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Abstract
The maximum mean discrepancy (MMD) test
could in principle detect any distributional dis-
crepancy between two datasets. However, it has
been shown that the MMD test is unaware of ad-
versarial attacks—the MMD test failed to detect
the discrepancy between natural and adversarial
data. Given this phenomenon, we raise a question:
are natural and adversarial data really from differ-
ent distributions? The answer is affirmative—the
previous use of the MMD test on the purpose
missed three key factors, and accordingly, we pro-
pose three components. Firstly, Gaussian kernel
has limited representation power, and we replace
it with an effective deep kernel. Secondly, test
power of the MMD test was neglected, and we
maximize it following asymptotic statistics. Fi-
nally, adversarial data may be non-independent,
and we overcome this issue with the wild boot-
strap. By taking care of the three factors, we
verify that the MMD test is aware of adversarial
attacks, which lights up a novel road for adversar-
ial data detection based on two-sample tests.

1. Introduction
The maximum mean discrepancy (MMD) aims to measure
the closeness between two distributions P and Q:

MMD(P,Q;F) := sup
f∈F
|E[f(X)]− E[f(Y )]|, (1)

whereF is a set containing all continuous functions (Gretton
et al., 2012a). To obtain an analytic solution regarding the
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sup in Eq. (1), Gretton et al. (2012b) restricted F to be a
unit ball in the reproducing kernel Hilbert space (RKHS)
and obtain the kernel-based MMD defined in the following.

MMD(P,Q;Hk) := sup
f∈H,‖f‖Hk≤1

|E[f(X)]− E[f(Y )]|

=‖µP − µQ‖Hk , (2)

where k is a bounded kernel regarding a RKHS Hk (i.e.,
|k(·, ·)| < +∞), and X ∼ P, Y ∼ Q are two random
variables, and µP := E[k(·, X)] and µQ := E[k(·, Y )] are
kernel mean embeddings of P and Q, respectively (Gretton
et al., 2005; 2012b; Jitkrittum et al., 2016; 2017; Sutherland
et al., 2017; Liu et al., 2020b). According to Eq. (1), it is
clear that MMD equals zero if and only if P = Q (Gretton
et al., 2008). As for the MMD defined in Eq. (2), Gretton
et al. (2012b) also prove this property. Namely, we could in
principle use the MMD to show whether two distributions
are the same, which drives researchers to develop the MMD-
based two-sample test (Gretton et al., 2012b).

In the MMD test, we are given two samples observed from
P and Q and aim to check whether two samples come from
the same distribution. Specifically, we first estimate MMD
value from two samples, and then compute the p-value cor-
responding to the estimated MMD value (Sutherland et al.,
2017). If the p-value is above a given threshold α, then
two samples are from the same distribution. In the last
decade, MMD test has been used to detect the distributional
discrepancy within several real-world datasets, including
high-energy physics data (Chwialkowski et al., 2015), am-
plitude modulated signals (Gretton et al., 2012c), and chal-
lenging image datasets, e.g., the MNIST and the CIFAR-10
(Sutherland et al., 2017; Liu et al., 2020b).

However, it has been empirically shown that the MMD test,
as one of the most powerful two-sample tests, is unaware of
adversarial attacks (Carlini & Wagner, 2017a). Specifically,
Carlini & Wagner (2017a) input adversarial and natural
data into the MMD test, then the MMD test outputs a p-
value that is greater than the given threshold α with a high
probability. Namely, the MMD test agrees that adversarial
and natural data are from the same distribution. Given the
success of MMD test in many fields (Liu et al., 2020b), this
phenomenon seems a paradox regarding the homogeneity
between nature and adversarial data.



Maximum Mean Discrepancy Test is Aware of Adversarial Attacks

0.04 0.06 0.08
The L∞ norm ε of FGSM

0.00

0.20

0.40

0.60

0.80

1.00

T
es

t p
ow

er

MMD-D

MMD-O

MMD-G

(a) Test power

0.04 0.06 0.08
The L∞ norm ε of Square

0.00

0.20

0.40

0.60

0.80

1.00

T
es

t p
ow

er

MMD-D

MMD-O

MMD-G

(b) Test power

2.35 3.14 3.92 4.71 5.49 6.27 7.06 7.84

Non-IID (a): The L∞ norm ε (10−2)

0.00

0.02

0.04

0.06

0.08

0.10

T
yp

e 
I 

er
ro

r

MMD-O

MMD-O+WB

(c) Type I error

2.35 3.14 3.92 4.71 5.49 6.27 7.06 7.84

Non-IID (b): The L∞ norm ε (10−2)

