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Abstract
This paper prescribes a distance between learning
tasks modeled as joint distributions on data and
labels. Using tools in information geometry, the
distance is defined to be the length of the shortest
weight trajectory on a Riemannian manifold as
a classifier is fitted on an interpolated task. The
interpolated task evolves from the source to the
target task using an optimal transport formulation.
This distance, which we call the “coupled transfer
distance” can be compared across different clas-
sifier architectures. We develop an algorithm to
compute the distance which iteratively transports
the marginal on the data of the source task to that
of the target task while updating the weights of
the classifier to track this evolving data distribu-
tion. We develop theory to show that our distance
captures the intuitive idea that a good transfer tra-
jectory is the one that keeps the generalization
gap small during transfer, in particular at the end
on the target task. We perform thorough empiri-
cal validation and analysis across diverse image
classification datasets to show that the coupled
transfer distance correlates strongly with the diffi-
culty of fine-tuning.

1. Introduction
A part of the success of Deep Learning stems from the fact
that deep networks learn features that are discriminative
yet flexible. Models pre-trained on a particular task can be
easily adapted to perform well on other tasks. The transfer
learning literature forms an umbrella for such adaptation
techniques, and it works well, see for instance Mahajan
et al. (2018); Dhillon et al. (2020); Kolesnikov et al. (2019);
Joulin et al. (2016); Song et al. (2020) for image classifi-
cation or Devlin et al. (2018) for language modeling, to
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Figure 1. Coupled transfer of the data and the conditional dis-
tribution. We solve an optimization problem that transports the
source data distribution ps(x) to the target distribution pt(x) as
τ → 1 while simultaneously updating the model using samples
from the interpolated distribution pτ (x). This modifies the condi-
tional distribution pws(y|x) on the source task to the correspond-
ing distribution on the target task pwt(y|x). The “coupled transfer
distance” between source and target tasks is the length of the short-
est such weight trajectory under the Fisher Information Metric.

name a few large-scale studies. There are also situations
when transfer learning does not work well, e.g., a pre-trained
model on ImageNet is a poor representation to transfer to
MRI data (Merkow et al., 2017).

It stands to reason that if source and target tasks are “close”
to each other then we should expect transfer learning to
work well. It may be difficult to transfer across tasks that
are “far away”. We lack theoretical tools to characterize the
difficulty of adapting a model training on a source task to
the target task. While there are numerous candidates in the
literature (see Related Work in Sec. 6) for characterizing
the distance between tasks, a unified understanding of these
domain-specific methods is missing.

Desiderata. Our desiderata for a task distance are as follows.
First, it should be a distance between learning tasks, i.e.,
it should explicitly incorporate the hypothesis space of the
model that is being transferred and accurately reflect the
difficulty of transfer. For example, it is often observed in
practice that transferring larger models is easier, we would
like our task distance to capture this fact. Such a distance
is different than discrepancy measures on the input, or the
joint input-output space, which do not consider the model.
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Second, we would like a theoretical framework to prescribe
this distance. Task distances in the literature often de-
pend upon quantities such as the number of epochs of fine-
tuning to reach a certain accuracy, where different hyper-
parameters may result in different conclusions. Also, as
the present paper explores at depth, there are mechanisms
for transfer other than fine-tuning that may transfer easily
across tasks that are considered far away for fine-tuning.

Contributions. We formalize a “coupled transfer distance”
between learning tasks as the length of the shortest tra-
jectory on a Riemannian manifold (statistical manifold of
parametrized conditional distributions of labels given data)
that the weights of a classifier travel on when they are
adapted from the source task to the target task. At each
instant during this transfer, weighs are fitted on a interpolat-
ing task that evolves along the optimal transportation (OT)
trajectory between source and target tasks. Evolution of
weights and the interpolated task is coupled together. In par-
ticular, we set the ground metric which defines the cost of
transporting unit mass in OT to be the Fisher-Rao distance.

We give an algorithm to compute the coupled transfer dis-
tance. It alternately update the OT map and the weight
trajectory; the former uses the latest ground metric com-
puted as the length of the weight trajectory under the Fisher
Information Metric (FIM) whereas the weight trajectory is
updated to fit to a new sequence of interpolated tasks given
by the updated OT. We develop several techniques to scale
up this algorithm and show that we can compute the coupled
transfer distance between standard benchmark datasets.

We study this distance using Rademacher complexity. We
show that given an OT between tasks, the Fisher-Rao dis-
tance between the initial and final weights, which our cou-
pled transfer distance computes, corresponds to finding a
weight trajectory that keeps the generalization gap small on
the interpolated tasks. The coupled transfer distance thus
captures the intuitive idea that a good transfer trajectory
is the one that keeps the generalization gap small during
transfer, in particular at the end on the target task.

We perform thorough empirical validation and analysis of
the coupled transfer distance across diverse image classifi-
cation datasets (MNIST (LeCun et al., 1998), CIFAR-10,
CIFAR-100 (Krizhevsky & Hinton, 2009) and Deep Fash-
ion (Liu et al., 2016)).

2. Theoretical setup
We are interested in the supervised learning problem in this
paper. Consider a source dataset Ds =

{
(xis, y

i
s)
}Ns
i=1

and a

target datasetDt =
{

(xit, y
i
t)
}Nt
i=1

where xis, x
i
t ∈ X denote

input data and yis, y
i
t ∈ Y denote ground-truth annotations.

