8 G

ness with a comparable natural accuracy, largely outper-
forming SOTA adversarial training methods with full pre-
cision. In particular, our DWQ achieves a 13.98%/12.14%
higher robust accuracy under PGD-20 attacks while reduc-
ing the computational cost by 88.9%, on PreActResNet18
and WideResNet32, respectively, when being applied on
top of PGD-7 training, which is one of the strongest adver-
sarial training methods; and (3) DWQ also enhances the
robust accuracy by 13.57%∼22.60% under PGD-20 attacks
on top of FGSM/FGSM-RS. It is noteworthy that although
FGSM adversarial training can be easily ineffective against
iteration-based attacks (Kurakin et al., 2016), our DWQ can
still significantly improve its robust accuracy by 22.6%.

Results on CIFAR-100: As shown in Tab. 2, the observa-
tions on CIFAR-100 are consistent with those on CIFAR-10,
indicating our DWQ’s scalability to more complex tasks.
In particular, DWQ integrating with RPI and RPT achieves
10.61%/13.77% and 13.83%/9.39% higher robust accuracy
on top of FGSM-RS/PGD-7 training under PGD-20 attacks
on PreActResNet18 and WideResNet32, respectively.

Table 3. Evaluating the enhanced DWQ over two SOTA adversarial
training methods (FGSM-RS (Wong et al., 2019) and Free (Shafahi
et al., 2019)) on top of ResNet-50 on ImageNet under PGD-10 and
PGD-50 attacks with n = 4, where all the baseline results are the
reported ones in the original papers.

Adversarial
Training Method

Natural Acc
(%)

PGD-10
(%)

PGD-50
(%) BitOPs

FGSM-RS 55.45 30.28 30.18 3891.2 G
FGSM-RS + RPI + RPT 63.21 37.93 37.12 433.2 G

Improvement +7.76 +7.65 +6.94 -88.9%
Free 60.21 32.77 31.88 3891.2 G

Free + RPI + RPT 64.58 42.88 42.72 433.2 G
Improvement +4.37 +10.11 +10.84 -88.9%

Results on ImageNet: As shown in Tab. 3, we can observe
that our enhanced DWQ achieves a triple-win in terms of
the natural accuracy, robust accuracy, and model efficiency

on top of both adversarial training methods. In particular,
the enhanced DWQ achieves a 7.65%/10.11% higher accu-
racy over FGSM-RS (Wong et al., 2019) and Free (Shafahi
et al., 2019), respectively, under the PGD-10 attack, while
offering a 88.9% reduction in the computational cost. This
set of experiments further indicates our DWQ framework’s
scalability and applicability on large-scale datasets.

Table 4. Evaluating RPI and RPT on top of MobileNetV2 trained
with FGSM-RS and PGD-7 on CIFAR-10.

Adversarial
Training Method

Natural Acc
(%)

PGD-20
(%)

PGD-100
(%)

PGD-20
10 Restart (%) BitOPs

FGSM-RS 82.16 39.47 38.98 39.59 96.9 G
FGSM-RS + RPI 81.00 48.08 45.13 42.10 3.6 G

FGSM-RS + RPI + RPT 80.27 56.52 54.33 54.12 3.6 G
PGD-7 80.40 50.03 49.72 50.06 96.9 G

PGD-7 + RPI 76.83 55.11 54.02 55.19 3.6 G
PGD-7 + RPI + RPT 73.97 57.72 55.83 56.78 3.6 G

Benchmark on compact DNNs. As discussed in (Madry
et al., 2017) that models with a higher capacity are more
robust against multi-step attacks, defending compact models
like MobileNetV2 (Sandler et al., 2018) is more challenging
and desirable. Tab. 4 shows that our DWQ can still boost
the robust accuracy by 17.05%/7.69% on top of FGSM-
RS/PGD-7 training on MobileNetV2, indicating DWQ’s ap-
plicability to compact DNNs. We also observe that DWQ on
top of FGSM-RS achieves better trade-offs between robust
and natural accuracy than DWQ on top of PGD-7, which
we conjecture is because PGD-7 aggressively pursues ro-
bustness without considering MobileNetV2’s vulnerability
to quantization (Sheng et al., 2018) on clean images.