0.00

0.02

0.04

0.06

0.08

0.10

T
yp

e 
I 

er
ro

r

MMD-O

MMD-O+WB

(d) Type I error

Figure 1. Consequences of missing the three key factors when using the MMD on adversarial data detection. The subfigure (a) and (b)
illustrate the test power of the MMD test with deep kernel (MMD-D test (Liu et al., 2020b)), the MMD test with optimized Gaussian
kernel (MMD-O test (Sutherland et al., 2017)) and the MMD test with Gaussian kernel (MMD-G test), respectively. Adversarial data
is generated by a white-box attack fast gradient sign method (FGSM) (Goodfellow et al., 2015) and a black-box attack Square attack
(Square) (Andriushchenko et al., 2020) with different L∞-norm bounded perturbation ε ∈ [0.0235, 0.0784] (following (Madry et al.,
2018; Zhang et al., 2020a)). Clearly, MMD-D and MMD-O tests perform much better than MMD-G test (previously used by (Grosse
et al., 2017) and (Carlini & Wagner, 2017a)). The failure of MMD-G test takes root in Factors 1 and 2 in Section 1. The (c) and (d)
show type I error within two typical non-IID adversarial data (see detailed generation in Section 5), where type I error of MMD-O test is
abnormal (higher than the red line that α = 0.05, while the type I error within natural data is the yellow line). The main reason is the
Factor 3 in Section 1. If we apply the wild bootstrap (WB) process to MMD-O test, it brings type I error to normality (MMD-O+WB).

In this paper, we raise a question regarding this paradox:
are natural data and adversarial data really from different
distributions? The answer is affirmative, and we find the
previous use of MMD missed three factors. As a result,
previous MMD-based adversarial data detection methods
not only have a low detection rate when detecting attacks
(due to the first two factors), but also are invalid detection
methods (due to the third factor).

Factor 1. The Gaussian kernel (used by previous MMD-
based adversarial data detection methods) has limited repre-
sentation power and cannot measure the similarity between
two multidimensional samples (e.g., images) well (Wenliang
et al., 2019). Although MMD(P,Q) is a perfect statistic to
see if P equals Q, test power (i.e., the detection rate when
detecting adversarial attacks) of its empirical estimation
(Eq. (3)) depends on the form of used kernels (Sutherland
et al., 2017; Liu et al., 2020b). Since a Gaussian kernel only
looks at data uniformly rather than focuses on areas where
two distributions are different, it requires many observations
to distinguish the two distributions (Liu et al., 2020b). As
a result, the test power of the MMD test with a Gaussian
kernel (MMD-G test used by Grosse et al. (2017) and Car-
lini & Wagner (2017a)) is limited, especially when facing
complex data (Sutherland et al., 2017; Liu et al., 2020b).

We replace the Gaussian kernel with a simple and effective
semantic-aware deep kernel to take care of the first factor.
We call this semantic-aware deep kernel based MMD as
semantic-aware MMD (SAMMD). The SAMMD is moti-
vated by the recent advances in nonparametric two-sample
tests, i.e., the MMD test with deep kernel (MMD-D). In
MMD-D, the kernel is parameterized by deep neural nets
(Liu et al., 2020b) and measures the distributional discrep-
ancy between two sets of images using raw features (i.e.,

pixels in images). Compared to the deep kernel used in
MMD-D, semantic-aware deep kernel uses semantic fea-
tures extracted by a well-trained classifier on natural data.
Figure 2 (see Section 6) shows that natural and adversar-
ial data are quite different in the view of semantic features,
showing that semantic features can help distinguish between
natural and adversarial data, taking care of the first factor.

Factor 2. Previous MMD-based adversarial data detection
methods overlook the optimization of parameters of the
used kernel. In MMD-G test, its test power is related to
the choice of the bandwidth of the Gaussian kernel (Suther-
land et al., 2017). Once we overlook the optimization of
the kernel bandwidth, the test power of MMD-G test will
drop significantly (Gretton et al., 2012c; Sutherland et al.,
2017). Furthermore, recent studies have shown that Gaus-
sian kernel with an optimized bandwidth still has limited
representation power for complex distributions (e.g., multi-
modal distributions used in (Wenliang et al., 2019; Liu et al.,
2020b)). Namely, it is important to take care of Factor 1 and
Factor 2 simultaneously, which is verified in Figures 1a-1b.

To take care of the second factor, we analyze the asymp-
totics of the SAMMD when detecting adversarial attacks.
According to the asymptotics of SAMMD, we can compute
the approximate test power of SAMMD using two datasets
and then optimize the parameters of the deep kernel by
maximizing the approximate test power.