Training a parameterized classifier, say a deep network with

weights w ∈ Rp, on the source task involves minimizing
the cross-entropy loss `s(w) = − 1

Ns

∑Ns
i=1 log pw(yis|xis)

using stochastic gradient descent (SGD):

w(τ + dτ) = w(τ)− ∇̂`s(w(τ)) dτ ; w(0) = ws; (1)

The notation ∇̂`s(w) indicates a stochastic estimate of
the gradient using a mini-batch of data. The parameter
dτ is the learning rate. Let us define the distribution
p̂s(x, y) = 1

Ns

∑Ns
i=1 δxis(x)δyis(y) and its input-marginal

p̂s(x) = 1
Ns

∑Ns
i=1 δxis(x); distributions p̂t(x, y), p̂t(x) are

defined analogously.

2.1. Fisher-Rao metric on the manifold of probability
distributions

Consider a manifoldM = {pw(z) : w ∈ Rp} of probability
distributions. Information Geometry (Amari, 2016) studies
invariant geometrical structures on such manifolds. For two
points w,w′ ∈ M, we can use the Kullback-Leibler (KL)
divergence KL [pw, pw′ ] =

∫
dpw(z) log (pw(z)/pw′(z)) ,

to obtain a Riemannian structure on M . This allows the
infinitesimal distance ds on the manifold to be written as

ds2 = 2KL [pw, pw+dw] =

p∑
i,j=1

gij dwidwj (2)

gij(w) =

∫
dpw(z) (∂wi log pw(z))

(
∂wj log pw(z)

)
(3)

are elements of the Fisher Information Matrix (FIM) g.
Weights w play the role of a coordinate system for com-
puting the distance. The FIM is the Hessian of the KL-
divergence; we may think of the FIM as quantifying the
amount of information present in the model about the data
it was trained on. The FIM is the unique metric onM (up
to scaling) that is preserved under diffeomorphisms (Bauer
et al., 2016), in particular under representation of the model.

Given a continuously differentiable curve {w(τ)}τ∈[0,1] on
the manifold M we can compute its length by integrating
the infinitesimal distance |ds| along it. The shortest length
curve between two points w,w′ ∈M induces a metric on
M known as the Fisher-Rao distance (Rao, 1945)

dFR(w,w′) = min
w: w(0)=w
w(1)=w′

∫ 1

0

√
〈ẇ(τ), g(w(τ))ẇ(τ)〉 dτ . (4)

Shortest paths on a Riemannian manifold are geodesics, i.e.,
they are locally “straight lines”.

Computing the Fisher-Rao distance by integrating the
KL-divergence. Let us focus on the conditional distribution
pw(y|x). For the factorization p(x, y) = p(x)p(y|x) where
only the latter is parametrized, the FIM in (3) is given by

gij(w) = E
x∼p(x), y∼pw(y|x)

[
∂wi log pw(y|x) ∂wj log pw(y|x)

]
;
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here the input distribution p(x) and the weights w will be
chosen in the following sections. The FIM is difficult to
compute for large models and approximations often work
poorly (Kunstner et al., 2019). For our purposes, we only
need to compute the infinitesimal distance |ds| in (2) and
can thus rewrite (4) as

dFR(w,w′) = min
w: w(0)=w
w(1)=w′

∫ 1

0

√
2KL[pw(y|x), pw+dw(y|x)]. (5)

2.2. Transporting the data distribution

We next focus on the marginals on the input data p̂s(x)
and p̂t(x) for the source and target tasks respectively. We
are interested in computing a distance between the source
marginal and the target marginal and will use tools from
optimal transportation (OT) for this purpose; see Santam-
brogio (2015); Peyré & Cuturi (2019); Fatras et al. (2020)
for an elaborate treatment.

OT for continuous measures. Let Π(ps, pt) be the set
of joint distributions (also known as couplings or trans-
port plans) with first marginal equal to ps(x) and second
marginal pt(x). The Kantorovich relaxation of OT solves
for

inf
γ∈Π(ps,pt)

∫
c(x, x′) dγ(x, x′)

to compute the best coupling γ∗ ∈ Π. The cost c(x, x′) ∈
R+ is called the ground metric. It gives the cost of transport-
ing unit mass from x to x′. The popular squared-Wasserstein
metric W 2

2 (ps, pt) uses c(x, x′) = ‖x − x′‖22. Given the
optimal coupling γ∗, we can compute the trajectory that
transports probability mass using displacement interpola-
tion (McCann, 1997). For example, for the Wasserstein
metric, γ∗ is a constant-speed geodesic, i.e., if pτ is the
distribution at an intermediate time instant τ ∈ [0, 1] then
its distance from ps is proportional to τ

W2(ps, pτ ) = τW2(ps, pt).