Benchmark under larger perturbations. We further eval-
uate DWQ’s scalability under larger perturbations with
PGD-7 training on CIFAR-10 as listed in Tab. 5. Inter-
estingly, DWQ even achieves larger robustness improve-
ments. Tab. 5 shows that DWQ leads to a 11.66%∼18.89%
and 15.68%∼23.26% higher robust accuracy under PGD-20
attacks with n = 12 and 16, respectively. Larger improve-
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Table 5. Evaluating RPI and RPT under larger perturbations on three networks with PGD-7 training on CIFAR-10.
n=12 n=16

Network Adversarial
Training Method

Natural Acc
(%)

PGD-20
(%)

PGD-100
(%)

PGD-20
10 restart (%)

Natural
Acc (%)

PGD-20
(%)

PGD-100
(%)

PGD-20
10 restart (%)

PreActResNet18
PGD-7 77.49 37.84 36.77 37.90 75.39 27.28 24.24 26.98

PGD-7 + RPI 75.38 45.30 43.56 40.61 72.67 38.14 35.15 32.54
PGD-7 + RPI + RPT 77.45 56.73 56.62 51.46 75.02 50.54 50.16 45.57

WideResNet32
PGD-7 81.80 39.73 38.49 39.67 78.91 28.92 25.82 28.80

PGD-7 + RPI 79.97 48.34 46.61 43.60 77.40 38.72 35.70 32.86
PGD-7 + RPI + RPT 78.26 53.74 52.42 52.10 75.34 46.82 44.85 43.49

MobileNetV2
PGD-7 75.31 36.90 35.95 36.96 72.86 27.65 24.95 27.51

PGD-7 + RPI 72.10 43.02 40.10 36.97 71.74 38.85 34.56 31.35
PGD-7 + RPI + RPT 68.34 48.56 46.52 47.02 66.23 43.33 40.43 41.89

ments under stronger adversarial attacks validate DWQ’s
applicability to more challenging environments.

Table 6. Evaluating the enhanced DWQ over the vanilla PGD-
7 training on two networks and two datasets under Auto-
Attack (Croce & Hein, 2020), CW-L2/CW-Inf attacks (Carlini
& Wagner, 2017), and Bandits attacks (Ilyas et al., 2018). In par-
ticular, we adopt different initial g defined in (Carlini & Wagner,
2017) for CW-Inf attacks to control the final perturbation n .

Network PreActResNet18 WideResNet32

Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Training
Method

PGD-7
(%)

DWQ
(%)

PGD-7
(%)

DWQ
(%)

PGD-7
(%)

DWQ
(%)

PGD-7
(%)

DWQ
(%)