Factor 3. The adversarial data are probably not independent
and identically distributed (IID) due to their unknown gener-
ation process, which breaks a basic assumption of the MMD
tests used by (Grosse et al., 2017; Carlini & Wagner, 2017a).
Once there exists dependence within the observations, the
type I error of ordinary MMD tests will surpass the given
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threshold α. Note that, type I error is the probability of
rejecting the null hypothesis (P = Q) when the null hypoth-
esis is true. If the type I error of a test is much higher than
α, this test will always reject the null hypothesis. Namely,
for two datasets that come from the same distribution, the
test will always show that they are different, which means
that the test is meaningless (Chwialkowski et al., 2014).

To take care of the third factor, the wild bootstrap is used
to resample the value of SAMMD (with the optimized ker-
nel), which ensures that we can get correct p-values in non-
IID/IID scenarios (Figures 1c-1d). Here, we show two sce-
narios where the dependence within adversarial data exists:
1) the adversary attacks the data used for training the target
model, where the target model depends on the attacked data.
Thus, generated adversarial data are highly dependent (the
Non-IID (a) in Figure 1c); and 2) the adversary attacks one
instance many times to generate many adversarial instances
(the Non-IID (b) in Figure 1d).

The above study is not of purely theoretical interest; it has
also practical consequences. The considered detection prob-
lem is also known as statistical adversarial data detection
(SADD). In SADD, we care about how to find out a dataset
that only contains natural data. That will bring benefits
to users who are only interested in a model that has high
accuracy on the natural data. For example, as an artificial-
intelligence service provider, we need to acquire a client
by modeling his/her task well, such as modeling the risk
level of a factory. In this task, the client only cares about the
accuracy on the natural data. Thus, we need to use MMD
test to ensure that our training data only contain natural data.
In Appendix B, we have demonstrated SADD in detail.

2. Preliminary
This section presents four concepts used in this paper.

Two-sample test. Let X ⊂ Rd and P, Q be Borel proba-
bility measures on X . Given IID samples SX = {xi}ni=1 ∼
Pn and SY = {yj}mj=1 ∼ Qm, in the two-sample test prob-
lem, we aim to determine if SX and SY come from the same
distribution, i.e., if P = Q.

Estimation of MMD. We can estimate MMD (Eq. (2)) us-
ing the U -statistic estimator, which is unbiased for MMD2

and has nearly minimal variance among unbiased estimators
(Gretton et al., 2012b):

M̂MD
2

u(SX , SY ; k) =
1

n(n− 1)

∑
i 6=j

Hij , (3)

Hij = k(xi,xj) + k(yi,yj)− k(xi,yj)− k(yi,xj),

where xi,xj ∈ SX and yi,yj ∈ SY .

Adversarial data generation. Let (X , d∞) be the in-
put feature space X with the infinity distance metric
dinf(x,x

′) = ‖x− x′‖∞, and

Bε[x] = {x′ ∈ X | dinf(x,x′) ≤ ε} (4)

be the closed ball of radius ε > 0 centered at x in X . Let
D = {(xi, li}ni=1 be a dataset, where xi ∈ X , li ∈ C is
ground-truth label of xi, and C = {1, . . . , C} is a label set.
Then, adversarial data regarding xi is

G`,f̂ (xi) = arg maxx̃∈Bε[xi] `(f̂(x̃), li), (5)

where x̃ is a sample within the ε-ball centered at x, f̂(·) :
X → C is a well-trained classifier on D, and ` : C × C →
R≥0 is a loss function.

There are many methods to solve Eq. (5) and generate ad-
versarial data, e.g., white-box attacks including fast gradi-
ent sign method (FGSM) (Goodfellow et al., 2015), basic
iterative methods (BIM) (Kurakin et al., 2017), project gra-
dient descent (PGD) (Madry et al., 2018), AutoAttack (AA)
(Croce & Hein, 2020), Carlini and Wagner attack (CW)
(Carlini & Wagner, 2017b) and a score-based black-box at-
tack: Square attack (Square Andriushchenko et al. (2020)).