OT for discrete measures. We are interested in computing
the constant-speed geodesic for discrete measures p̂s(x) and
p̂t(x). The set of transport plans in this case is Π(p̂s, p̂t) ={

Γ ∈ RNs×Nt+ : Γ1Ns = p̂s,Γ
>1Nt = p̂t

}
and the opti-

mal coupling is given by

Γ∗ = argmin
Γ∈Π(p̂s,p̂t)

{〈Γ, C〉 − εH(Γ)} ; (6)

hereCij is a matrix that defines the ground metric in OT. For
instance, Cij = ‖xi − x′j‖22 for the Wasserstein metric. The
first term above measures the total cost

∑
ij ΓijCij incurred

for the transport. The second term is an entropic penalty
H(Γ) = −

∑
ij Γij log Γij popularized by Cuturi (2013)

that accelerates the solution of the OT problem. McCann’s

interpolation for the discrete case with Cij = ‖xis − x
j
t‖22

can be written explicitly as a sum of Dirac-delta distributions
supported at interpolated inputs x = (1− τ)xis + τxjt

p̂τ (x) =

Ns∑
i=1

Nt∑
j=1

Γ∗ij δ(1−τ)xis+τx
j
t
(x). (7)

We can also create pseudo labels for samples from pτ by a
linear interpolation of the one-hot encoding of their respec-
tive labels to get

p̂τ (x, y) =

Ns∑
i=1

Nt∑
j=1

Γ∗ij δ(1−τ)xis+τx
j
t
(x) δ(1−τ)yis+τy

j
t
(y).

(8)

3. Coupled Transfer Distance
We next combine the development of Sec. 2.1–2.2 to trans-
port the margin on the data and modify the weights on the
statistical manifold simultaneously. We call this method the
“coupled transfer process” and the corresponding task dis-
tance as the “coupled transfer distance”. We also discusses
techniques to efficiently implement the process and make it
scalable to large deep networks.

3.1. Uncoupled Transfer Distance

We first discuss a simple transport mechanism instead of
OT and discuss how to compute a transfer distance. For
τ ∈ [0, 1], consider the mixture distribution

p̂τ (x, y) = (1− τ)p̂s(x, y) + τ p̂t(x, y). (9)

Samples from p̂τ can be drawn by sampling an input-output
pair from p̂s with probability 1− τ and sampling it from p̂t
otherwise. At each time instant τ , the uncoupled transfer
process updates the weights the classifier using SGD to fit
samples from p̂τ

w(τ + dτ) = w(τ)− ∇̂`τ (w(τ)) dτ ; w(0) = ws. (10)

Weights w(τ) are thus fitted to each task pτ as τ goes
from 0 to 1. In particular for τ = 1, weights w(1) are
fitted to p̂t. As dτ → 0, we obtain a continuous curve
{w(τ) : t ∈ [0, 1]}. Computing the length of this weight
trajectory using (5) gives a transfer distance.

Remark 1 (Uncoupled transfer distance entails longer
weight trajectories). For uncoupled transfer, although the
task and weights are modified simultaneously, their changes
are not synchronized. We therefore call this the “uncoupled
transfer distance”. To elucidate, changes in the data using
the mixture (9) may be unfavorable to the current weights
w(τ) and may cause the model to struggle to track the distri-
bution p̂τ . This forces the weights to take a longer trajectory
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in information space, i.e., as measured by the Fisher-Rao dis-
tance in (5). If changes in data were synchronized with the
evolving weights, the weight trajectory would be necessar-
ily shorter in information space because the KL-divergence
in (2) is large when the conditional distribution changes
quickly to track the evolving data. We therefore expect the
task distance computed using the mixture distribution to
be larger than the coupled transfer distance which we will
discuss next; our experiments in Sec. 5 corroborate this.

3.2. Modifying the task and classifier synchronously

Our coupled transfer distance that uses OT to modify the
task and updates the weights synchronously to track the
interpolated distribution is defined as follows.

Definition 2 (Coupled transfer distance). Given two
learning tasks Ds and Dt and a w-parametrized classifier
trained onDs with weightsws, the coupled transfer distance
between the tasks is

min
Γ,w(·)

E
x∼p̂τ (x)

∫ 1

0

√
2KL [pw(· | x), pw+dw(· | x)] (11)

where and couplings Γ ∈ Π(p̂s(x), p̂t(x)) and w(·) is a
continuous curve which is the limit of

w(τ + dτ) = w(τ)− ∇̂`τ (w(τ)) dτ ; w(0) = ws.

as dτ → 0. The interpolated distribution p̂τ (x, y) at time
instant τ ∈ [0, 1] for a coupling Γ is given by ?? and the
loss `τ is the cross-entropy loss of fitting data from this
interpolated distribution.

The following remarks discuss the rationale and the proper-
ties of this definition.

Remark 3 (Coupled transfer distance is asymmetric).
The length of the weight trajectory for transferring from
p̂s to p̂t is different from the one that transfers from p̂t to p̂s.
This is a desirable property, e.g., it is easier to transfer from
ImageNet to CIFAR-10 than in the opposite direction.

Remark 4 (Coupled transfer distance can be compared
across different architectures). An important property of
the task distance in (11) is that it is the Fisher-Rao distance,
i.e., the shortest geodesic on the statistical manifold, of con-
ditional distributions pw(0)(·|xis) and pw(1)(·|xit) with the
coupling Γ determining the probability mass that is trans-
ported from xis to xjt . Since the Fisher-Rao distance, does
not depend on the embedding dimension of the manifold
M , the coupled transfer distance does not depend on the
architecture of the classifier; it only depends upon the ca-
pacity to fit the conditional distribution pw(y|x). This is a
very desirable property: given the tasks, our distance is com-
parable across different architectures. Let us note that the
uncoupled transfer distance in Sec. 3.1 also shares this prop-
erty but coupled transfer has the benefit of computing the

shortest trajectory in information space; weight trajectories
of uncoupled transfer may be larger; see Rem. 1.