Auto-Attack
(n=8) 47.18 54.56 24.46 32.51 51.66 58.54 27.18 36.26

Auto-Attack
(n=12) 27.59 35.83 12.77 20.93 30.71 39.83 15.24 23.26

CW-L2 76.58 80.95 48.80 54.86 78.19 80.40 50.79 58.16

CW-Inf
(g=0.05→ n=8) 57.88 71.44 31.99 46.22 62.13 72.10 35.39 50.28

CW-Inf
(g=0.1→ n=12) 46.70 65.57 24.29 42.49 50.14 66.99 26.94 46.58

CW-Inf
(g=0.2→ n=16) 33.56 59.27 16.52 38.87 36.11 60.81 18.71 43.14

Bandits
(n=8) 59.75 71.75 34.02 43.50 63.49 68.50 38.03 47.35

Bandits
(n=12) 46.04 70.52 24.46 42.43 49.77 67.01 28.13 46.18

Benchmark under more attacks. We evaluate the en-
hanced DWQ on top of PGD-7 training against Auto-
Attack (Croce & Hein, 2020), CW-L2/CW-Inf attacks (Car-
lini & Wagner, 2017), and Bandits attacks (Ilyas et al.,
2018). As shown in Tab. 6, the enhanced DWQ con-
sistently improves the robust accuracy across different
attacks/models/datasets/perturbations, e.g., a higher ro-
bust accuracy of +6.88%∼+9.12% under Auto-Attack,
+5.01%∼+24.48% under Bandits attacks, and more sur-
prisingly, +9.97%∼+25.71% under CW-Inf attack, where
we find that the poor transferability between different at-
tack/inference precisions is more notable and thus DWQ
is still very effective, while PGD-7 trained networks suf-
fer from more robustness drops under larger perturbations.
This set of experiments verifies the consistent robustness
achieved by DWQ under different attack types.

Benchmark with SOTA robust quantization methods.
DWQ’s most relevant work is (Lin et al., 2019) which con-
strains the layerwise Lipschitz constants and is orthogonal

with DWQ. While (Lin et al., 2019) compresses the nega-
tive effect of quantization on adversarial robustness, DWQ
makes use of quantization noise to boost the adversarial
robustness, thus combining the two methods can potentially
lead to more robust DNNs. Compared with the best reported
robust accuracy among all the settings from (Lin et al., 2019)
under PGD-20 attack on CIFAR-10, our DWQ achieves a
14.6% and 22.5% higher robust accuracy for n = 8 and 16,
respectively, on the same PGD-7 trained network.

Obfuscated gradient check. We also evaluate DWQ with
all other flags of obfuscated gradients in (Athalye et al.,
2018), in addition to black-box attacks in Fig. 1 (f), on top
of PreActResNet18 and find that (1) robust accuracies under
1-step/20-step PGD attacks are 78.37%/65.15% on CIFAR-
10 and 52.25%/41.74% on CIFAR-100; (2) for unbounded
PGD-20 attacks, DWQ has a near-zero robust accuracy; (3)
no adversarial examples are found in 105 random sampling
for DWQ when PGD-20 does not; and (4) increasing the
distortions causes a drop in robustness as shown in Tab. 5.
Therefore, DWQ does not suffer from obfuscated gradients.

4.3. DWQ: Ablation Study of Vanilla DWQ

RPI trained with different precisions. Fig. 2(a) shows
RPI’s achieved natural and robust accuracy on CIFAR-10
under PGD-20 attacks on three PGD-7 trained networks
with different precisions, adopting an inference precision
set of 4∼8-bit. Both the natural and robust accuracy remain
stable (within 1.12%) under different training precisions,
indicating RPI’s general applicability to quantized models.

RPI with different inference precision sets. Fig. 2(b)
shows RPI’s achieved natural and robust accuracy on
CIFAR-10 under PGD-20 attacks of three PGD-7/4-bit
trained networks, considering different inference precision
sets. We can observe that (1) RPI with different inference
precision sets consistently improves the robustness of vanilla
PGD-7 training in Tab. 1, and (2) without the help of RPT,
vanilla DWQ (i.e., merely RPI) slightly favors smaller pre-
cision ranges and precisions close to the training precision,
as both leads to smaller distribution gaps between training
and inference precisions. Therefore, we adopt 4∼8-bit for
RPI in Sec. 4.2 considering both robustness and efficiency.
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(a) PGD-7 + RPI (b)  PGD-7 + RPI (c)  PGD-7 + RPI + RPT

4-8 4-12 4-16 8-12 8-164-bit 6-bit 8-bit 4-8 4-12 4-16 8-12 8-16

Figure 2. The natural and robust accuracy of three PGD-7 trained networks with (a) RPI under different training precisions with an
inference precision set of 4∼8-bit, (b) RPI with different inference precision sets on top of the 4-bit trained networks, and (c) RPI+RPT
with different training precision sets. Note that deep and light colors denote robust and natural accuracy, respectively.