Wild bootstrap process. The wild bootstrap process has
been proposed to resample observations from a stochastic
process {Yi}i∈Z (Shao, 2010), where E(Yi) = 0 for each
i ∈ Z. Through multiplying the given observations with ran-
dom numbers from the wild bootstrap process, we can obtain
new samples that can be regarded as resampled observations
from {Yi}i∈Z (Leucht & Neumann, 2013; Chwialkowski
et al., 2014). After resampling observations many times, we
can use such resampled observations to estimate the distri-
bution of statistics regarding the random process {Yi}i∈Z,
such as the null distribution of MMD over two time se-
ries (Chwialkowski et al., 2014). Following (Chwialkowski
et al., 2014) and (Leucht & Neumann, 2013), this paper uses
the following wild bootstrap process:

Wt = e−1/lWt−1 +
√

1− e−2/lεt, (6)

where W0, ε0, . . . , εt are independent standard normal ran-
dom variables.

3. Problem Setting
Following Grosse et al. (2017), we aim to address the fol-
lowing problem (i.e., SADD mentioned in Section 1).

Problem 1 (SADD). Let X be a subset of Rd and P be a
Borel probability measure on X , and SX = {xi}ni=1 ∼ Pn
be IID observations from P, and f(·) : Rd → C be
the ground-truth labeling function on observations from
P, where C = {1, . . . , C} is a label set. Assume that at-
tackers can obtain a well-trained classifier f̂ on SX and
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Table 1. Average values of dependence scores (HSIC) within natural data (ε = 0) and non-IID adversarial data (the L∞-norm bounded
perturbation ε ∈ [0.0235, 0.0784]). The adversarial data of the Non-IID (a) are generated by FGSM on the training set of CIFAR-10. The
Non-IID (b) consists of the adversarial data generated by Square on CIFAR-10’s testing set (for each natural image, Square generates four
different adversarial images). We can see that the dependence within non-IID adversarial data is stronger than that within IID natural data.

Perturbation bound ε 0.0000 0.0235 0.0314 0.0392 0.0471 0.0549 0.0627 0.0706 0.0784

Non-IID (a) (10e-5) 2.1948 2.2214 2.2409 2.2650 2.3067 2.3320 2.3727 2.4234 2.4805
Non-IID (b) (10e-5) 2.1948 2.2146 2.2346 2.2614 2.2952 2.3359 2.3835 2.4381 2.4998

IID observations S′X from P, we aim to determine if the
upcoming data SY = {yi}mi=1 come from the distribution
P, where SX and S′X are independent, and we do not have
any prior knowledge regarding the attacking methods. Note
that, in SADD, SY may be IID data from P or non-IID data
generated by attackers.

In Problem 1, if SY are IID observations from P, given
a threshold α, we aim to accept the null hypothesis H0

(i.e., SX and SY are from the same distribution) with the
probability 1− α. If SY contains adversarial data (i.e., SX
and SY are from different distributions), we aim to reject the
null hypothesis H0 with a probability near to 1. Please note
that, an invalid test method could be “rejecting all upcoming
data”, which can perform very well when SX and SY being
from different distributions but fail when SY being from P.

4. Failure of Gaussian-kernel MMD Test for
Adversarial Data Detection

We reimplement the experiment in (Carlini & Wagner,
2017a) and (Grosse et al., 2017) to test the performance
of MMD-G test on CIFAR-10 dataset. Adversarial data with
different perturbation bound ε are generated by FGSM, BIM,
PGD, AA, CW and Square. Figure 4 shows how test power
changes as the ε value increases in each attacking method.
Through our implementations, we draw the same conclusion
with Carlini & Wagner (2017a). Namely, MMD-G test (the
pink line) fails to detect adversarial data.

As demonstrated in Section 1, MMD-G test has the follow-
ing issues: 1) the limited representation power of the Gaus-
sian kernel (Wenliang et al., 2019; Liu et al., 2020b); and 2)
the overlook of optimization of the kernel bandwidth (Liu
et al., 2020b); and 3) the non-IID property of adversarial
data (Shao, 2010; Leucht & Neumann, 2013; Chwialkowski
et al., 2014). Since the third issue is crucial, we first an-
alyze whether there exists dependence within adversarial
data in the following section and then propose a novel test
to address the above issues simultaneously (see Section 6).

5. Dependence in Adversarial Data
As discussed in Section 4, this section investigates whether
there is dependence within adversarial data.

Dependence within adversarial data. In the real world,
since we do not know the attacking strategies of attack-
ers, the dependence within adversarial data probably exists.
For example, if attackers use one natural image to generate
many adversarial images, the adversarial data is obviously
not independent (the Non-IID (b) in Table 1). To empirically
show the dependence within adversarial data, we use HSIC
(Gretton et al., 2005) as the statistic to represent the depen-
dence score within adversarial data (Appendix C presents
detailed procedures to compute the HSIC values between
two datasets). The larger value of HSIC represents the
stronger dependence.