3.3. Computing the coupled transfer distance

We first provide an an informal description of how we com-
pute the task distance. Each entry Γij of the coupling matrix
determines how much probability mass from xis is trans-
ported to xjt . The interpolated distribution ?? allows us
to draw samples from the task at an intermediate instant.
For each coupling Γ, there exists a trajectory of weights
w(·) := {w(τ) : τ ∈ [0, 1]} that tracks the interpolated task.
The algorithm treats Γ and the weight trajectory as the two
variables and updates them alternately as follows. At the
kth iteration, given a weight trajectory wk(·) and a coupling
Γk, we set the entries of the ground metric Ck+1

ij to be
the Fisher-Rao distance between distributions pw(0)(·|xis)
and pw(1)(·|xit). An updated Γk+1 is calculated using this
ground metric to result in a new trajectory wk+1(·) that
tracks the new interpolated task distribution ?? for Γk+1.

More formally, given an initialization for the coupling ma-
trix Γ0 we perform the updates in (12). Computing the
coupled transfer distance is a non-convex optimization prob-
lem and we therefore include a proximal term in (12a) to
keep the coupling matrix close to the one computed in the
previous step Γk. This also indirectly keeps the weight tra-
jectory wk+1(·) close to the trajectory from the previous
iteration. Proximal point iteration (Bauschke & Combettes,
2017) is insensitive to the step-size λ and it is therefore
beneficial to employ it in these updates.

Γk = argmin
Γ∈Π

{〈
Γ, Ck

〉
− εH(Γ) + λ‖Γ− Γk−1‖2F

}
, (12a)

Ckij =

∫ 1

0

√
2KL

[
pwk(τ)(·|x

ij
τ ), pwk(τ+dτ)(·|x

ij
τ )
]
, (12b)

wk(τ + dτ) = wk(τ)− ∇̂`τ (wk(τ)) dτ ; w(0) = ws. (12c)

p̂τ (x, y) =

Ns∑
i=1

Nt∑
j=1

Γk−1
ij δ(1−τ)xis+τx

j
t
(x) δ(1−τ)yis+τy

j
t
(y), (12d)

xijτ , y
ij
τ ∼ p̂τ (x, y). (12e)

3.4. Practical tricks for efficient computation

The optimization problem formulated in (12) is conceptually
simple but computationally daunting. The main hurdle is to
compute the ground metric Ckij for all i ≤ Ns, j ≤ Nt pairs
in a dense transport coupling Γ. The coupling matrix can
be quite large, e.g., it has 108 entries for a relatively small
dataset of Ns = Nt = 10, 000. We therefore introduce the
following techniques that allow us to scale to large problems.

Block-diagonal transport couplings. Instead of optimiz-
ing Γ in (11) over the entire polytope Π(p̂s, p̂t), we only con-
sider block-diagonal couplings. Depending upon the source
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and target datasets, we use blocks of size up to 30×30. At
each time instant τ ∈ [0, 1], we sample a block from the
transport coupling. SGD in (12c) updates weights using
multiple samples from the interpolated task restricted to
this block. The integrand for Ckij in (12b) is also computed
only on this mini-batch. Experiments in Sec. 5 show that
the weight trajectory converges using this technique. We
can compute the coupling transfer distance for source and
target datasets of size up to Ns = Nt = 19, 200. Other
approaches for handling large-scale OT problems such as
hierarchical methods (Lee et al., 2019) or greedy computa-
tion (Carlier et al., 2010) could also be used for our purpose
but we chose this one for sake of simplicity.

Initializing the transport coupling. The ground metric
Cij = ‖xis − x

j
t‖22 is widely used in the OT literature. We

are however interested in computing distances for image-
classification datasets in this paper and such a pixel-wise
distance is not a reasonable ground metric for visual data that
have strong local/multi-scale correlations. We therefore set
Γ0 to be the block-diagonal approximation of the transport
coupling for the ground metric Cij = ‖ϕ(xis) − ϕ(xjt )‖22
where ϕ is some feature extractor. The feature space is
much more Euclidean-like than the input space and this
gives us a good initialization in practice; similar ideas are
employed in the metric learning literature (Snell et al., 2017;
Hu et al., 2015; Qi et al., 2018). We use a ResNet-50 (He
et al., 2016) pre-trained on ImageNet to initialize Γ0 for all
our experiments. To emphasize, we use the feature extractor
only for initializing the transport coupling further updates
are performed using (12a). We have computed the coupling
transfer distance for MNIST without this step and our results
are similar.

Using mixup to interpolate source and target images.
The interpolating distribution ?? has a peculiar nature: sam-
pled data xijτ = (1 − τ)xis + τxjt from this distribution
are a convex combination of source and target data. This
causes artifacts for natural images for τ away from 0 or
1; we diagnosed this as a large value of the training loss
while executing (10). We therefore treat the coefficient of
the convex combination in ?? as if it were a sample from a
Beta-distribution Beta(τ, 1−τ). This keeps the samples xijτ
similar to the source or the target task and avoids visual arti-
facts. This trick is inspired by Mixup regularization (Zhang
et al., 2017); we also use Mixup for labels yijτ .