(b) Fixed 4-bit Activation
       Avg Robust Acc: 59.8%

(a) Fixed 4-bit Weight
       Avg Robust Acc: 58.2%

Figure 3. The transferability of adversarial attacks between differ-
ent weight (activation) precisions with the fixed 4-bit activation
(weight) precision on top of a PGD-7 trained PreActResNet18.

RPI applied to only the weights/activations. In all other
experiments, we adopt the same precision for both the
weights and activations for hardware-friendly implemen-
tation. Here we further explore whether the motivating
observations and benefits of DWQ consistently maintain
when applying RPI to merely the weights or activations.
Experiments in Fig. 3 show that the poor transferability
of adversarial attacks is consistently observed when fixing
the precision for the weights or activations, indicating that
RPI applied to merely the weights or activations would be
consistently effective in enhancing the model robustness.

4.4. DWQ: Ablation Study of Enhanced DWQ

Enhanced DWQ with different precision ranges.
Fig. 2(c) shows the natural and robust accuracy (under PGD-
20 attacks) of three networks trained using enhanced DWQ
(i.e., RPI + RPT) with different training precision sets, on
top of PGD-7 training on CIFAR-10. We can see that (1)
DWQ with both RPT and RPI consistently achieves a higher
robust accuracy over SOTA PGD-7 training or DWQ with
only RPI in Tab. 1, although the robust accuracy shows some
fluctuations under different settings; and (2) models with a
higher capacity like PreActResNet18 and WideResNet32
favor larger precision ranges for reducing the probability of
hitting the adversaries’ precision, while models with a low
capacity like MobileNetV2 favor smaller precision ranges
and relatively higher precisions due to their vulnerability to
quantization (Sheng et al., 2018).

Enhanced DWQ with different training recipes. We also

Table 7. Comparing enhanced DWQ with RPT and CPT on Pre-
ActResNet18 trained using three adversarial training methods on
CIFAR-10, where CPT-16 denotes CPT with 16 cyclic periods.

FGSM FGSM-RS PGD
Training
Recipe

Natural
Acc (%)

PGD-20
Acc (%)

Natural
Acc (%)

PGD-20
Acc (%)

Natural
Acc (%)

PGD-20
Acc (%)

CPT-16 53.02 35.45 71.19 56.28 78.65 65.15
CPT-32 35.17 49.98 74.82 59.34 81.51 66.40
CPT-64 29.39 36.79 76.67 59.95 74.54 61.34

RPT 80.58 64.08 82.11 59.33 82.15 65.15

equip the enhanced DWQ with another dynamic precision
training method CPT (Fu et al., 2021a) which cyclically
switches between the lowest and the highest precisions and
compare the enhanced DWQ with RPT or CPT under differ-
ent cyclic periods. Tab. 7 shows that (1) CPT on top of the
strongest PGD-7 training achieves comparable robustness
as RPT, while its cyclic periods need to be finetuned, and
(2) CPT leads to large training instability and a lower natu-
ral and robust accuracy on top of less powerful adversarial
training methods, which we conjecture is due to the mis-
matches between the statistics of SBN and current weights
as CPT switches merely between consecutive precisions. In
contrast, DWQ integrated RPT shows consistent stability
and effectiveness.

5. Conclusion
In this work, we have demonstrated that quantization, if
properly exploited, can even enhance quantized DNNs’ ro-
bustness by a notable margin over their full-precision coun-
terparts, instead of merely improving the robustness of quan-
tized models. Furthermore, we propose a simple yet effec-
tive framework dubbed Double-Win Quant, which achieves
an aggressive “win-win” in terms of DNNs’ robustness and
efficiency. We believe Double-Win Quant has opened up a
new perspective in designing robust and efficient DNNs.
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