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Abstract

This document contains the supplementary material for the paper ”Learning disentangled representations via
product manifold projection”. We provide details about the experiments of the main paper, including details on
the architecture, hyper-parameters and training strategy together with an ablation study on the loss terms. We also
theoretically motivate the choice of the sum operation as aggregation function for our latent subspaces.

1. Implementation details
For the experiments on the datasets DSprites (Higgins et al., 2017), Shapes3D (Kim & Mnih, 2018), Cars3D (Reed et al.,
2015), SmallNORB (LeCun et al., 2004), we implement a simple convolutional architecture for both the encoder and the
decoder. We report the detailed parameters in Table 1, where d refers to the dimensionality of the latent space Z , which
bounds the maximum dimensionality of each of the k latent subspaces S1 . . .Sk. The architecture of the nonlinear projectors
Pi is described in Table 3. For the FAUST dataset we employ a PointNet (Qi et al., 2017) based architecture for the encoder
and a simple MLP for the decoder. Details are reported in Table 2

Table 1: Convolutional architecture used in image datasets.

Encoder Decoder

Input : 64× 64× number of channels Input : Rd

4× 4conv, 32 ReLU, stride 2, padding 1 FC, 256, ReLU
4× 4conv, 32 ReLU, stride 2, padding 1 FC, 256, ReLU
4× 4conv, 64 ReLU, stride 2, padding 1 FC, 64× 4× 4, ReLU
4× 4conv, 64 ReLU, stride 2, padding 1 4× 4upconv, 64 ReLU, stride 2, padding 1

FC, 256, ReLU 4× 4upconv, 32 ReLU, stride 2, padding 1
FC, d 4× 4upconv, 32 ReLU, stride 2, padding 1

- 4× 4upconv, number of channels, stride 2, padding 1

1.1. Experimental settings

For the comparisons with (Locatello et al., 2020) and its top performer model Ada-GVAE presented in Tables 1-4 in the
main paper, we set the dimensionality d of the latent space Z to 10, and the number of subspaces k to 10. This puts us in a
setting that is as close as possible to (Locatello et al., 2020), where the latent space is 10-dimensional and the subspaces
are 1-dimensional by construction. For all the quantitative experiments we trained 5 times the same model with different
random seeds, and report the median results on each dataset. A summary of the hyperparameters are in Table 4.
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Table 2: PointNet - MLP architecture used in FAUST dataset.

Encoder Decoder

Input : 2500× 3 Input : Rd

1× 1conv, 32, BatchNorm, ReLU, FC, 1024, LeakyReLU
1× 1conv, 128, BatchNorm, ReLU, FC, 2048, LeakyReLU
1× 1conv, 256, BatchNorm, ReLU, FC, 2500× 3, ReLU

1× 1conv, 512, -
MaxPooling, -

FC, 512, BatchNorm, ReLU, -
FC, 256, BatchNorm, ReLU, -
FC, 128, BatchNorm, ReLU, -

FC, d, -

Table 3: Projec-
tors architecture.
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Figure 2: The architecture of our model. We process data in pairs (x1, x2), which are embedded into an intermediate lower
dimensional space Z̃ via a siamese network f . The image (z1, z2) is then mapped into k smaller spaces S1, . . . ,Sk ⊂ Z
via the nonlinear operators Pi. The resulting vectors are aggregated in Z , with aggr = +, and mapped back to the input
data space by the decoder g. As we do not impose any constraint on f and g, the intermediate module of the proposed
architecture can be in principle attached to any autoencoder model.

Parameter Value

d 10
k 10
β1 0.1
β2 100
β3 0.0001

Batch Size 32
Optimizer Adam

Learning rate 0.0005
Adam: (beta1, beta2, epsilon) (0.9,0.99,1e-8)

Table 4: Hyper-parameter settings for the experiments in
Table 1-4 of the main paper.
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Figure 1: Evolution of the regularization parameters βi, i =
1, 2, 3 as a function of the epoch number. Here, the parame-
ters are all scaled to have a maximal value of one.

2. Training process
We split the training process in two stages: (i) a reconstruction phase, and (ii) a disentanglement phase. This strategy helps
in obtaining better results; this is due to the fact that our distance loss Ldis needs to operate in a latent space Z already
structured, where the distances are meaningful. Moreover, our consistency loss makes use of the reconstructed observations,
that have to be well formed to make it relevant. We stress that the two phases are not completely separated, since the space
Z continues to be optimized during the disentanglement phase.
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Figure 3: A visualization of the main variables involved in our proof.

In practice, we implement this by back-propagating only through the reconstruction loss for the first 20% of the training
iterations. Then, the losses enter one after the other in the following order: Lreg,Ldis,Lcons in a slow-start mode. This
is obtained by exponentially increasing the regularization parameters βi for i = 1, 2 during the training, until they reach
their maximal value (as reported in Table 4), with β2 being shifted in time (number of iterations/epochs) with respect to β1 .
Conversely, we set β3 = (1− β2), so it exponentially decays until it reaches zero; indeed, the regularization loss prevents
the subspace from collapsing until the other losses are active at full capacity. We show an example of the behavior of the β’s
in Figure 1.