4. An alternative perspective using
Rademacher complexity

We have hitherto motivated the coupled transfer distance us-
ing ideas in information geometry. In this section, we study
the weight trajectory under the lens of learning theory. We
show that we can interpret it as the trajectory that minimizes
the integral of the generalization gap as the the weights are

adapted from the source to the target task. We consider
binary classification tasks in this section. Rademacher com-
plexity (Bartlett & Mendelson, 2001)

RN (r) = E
p̂∼p

[
E
σ

[
sup

w∈A(r)

1

N

N∑
i=1

σi`(w;xi, yi)

]]
, (13)

is the average over draws of the dataset p̂ ∼ p and iid
random variables σi uniformly distributed over {−1, 1} of
the worst case average weighted loss σi`(w;xi, yi) for w in
the set A(r). We assume here that

∣∣`(w;xi, yi)
∣∣ < M and

`(w;x, y) is Lipschitz continuous. Classical bounds bound
the generalization gap of all hypotheses h in a hypothesis

classH byR2N (H) + 2
√

log(1/δ)
N with probability at least

1−δ. We build upon this result to get the following theorem
under the assumption that weights w(τ) predict well on the
interpolated task p̂τ (x, y) at all times τ .

Theorem 5. Given a weight trajectory {w(τ)}τ∈[0,1] and a
sequence 0 = τ0 ≤ τ1 < τ2 < ... < τK ≤ 1, for all ε >
2
∑K
k=1(τk − τk−1)Ex∼pτ |∆`(w(τk−1))|, the probability

that

1

K

K∑
k=1

 E
(x,y)∼pτk

[`(ω(τk), x, y)]− 1

N

∑
(x,y)∼p̂τk

`(ω(τk), x, y)


is greater than ε is upper bounded by

exp

{
− 2K

M2

(
ε− 2

K∑
k=1

∆τk E
x∼pτk

[√
〈ẇ(τk), g(w(τk))ẇ(τk)〉

])}
.

(14)
We have defined ∆τk = τk − τk−1 and ∆`(w(τ)) =
`(w(τ + dτ);x, yτ (x))− `(w(τ);x, yτ (x)).

Sec. C gives the proof. As ∆τk → 0

K∑
k=1

∆τk E
x∼pτk

[√
〈ẇ(τk), g(w(τk))ẇ(τk)〉

]
→
∫ 1

0

E
x∼p̂τ

[√
〈ẇ, g(w)ẇ〉

]
dτ

which is the length of the trajectory on the statistical mani-
fold with inputs drawn from the interpolated distribution at
each instant.

We can thus think of the coupled transfer distance as
the length of the trajectory on the statistical manifold
that starts at the given model ws on the source task and
ends with the model w(1) fitted to the target task, as the
task is simultaneously interpolated using an optimal trans-
port whose ground metric between samples xis and xjt is

Cij =
∫ 1

0

√
2KL

[
pw(τ)(·|xijτ ), pw(τ+dτ)(·|xijτ )

]
which is

the length of the trajectory under the FIM. This result is a
crisp theoretical characterization of the intuitive idea that if
one finds a weight trajectory that transfers from the source
to the target task while keeping the generalization gap small
at all time instants, then the length of the trajectory is a good
indicator of the distance between tasks.
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5. Experiments
5.1. Setup

We use the MNIST, CIFAR-10, CIFAR-100 and Deep Fash-
ion datasets for our experiments. Source and target tasks
consist of subsets of these datasets, each task with one or
more of the original classes inside it. We show results using
an 8-layer convolutional neural network with ReLU non-
linearities, dropout, batch-normalization with a final fully-
connected layer along with a larger wide-residual-network
WRN-16-4 (Zagoruyko & Komodakis, 2016). Sec. A gives
details about pre-processing, architecture and training.

5.2. Baseline methods to estimate task distances

The difficulty of fine-tuning is the gold standard of dis-
tance between tasks. It is therefore very popular, e.g., Ko-
rnblith et al. (2019) use the number of epochs during transfer
as the distance. We compute the length of the weight tra-
jectory, i.e.,

∫ 1

0
|dw| and call this the fine-tuning distance.

The trajectory is truncated when validation accuracy on the
target task is 95% of its final validation accuracy. No trans-
port of the task is performed and the model directly takes
SGD updates on the target task after being pre-trained on
the source task.

The next baseline is Task2Vec (Achille et al., 2019a) which
embeds tasks using the diagonal of the FIM of a model
trained on them individually. Cosine distance between these
vectors is defined as the task distance.

We also compare with the uncoupled transfer distance
developed in Sec. 3.1. This distance computes length of
the weight trajectory on the Riemannian distance and also
interpolates the data but does not do them synchronously.

Discrepancy measures on the input space are a popular
way to measure task distance. We show task distance com-
puted as the Wasserstein W 2

2 metric on the the pixel-
space, the Wasserstein W 2

2 metric on the embedding
space and also method that we devised ourselves where
we transfer a variational autoencoder (VAE (Kingma &
Welling, 2014)) from the source to the target task and com-
pute the length of weight trajectory on the manifold. We
transfer the VAE in two ways, (i) by directly fitting the
model on the target task, and (ii) by interpolating the task
using a mixture distribution as described in Sec. 3.1.