We generated two typical non-IID adversarial datasets that
the Non-IID (a) and the Non-IID (b). Given natural images
from the CIFAR-10 training set, we generated the Non-IID
(a) using FGSM with the L∞-norm bounded perturbation
ε ∈ [0.0235, 0.0784]. Given natural images from the CIFAR-
10 testing set, we used Square with the L∞-norm bounded
perturbation ε ∈ [0.0235, 0.0784] to generate the adversarial
data four times and mixed them into the Non-IID (b). For
each dataset, we randomly selected two disjoint subsets
(containing 500 images) and compute the HSIC value over
the two subsets. Repeating the above process 100 times,
we obtained the average value of the 100 HSIC values in
Table 1. Since the HSIC value of adversarial data is higher
than that of natural data (i.e., ε = 0), the dependence within
adversarial data is stronger than that within IID natural data.

Dependence meets MMD tests. Grosse et al. (2017) and
Carlini & Wagner (2017a) used the permutation based
bootstrap (Odén et al., 1975) to implement MMD-G test
(i.e., the ordinary MMD test). Specifically, they initial-
ize a by MMD(SX , SY ). Then, they shuffle the elements
of SX and SY into two new sets GX and GY , and let
b = MMD(GX , GY ). Repeating the shuffling process K
times, they can obtain a sequence {bk}Kk=1. If a is greater
than the 1−α quantile of {bk}Kk=1, then the null hypothesis
is rejected (Grosse et al., 2017; Carlini & Wagner, 2017a).
Namely, the adversarial attacks are detected.

However, the permutation-based MMD-G test only works
when facing IID data (Chwialkowski et al., 2014). Since
adversarial data may not be IID, according to Chwialkowski
et al. (2014), the permutation based MMD-G (previously
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(a) RN18-Natural (b) RN18-FGSM (c) RN18-BIM (d) RN18-PGD (e) RN18-CW (f) RN18-AA (g) RN18-Square

(h) RN34-Natural (i) RN34-FGSM (j) RN34-BIM (k) RN34-PGD (l) RN34-CW (m) RN34-AA (n) RN34-Square

Figure 2. Visualization of outputs using t-SNE. This figure visualizes outputs of the second to last layers in ResNet-18 and ResNet-34.
Different colors represent different semantic meanings (i.e., different classes in the testing set of the CIFAR-10). Apparently, semantic
information contained in natural data is lost in adversarial data. This phenomenon can help us distinguish adversarial data and natural data.

used by Grosse et al. (2017) and Carlini & Wagner (2017a))
could be invalid to detect adversarial data.

6. A Semantic-aware MMD Test
To take care of three factors missed by previous studies
(Grosse et al., 2017; Carlini & Wagner, 2017a), we design
a simple and effective test motivated by the most impor-
tant characteristic of adversarial data. Namely, semantic
meaning of adversarial data (in the view of a well-trained
classifier on natural data) is very different from that of natu-
ral data. Based on this characteristic, semantic-aware MMD
(SAMMD) is proposed to measure the discrepancy between
natural and adversarial data in this section.

Semantic features. As mentioned above, the semantic
meaning of data plays an important role to distinguish be-
tween natural and adversarial data. Thus, we will first intro-
duce how to represent the semantic meaning of each image,
i.e., to construct semantic features of images, in this part.
Since the success of deep learning mainly takes roots in its
ability to extract features that can be used to classify images
well, outputs of the layers of a well-trained deep neural
network have already contained semantic meaning. Namely,
we can construct semantic features of images using outputs
of the layers of the well-trained network.

Figure 2 visualizes outputs of the second to last full con-
nected layers of a well-trained ResNet-18 and ResNet-34
using t-SNE (Maaten & Hinton, 2008), showing that these
outputs indeed contain clear semantic meanings (in the view
of natural data). Thus, we use these outputs as semantic
features in this paper. This figure also shows that natural
data and adversarial data are quite different in the view of
semantic features. In addition, we also show the MMD

values between semantic features of natural and adversarial
data in Figure 3. Results show that, in the second to last full
connected layer of ResNet-18, outputs of natural and adver-
sarial data have the largest distributional discrepancy. Thus,
the semantic features we constructed can help us distinguish
adversarial data and natural data well.