3. Subspace structure
3.1. The latent subspace structure

The model architecture, shown in Figure 3 of the main paper and reported also here in Figure 2 for convenience, imposes
a factorized structure on the latent space Z̃ into subspaces Si, i = 1..k. In principle, the aggregator function depicted
could be any linear or nonlinear aggregation operation. In our experiments we simply choose to sum all the subspaces, for
the following reason: due to the sparsity induced on the subspaces by the loss Lspar, the sum operation provides us with
an approximation of the cartesian product, leading to Z̃ ≈ S1 × .. × Sk. More precisely, if the sparsity contraint holds
(i.e. Lspar = 0), the sum operation will be equivalent to taking the cartesian product on the latent subspace vectors, since
on each dimension r ∈ 1 . . . d such that si[r] 6= 0, for an i ∈ 1, . . . , k the loss Lspar enforces the latent vectors to have
sq[r] = 0 ∀q 6= i ∈ 1, . . . , k. We prove this in the following:

Sketch of proof. We prove that the sparsity imposes the structure of a product space on the latent subspace vectors. We
do this by studying the first order optimality conditions for Lspar, ∂Lspar(si)

∂si
= 0, where with si = Pi(f(x)) we denote a

latent vector in the subspace Si. Indicating with � the element-wise product, we can write:

Lspar =

k∑
i=1

Lsi
spar =

k∑
i=1

‖si �
k∑

j 6=i

sj‖1 , where Lsi
spar = ‖ si �

k∑
j 6=i

sj︸ ︷︷ ︸
Q

‖1 . (1)

We aim to study ∂Lsi
spar

∂si
= 0, ∀i ∈ 1, . . . , k that is equivalent to:

∂Lsi
spar

∂si
=
∂‖Q‖1
∂Q

∂Q

∂si
=
(
sign(si �

k∑
j 6=i

sj)
)
(

k∑
j 6=i

sj) = 0, ∀i ∈ 1, . . . , k . (2)

W.l.o.g. we fix a dimension r ∈ 1, . . . , d in the latent space. By indicating with si[r] the r-th entry of si we can write:

∂Lsi
spar

∂si
[r] =

(
sign(si[r]

k∑
j 6=i

sj [r])
)
(

k∑
j 6=i

sj [r]) = 0 . (3)

To satisfy Eq. (3), we have three possible cases:

• Case 1: si[r] = 0 and
∑k

j 6=i sj [r] 6= 0
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• Case 2: si[r] 6= 0 and
∑k

j 6=i sj [r] = 0

Since we are optimizing ∀i we can consider ∂Lsq
spar

∂sq
[r] = 0 for every other q ∈ 1 . . . k, q 6= i, Therefore we have:

∂Lsq
spar

∂sq
[r] =

(
sign(sq[r]

k∑
l 6=q

sl[r])
)
(

k∑
l 6=q

sl[r]) = 0 (4)

We can split this latter case in two subcases:

– Case 2.1: sq[r] = 0, ∀q 6= i
Therefore, satisfying our thesis.

– Case 2.2: sq[r] 6= 0 for at least one q 6= i.
In this situation, we can write:

k∑
j′ 6=q,i

sj′ [r] + sq[r] = 0 and thus
k∑

j′ 6=q,i

sj′ [r] = −sq[r]. (5)

From which we have:

k∑
j′ 6=q

sj′ [r] = si[r] +

k∑
j′ 6=q,i

sj′ [r] = si[r]− sq[r]. (6)

Substituting in Eq.4 (by replacing j′ with l) we get:

∂Lsq
spar

∂sq
[r] =

(
sign(sq[r](si[r]− sq[r]))

)
(si[r]− sq[r]) (7)

Now because we have that sq[r] 6= 0, this implies:

∂Lsq
spar

∂sq
[r] = 0 ⇐⇒ si[r]− sq[r] = 0 =⇒ si[r] = sq[r] (8)

and this holds ∀q ∈ 1, . . . , k and q 6= i such that sq[r] 6= 0. (referring to Figure 3 may help the reader).
This allows us to conclude that:

∑k
j 6=i sj [r] = αsi[r] 6= 0, with α being an integer between 1 and k−1. Therefore

we get a contradiction with our hypothesis of Case 2 si[r] 6= 0 and
∑k

j 6=i sj [r] = 0, and thus the unique possible
subcase is the former Case 2.1.

• Case 3: si[r] = 0 and
∑k

j 6=i sj [r] = 0
Performing the same analysis done in Case 2, in this case we get that ∀i ∈ 1 . . . k si[r] = 0. Therefore, all the latent
subspace vectors will have the same dimension r set to zero. In this case, we can consider recursively the other k − 1
dimensions. The case where all dimensions r ∈ 1 . . . k are zero, for all si, i = 1 . . . k is theoretically possible, but we
stress this is rather an exotic case that cannot happen in practice, as we comment in the last paragraph below.

Since we have chosen r w.l.o.g., the same s true for all dimensions in 1 . . . d. Therefore, we have that each vector si
will be nonzero in the l > 0 dimensions where the other sj are zero. Now setting aggr = +, we have that the sum
corresponds to concatenating the latent subspace vectors along the nonzero dimensions, i.e. taking the cartesian product
of the subspace to get an element of Z̃ .

Degenerate case In the proof we mentioned the degenerate case in which si[r] = 0 ∀i ∈ 1 . . . k, ∀r ∈ 1 . . . d. This would
mean that the latent subspaces have collapsed to the same point (a vector made of zeros). This exotic case is never reached
in practice, due to the other losses such as the reconstruction loss, the consistency losses, and the contrastive term of the
distance loss.
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