5.3. Quantitative comparison of distance matrices

Metrics are not unique. We would however still like to com-
pare two task distances across various pairs of tasks. In
addition to showing these matrices and drawing qualitative
interpretations, we use the Mantel test (Mantel, 1967) to ac-
cept/reject the null hypothesis that variations in two distance
matrices are correlated. We will always compute correla-

tions with the fine-tuning distance matrix because it is
a practically relevant quantity and task distances are often
designed to predict this quantity. We report p-values and the
normalized test statistic r = 1/(n2 − n− 1)

∑n
i,j=1(aij −

ā)(bij − b̄)/(σaσb) where a, b ∈ Rn×n are distance matri-
ces for n tasks, ā, σa denote mean and standard deviation of
entries respectively. Numerical values of r are usually small
for all data (Ape; Goslee et al., 2007) but the pair (r, p) are
a statistically sound way of comparing distance matrices;
large r with small p indicates better correlation.

5.4. Transferring between subsets of benchmark
datasets

CIFAR-10 and CIFAR-100. We consider four tasks (i) all
vehicles (airplane, automobile, ship, truck) in CIFAR-10,
(ii) the remainder, namely six animals in CIFAR-10, (iii)
the entire CIFAR-10 dataset and (iv) the entire CIFAR-100
dataset. We show results in Fig. 2 using 4×4 distance matri-
ces where numbers in each cell indicate the distance between
the source task (row) and the target task (column).
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Figure 2. Fig. 2a shows coupled transfer distance (r = 0.428 p
= 0.13), Fig. 2b shows distances estimated using Task2Vec (r =
0.03, p = 0.98), Fig. 2c shows fine-tuning distance (r = 0.61, p =
0.09 with itself), and Fig. 2d shows uncoupled transfer distance
(r = 0.428, p = 0.09). The numerical values of the distances in
this figure are not comparable with each other. Coupled transfer
distances satisfy certain sanity checks, e.g., transferring to a subset
task is easier than transferring from a subset task (CIFAR-10-
vehicles/animals), which Task2Vec does not.

Coupled transfer shows similar trends as fine-tuning, e.g.,
the tasks animals-CIFAR-10 or vehicles-CIFAR-10 are close
to each other while CIFAR-100 is far away from all tasks (it
is closer to CIFAR-10 than others). Task distance is asym-
metric in Fig. 2a, Fig. 2c. Distance from CIFAR-10-animals
is smaller than animals-CIFAR-10; this is expected because
animals is a subset of CIFAR-10. Task2Vec distance esti-
mates in Fig. 2b are qualitatively quite different from these
two; the distance matrix is symmetric. Also, while fine-
tuning from animals-vehicles is relatively easy, Task2Vec
estimates the distance between them to be the largest.

This experiment also shows that our approach can scale to
medium-scale datasets and can handle situations when the
source and target task have different number of classes.

Transferring between subsets of CIFAR-100. We con-
struct five tasks (herbivores, carnivores, vehicles-1, vehicles-
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2 and flowers) that are subsets of the CIFAR-100 dataset.
Each of these tasks consists of 5 sub-classes. The distance
matrices for coupled transfer, Task2Vec and fine-tuning are
shown in Fig. 3a, Fig. 3b and Fig. 3c respectively. We also
show results using uncoupled transfer in Fig. 3d.
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Figure 3. Fig. 3a shows coupled transfer distance (r = 0.14, p =
0.05), Fig. 3b shows Task2Vec distance (r = 0.07, p = 0.17), Fig. 3c
shows fine-tuning distance (r = 0.36, p = 0.03), and Fig. 3d shows
uncoupled transfer distance (r = 0.12, p = 0.47). Numerical values
in the first and the last sub-plot can be compared directly. Cou-
pled transfer broadly agrees with fine-tuning except for carnivores-
flowers and herbivores-vehicles-1. For all tasks, uncoupled transfer
overestimates the distances compared to Fig. 3a.

Coupled transfer estimates that all these subsets of CIFAR-
100 are roughly equally far away from each other with
herbivores-carnivores being the farthest apart while vehicles-
1-vehicles-2 being closest. This ordering is consistent with
the fine-tuning distance although fine-tuning results in an
extremely large value for carnivores-flowers and vehicles-
1-herbivores. This ordering is mildly inconsistent with the
distances reported by Task2Vec in Fig. 3b the distance for
vehicles-1-vehicles-2 is the highest here. Broadly, Task2Vec
also results in a distance matrix that suggests that all tasks
are equally far away from each other. As has been reported
before (Li et al., 2020), this experiment also demonstrates
the fragility of fine-tuning.

Recall that distances for uncoupled transfer in Fig. 3d can
be compared directly to those in Fig. 3a for coupled transfer.
Task distances for the former are always larger. Further,
distance estimates of uncoupled transfer do not bear much
resemblance with those of fine-tuning; see for example the
distances for vehicles-2-carnivores, flowers-carnivores, and
vehicles-1-vehicles-2. This demonstrates the utility of solv-
ing a coupled optimization problem in (12) which finds a
shorter trajectory on the statistical manifold.