Semantic-aware MMD. Based on the semantic features,
we consider the following semantic-aware deep kernel
kω(x,y) to measure the similarity between two images:

kω(x,y) =
[
(1− ε0)sf̂ (x,y) + ε0

]
q(x,y), (7)

where sf̂ (x,y) = κ(φp(x), φp(y)) is a deep kernel func-
tion that measures the similarity between x and y using
semantic features extracted by f̂ ; we use φp, the second
to the last fully connected layer in f̂ , to extract semantic
features (according to Figure 3); the κ is the Gaussian ker-
nel (with bandwidth σφp); ε0 ∈ (0, 1) and q(x,y) (the
Gaussian kernel with bandwidth σq) are key components
to ensure that kω(x,y) is a characteristic kernel (Liu et al.,
2020b) (ensuring that, SAMMD equals zero if and only if
two distributions are the same (Liu et al., 2020b)). Since f̂
is fixed, the set of parameters of kω is ω = {ε0, σφp , σq}.
Based on kω(x,y) in Eq. (7), SAMMD(P,Q) is√

E [kω(X,X ′) + kω(Y, Y ′)− 2kω(X,Y )],

where X,X ′ ∼ P, Y, Y ′ ∼ Q. We can estimate
SAMMD(P,Q) using the U -statistic estimator, which is
unbiased for SAMMD2(P,Q):

̂SAMMD
2

u(SX , SY ; kω) =
1

n(n− 1)

∑
i 6=j

Hij , (8)

where Hij = kω(xi,xj) + kω(yi,yj) − kω(xi,yj) −
kω(yi,xj).
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Figure 3. Discrepancy of MMD value between different layers’
outputs in f̂ . The figure shows MMD value between outputs of 5
different layers of ResNet-18. It is clear that, in the conv 5 layers,
outputs of natural and adversarial data have larger distributional
discrepancy compared to outputs of other 3 convolutional layers.
FC(stl) is the second to the last fully-connected layer and also an
average pooling layer. Compared to the conv 5 layer, the FC(stl)
layer has fewer dimensions and its outputs can help measure the
discrepancy between natural and adversarial data well.

Asymtotics and test power of SAMMD. In this part, we
analyze the asymtotics of SAMMD when SY are adversarial
data. Based on the asymtotics of SAMMD, we can estimate
its test power that can be used to optimize the SAMMD (i.e.,
optimizing parameters in kω(x,y)).
Theorem 1 (Asymptotics under H1). Under the alternative
H1 : SY are from a stochastic process {Yi}+∞i=1 , under mild
assumptions, we have

√
n( ̂SAMMD

2

u − SAMMD2)
d→ N (0, C2

1σ
2
H1

),

where Yi = G`,f̂ (Bε[Xi]) ∼ Q, Xi ∼ P, σ2
H1

=

4(EZ [(EZ′h(Z,Z ′))2] − [(EZ,Z′h(Z,Z ′))2]), h(Z,Z ′) =
kω(X,X ′) + kω(Y, Y ′) − kω(X,Y ′) − kω(X ′, Y ), Z :=
(X,Y ) and C1 < +∞ is a constant for a given ω.

The detailed version of Theorem 1 can be found in Ap-
pendix D. Using Theorem 1, we have

PrSAMMD
H1,r → Φ

(√nSAMMD2

C1σH1

− r√
nC1σH1

)
, (9)

where PrSAMMD
H1,r = PrH1

(
n ̂SAMMD

2

u > r
)

is the test
power of SAMMD, Φ is the standard normal CDF and r is
the rejection threshold related to P and Q. Via Theorem 1,
we know that r, SAMMD(P,Q), and σH1

are constants.
Thus, for reasonably large n, the test power of SAMMD is
dominated by the first term (inside Φ), and we can optimize
kω by maximizing

J(P,Q; kω) = SAMMD2(P,Q; kω)/σH1
(P,Q; kω).

Algorithm 1 The SAMMD Test
Input: SX , SY , f̂ , various hyperparameters used below;
ω ← ω0; λ← 10−8;
Split the data as SX = StrX ∪ SteX and SY = StrY ∪ SteY ;
# Phase 1: train the kernel parameters ω and β; on StrX and
StrX
for T = 1, 2, . . . , Tmax do
S′X ← minibatch from StrX ;
S′Y ← minibatch from StrY ;
kω ← kernel function with parameters ω using Eq. (7);

M(ω)← ̂SAMMD
2

u(S
′
X , S

′
Y ; kω) using Eq. (8);

Vλ(ω)← σ̂2
H1,λ

(S′X , S
′
Y ; kω) using Eq. (11);

Ĵλ(ω)←M(ω)/
√
Vλ(ω) using Eq. (10);

ω ← ω + η∇AdamĴλ(ω); # maximize Ĵλ(ω)
end for
# Phase 2: testing with kω on SteX and SteY
est ← ̂SAMMD