Experiments on transferring between subsets of Deep
Fashion are given in Sec. B. We also computed task dis-
tances for tasks with different input domains. For trans-
ferring from MNIST to CIFAR-10, the coupled transfer
distance is 0.18 (0.06 in the other direction), fine-tuning
distance is 554.2 (20.6 in the other direction) and Task2Vec
distance is 0.149 (same in the other direction). This experi-
ment shows that can robustly handle diverse input domains
and yet again, the coupled transfer distance correlates with
the fine-tuning distance.

5.5. Further analysis of the coupled transfer distance

Convergence of coupled transfer. Fig. 4a shows the evo-
lution of training and test loss as computed on samples of
the interpolated distribution after k = 4 iterations of (12).
As predicted by Thm. 5 the generalization gap is small
throughout the trajectory. Training loss increases towards
the middle; this is expected because the interpolated task
is far away from both source and target tasks there. The
interpolation (12d) could also be a cause for this increase.
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Figure 4. Fig. 4a shows the evolution of the training and test cross-
entropy loss on the interpolated distribution as a function of the
transfer steps in the final iteration of coupled transfer of vehicles-
1-vehicles-2. As predicted by Thm. 5, generalization gap along
the trajectory is small. Fig. 4b shows the convergence of the
task distance with the number of iterations k in (12); the distance
typically converges in 4–5 iterations for these tasks.

We typically require 4–5 iterations of (12) for the task dis-
tance to converge; this is shown in Fig. 4b for a few instances.
This figure also indicates that computing the transport cou-
pling in (6) independently of the weights and using this
coupling to modify the weights, as done in say (Cui et al.,
2018), results in a larger distance than if one were to op-
timize the couplings along with the weights. The coupled
transfer finds shorter trajectories for weights and will po-
tentially lead to better accuracies on target tasks in studies
like (Cui et al., 2018) because it samples more source data.

Models with a larger capacity are easier to transfer. We
next show that using a model with higher capacity results
in smaller distances between tasks. We consider a wide
residual network (WRN-16-4) of (Zagoruyko & Komodakis,
2016) and compute distances on subsets of CIFAR-100
in Fig. 5. First note that task distances for coupled transfer
in Fig. 5a are consistent with those for fine-tuning in Fig. 5b.
Coupled transfer distances in Fig. 5a are much smaller than
those in Fig. 3a.

Roughly speaking, a high-capacity model can learn a rich
set of features, some discriminative and others redundant
not relevant to the source task. These redundant features
are useful if target task is dissimilar to the source. This ex-
periment also demonstrates that the information-geometric
distance computed by coupled transfer, which is indepen-
dent of the dimension of the statistical manifold, leads to a
constructive strategy for selecting architectures for transfer
learning. Most methods to compute task distances instead
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only inform which source target is best suited to pre-train
with for the target task.
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Figure 5. Fig. 5a shows coupled transfer distance (r = 0.15, p
= 0.01) and Fig. 5b shows fine-tuning distance (r = 0.39, p =
0.01 with itself and r = 0.21, p = 0.20 with fine-tuning distance
in Fig. 3c). Numbers in Fig. 5a can be directly compared to those
in Fig. 3a. WRN-16-4 model has a shorter trajectory for all task
pairs compared to the CNN in Fig. 3a with fewer parameters.

Does coupled transfer lead to better generalization on
the target? It is natural to ask whether the generalization
performance of the model after coupled transfer is better
than the one after standard fine-tuning (which does not trans-
port the task). Fig. 6 compares the validation loss and the
validation accuracy after coupled transfer and after standard
fine-tuning for pairs of CIFAR-100 tasks. It shows that
broadly, the former improves generalization. This is consis-
tent with existing literature (Gao & Chaudhari, 2020) which
employs task interpolation for better transfer. Let us note
that improving fine-tuning is not our goal while develop-
ing the task distance. In fact, we want the task distance to
correlate with the difficulty of fine-tuning.

Figure 6. Comparison of validation loss (red for coupled transfer,
green for fine-tuning) and accuracy (%) (blue and yellow respec-
tively) between different subsets of CIFAR-100. Optimal transport
for the task distribution results in large improvements in the vali-
dation loss in all cases; The validation accuracy also improve by
0.4%–2.5% in all cases except the last two.

Comparison with other task discrepancy measures.
Fig. 7a shows task distances computed using the Rie-
mannian length of the weight trajectory for the VAE
(see Sec. 5.2) when task is interpolated using a mixture
distribution, Fig. 7b shows the same quantity when the VAE
is directly fitted to the target task after initialization on the
source. Fig. 7c and Fig. 7d show the Wasserstein distance on
the pixel-space and feature-space respectively. We find that
although the four distance matrices in Fig. 7 agree with each
other very well (r ≈ 0.15, p < 0.08 for all pairs, except the

VAE with uncoupled transfer), they are very different from
the fine-tuning distance in Fig. 3c. This shows that task dis-
tances computed using discrepancy measures on the input
space are not reflective of the difficulty of fine-tuning, after
all images in these tasks are visually quite similar to each
each. Coupled transfer distance explicitly takes the hypoth-
esis space into account and correctly reflects the difficulty
of transfer, even if the input spaces are similar.
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Figure 7. Fig. 7a shows task distance computed using the Rieman-
nian length of the weight trajectory for the VAE using a mixture
distribution to interpolate the tasks (see Sec. 5.1, r = 0.1, p =
0.76), Fig. 7b shows the same quantity for directly fine-tuning the
VAE (r = 0.09, p = 0.88), Fig. 7c shows task distance using the
Wasserstein metric on the pixel-space (r = 0.02, p = 0.22), Fig. 7d
shows distances using Wasserstein metric on the embedding space
(r = 0.06, p = 0.40). The last three methods agree with each other
very well (see the narrative for p-values) but small Mantel test
statistic and high p-values as compared to Fig. 3c indicates that
these distances are not correlated with the difficulty of fine-tuning.