2

b(S
te
X , S

te
Y ; kω)

for i = 1, 2, . . . , nperm do
Generate {WX

i }ni=1 and {WY
i }mi=1 using Eq. (6);

{W̃X
i }ni=1 ← {WX

i }ni=1 − 1
n

∑n
i=1W

X
i ;

{W̃Y
i }mi=1 ← {WY

i }mi=1 − 1
m

∑m
i=1W

Y
i ;

permi ← 1
n(n−1)

∑
i,j HijW̃

X
i W̃

Y
j ; # resample

end for
Output: kω , est , p-value: 1

nperm

∑nperm

i=1 1(permi ≥ est)

Note that, we omitC1 in J(P,Q; kω), sinceC1 can be upper
bounded by a constant C0 (see Appendix D).

Optimization of SAMMD. Although the higher value
of criterion J(P,Q; kω) means higher test power of
SAMMD, we cannot directly maximize J(P,Q; kω), since
SAMMD2(P,Q; kω) and σH1

(P,Q; kω) depend on the par-
ticular P and Q that are unknown. However, we can estimate
it with

Ĵλ(SX , SY ; kω) :=
̂SAMMD

2

u(SX , SY ; kω)

σ̂H1,λ(SX , SY ; kω)
, (10)

where σ̂2
H1,λ

is a regularized estimator of σ2
H1

(Liu et al.,
2020b):

4

n3

n∑
i=1

 n∑
j=1

Hij

2

− 4

n4

 n∑
i=1

n∑
j=1

Hij

2

+ λ. (11)

Then we can optimize SAMMD by maximizing
Ĵλ(SX , SY ; kω) on the training set (see Algorithm 1). Note
that, although Sutherland et al. (2017) and Sutherland
(2019) have given an unbiased estimator for σ2

H1
, it is much

more complicated to implement.

The SAMMD test. Since adversarial data are probably
not IID, we cannot simply use a permutation-based bootstrap
method to simulate the null distribution of the SAMMD test
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Figure 4. Results of adversarial data detection. Subfigure (a) reports the type I error when SY are natural data. The ideal type I error
should be around α (red line, α = 0.05 in this paper). Subfigures (b)-(l) report the test power (i.e., the detection rate) when SY are
adversarial data (or the mixture of adversarial and natural data). The ideal test power is 1 (i.e., 100% detection rate). Subfigures (b) - (i)
share the same legend presented in subfigure (h). Details of subfigures are explained in Section 7.

(Chwialkowski et al., 2014). To address this issue, wild
bootstrap (Shao, 2010) is used to help simulate the null
distribution of SAMMD, then we can test if SY are from P.
To the end, the Algorithm 1 shows the whole procedure of
the SAMMD test. In Appendix D, it has been shown that,
under mild assumptions, the proposed SAMMD test is a
provably consistent test to detect adversarial attacks.

7. Experiments
We verify detection methods on the ResNet-18 and ResNet-
34 trained on the CIFAR-10 and the SVHN. We also validate
performance of SAMMD on the large network Wide ResNet
(WRN-32-10) (Zagoruyko & Komodakis, 2016) and the
large dataset Tiny-Imagenet. Configuration of all experi-
ments is in Appendix E. Detailed experimental results are
presented in Appendix F. The code of our SAMMD test is
available at github.com/Sjtubrian/SAMMD.

Baselines. We compare SAMMD test with 6 existing two-
sample tests: 1) MMD-G test used by (Grosse et al., 2017);
2) MMD-O test (Sutherland et al., 2017); 3) Mean embed-
ding (ME) test (Jitkrittum et al., 2016); 4) Smooth charac-
teristic functions (SCF) test (Chwialkowski et al., 2015); 5)
Classifier two-sample test (C2ST) (Liu et al., 2020b; Lopez-
Paz & Oquab, 2017); 6) MMD-D test (Liu et al., 2020b).

Besides, we also try to construct two new MMD tests based
on features commonly used by adversarial data classifica-
tion methods: 1) MMD-LID: the MMD with a Gaussian
kernel whose inputs are local intrinsic dimensionality (LID)
features (Ma et al., 2018) of two samples. Then we optimize
the Gaussian kernel by maximizing its test power; and 2)
MMD-M: the MMD with a Gaussian kernel whose inputs
are mahalanobis distance based features (Lee et al., 2018)
of two samples. Then, we optimize the bandwidth of the
Gaussian kernel by maximizing the test power.

https://github.com/Sjtubrian/SAMMD
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Figure 5. Results of adversarial data detection. Subfigures (a)-(f) report the test power (i.e., the detection rate) when SY are non-IID
adversarial data. Subfigure (g) reports the test power when SY are adaptive adversarial data. Subfigure (h) reports an ablation study.
Subfigures (a)-(f) share the same legend presented in subfigure (b). Details of subfigures are explained in Section 7.