6. Related Work
Domain-specific methods. A rich understanding of task
distances has been developed in computer vision, e.g., Za-
mir et al. (2018) compute pairwise distances when differ-
ent tasks such as classification, segmentation etc. are per-
formed on the same input data. The goal of this work, and
others such as (Cui et al., 2018), is to be able to decide
which source data to pre-train to generalize well on a target
task. Task distances have also been widely discussed in
the multi-task learning (Caruana, 1997) and meta/continual-
learning (Liu et al., 2019; Pentina & Lampert, 2014; Hsu
et al., 2018). The natural language processing literature also
prevents several methods to compute similarity between
input data (Mikolov et al., 2013; Pennington et al., 2014).

Most of the above methods are based on evaluating the dif-
ficulty of fine-tuning, or computing the similarity in some
embedding space. It is difficult to ascertain whether the
distances obtained thereby are truly indicative of the diffi-
culty of transfer; fine-tuning hyper-parameters often need to
be carefully chosen (Li et al., 2020) and neither is the em-
bedding space unique. For instance, the uncoupled transfer
process that modifies the input data distribution will lead to
a different estimate of task distance.

Information-theoretic approaches. We build upon a line
of work that combines generative models and discrimina-
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tory classifiers (see (Jaakkola & Haussler, 1999; Perronnin
et al., 2010) to name a few) to construct a notion of sim-
ilarity between input data. Modern variants of this idea
include Task2Vec (Achille et al., 2019a) which embeds the
task using the diagonal of the FIM and computes distance
between tasks using the cosine distance for this embedding.
The main hurdle in Task2Vec and similar approaches is to
design the architecture for computing FIM: a small model
will indicate that tasks are far away. Achille et al. (2019b;c)
use the KL divergence between the posterior weight dis-
tribution and a prior to quantify the complexity of a task;
distance between tasks is defined to be the increase in com-
plexity when the target task is added to the source task. This
is an elegant formalism but it is challenging to compute it
accurately and it has not yet been demonstrated for a broad
range of datasets.

Learning-theoretic approaches. Learning theory typically
studies out-of-sample performance on a single task using
complexity measures such as VC-dimension (Vapnik, 1998).
These have been adapted to address the difficulty of do-
main adaptation (Ben-David et al., 2010; Zhang et al., 2012;
Redko et al., 2019) which gives a measure of task distance
that incorporates the complexity of the hypothesis space. In
particular, Ben-David et al. (2010) train on a fixed mixture
of the source and target data to minimize which is similar to
our interpolated distribution (12d). Theoretical results here
corroborate (actually motivate) our experimental result that
transferring between the same tasks with a higher-capacity
model is easer. A key gap in this literature is that this the-
ory does not consider how the model is adapted to target
task. For complex models such as deep networks, hyper-
parameters during fine-tuning play a crucial role (Li et al.,
2020). Our work fundamentally exploits the idea that the
task need not be fixed during transfer, it can also be adapted.
Further, our coupled transfer distance is invariant to the
particular parametrization of the deep network, which is dif-
ficult to achieve using classical learning theory techniques.

Coupled transfer of data and the model. Transporting the
task using optimal transport is fundamental to how our cou-
pled transfer distance is defined. This is motivated from
two recent studies. Gao & Chaudhari (2020) develop an
algorithm that keeps the classification loss unchanged across
transfer. Their method interpolates between the source and
target data using the mixture distribution from Sec. 3.1. We
take this idea further and employ optimal transport (Cui
et al., 2018) to modulate the interpolation of the task us-
ing the Fisher-Rao distance. Coupled transport problems
on the input data are also solved for unsupervised transla-
tion (Alvarez-Melis & Jaakkola, 2018). The idea of mod-
ifying the task during transfer using optimal transport is
also exploited by Alvarez-Melis & Fusi (2020a) to prescribe
task distances and for data augmentation/interpolation and
transfer (Alvarez-Melis & Fusi, 2020b).

7. Discussion
Our work is an attempt to theoretically understand when
transfer is easy and when it is not. An often over-looked
idea in large-scale transfer learning is that the task need not
remain fixed to the target task during transfer. We heavily
exploit this idea in the present paper. We develop a “coupled
transfer distance” between tasks that computes the shortest
weight trajectory in information space, i.e., on the statistical
manifold, while the task is optimally transported from the
source to the target. The most important aspect of our work
is that both task and weights are modified synchronously. It
is remarkable that this coupled transfer distance is not just
strongly correlated with the difficulty of fine-tuning but also
theoretically captures the intuitive idea that a good transfer
algorithm is the one that keeps generalization gap small
during transfer, in particular at the end on the target task.
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