Test power on different attacks. We first report the type
I error of our SAMMD test and 9 baselines when SY are
natural data in Figure 4a. It is clear that MMD-LID test and
MMD-M test have much higher type I error than the given
threshold α = 0.05 (the red line in Figure 4a). That is, both
baselines are invalid two-sample tests. The main reason
is that LID features and mahalanobis-distance features are
sensitive to any perturbation. The sensitivity leads to that
MMD-LID test and MMD-M test will recognize natural data
as adversarial data. Other methods except for SCF maintain
reasonable type I errors. Since MMD-LID test and MMD-M
test are invalid two-sample tests, we do not validate the test
power of them in the remaining experiments.

For 6 different attacks, FGSM, BIM, PGD, AA, CW and
Square (Non-IID(b)), we report the test power of all tests
when SY are adversarial data (L∞ norm ε = 0.0314; set
size = 500) in Figure 4b. Results show that SAMMD test
performs the best and achieves the highest test power.

Test power on different ε. In addition to different adver-
sarial attacks, different perturbation bound ε can also affect
the adversarial data generation process. If the adversarial
attack is within a small perturbation bound, the generated
adversarial data is not sufficient to fool the well-trained
natural-data classifier (Tramèr et al., 2020). However, if
the adversarial attack is within a big perturbation bound,
natural information contained in images will be completely
lost (Tramèr et al., 2020; Zhang et al., 2020a).

Following previous studies (Carlini & Wagner, 2017b;
Madry et al., 2018; Wang et al., 2019; Tramèr et al., 2020;
Zhang et al., 2020a; Chen et al., 2020a; Wu et al., 2020;
Zhang et al., 2020d), we set the L∞-norm bounded pertur-
bation ε ∈ [0.0235, 0.0784]. The lower bound of 0.0235 is
calculated by 6/255, i.e., the maximum variation of each
pixel value is 6 intensities, and the upper bound of 0.0784 is
calculated by 20/255. This range covers all possible ε used
in the literature (Madry et al., 2018; Zhang et al., 2020a).

We report the average test power (with its standard error)
on different ε of FGSM, BIM, CW, AA and PGD (set size
= 500) in Figure 4(c)-(g). For the non-IID adversarial data
mentioned in Section 5, we also report the average test
power on different ε of the Non-IID (a) and the Non-IID
(b) in Figure 5(a)-(f). Given the training set of CIFAR-10,
we use FGSM, BIM, CW, AA and PGD to generate the
Non-IID (a). Given the testing set of CIFAR-10, we use
Square to generate the adversarial data four times and mix
them into the Non-IID (b). Results show that our SAMMD
test also achieves the highest test power all the ε.

Test power on different set sizes. The effective of pre-
vious kernel non-parametric two-sample tests like C2ST
and MMD-D test (Lopez-Paz & Oquab, 2017; Liu et al.,
2020b) depends on a large size of data. Namely, they can
only measure the discrepancy well when there are a large
batch of data. Hence, we evaluate the performance of our
SAMMD test and baselines with different set sizes. Experi-
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ments results are reported in Figure 4h, which shows that
our SAMMD test is suitable to different data sizes.

Test power on the mixture of adversarial data and natu-
ral data. For practical concerns, it is often that only part
of data is adversarial. We analyze test power of the SAMMD
test and baselines in this case, with natural data mixture pro-
portion ranging from 0% to 100%. The experimental results
of PGD (L∞ norm ε = 0.0314; set size = 500) are pre-
sented in Figure 4i. Results show that the performance of
our SAMMD test is much better than all baselines.

Semantic featurizers meet unknown adversarial data.
In the above setting, the semantic featurizers φp(·) are also
the classifiers subjected to adversarial attacks. In this part,
we also consider that a dataset to be tested contains the ad-
versarial data acquired by unknown classifiers. Hence, we
analyze the performance when adversarial data and seman-
tic features are acquired by different classifiers. We train
two classifiers (ResNet-18 and ResNet-34) on natural data.
One is used to acquire adversarial data (A18/A34), and the
other is used to acquire semantic features (S18/S34).

Experiments results of our SAMMD test with different set
sizes (from 10 to 100) are presented in Figure 4j. Experi-
ments results of our SAMMD test with mixture proportion
(from 0% to 100%) are presented in Figure 4k. In Figures 4j
and 4k, the attack method is PGD (L∞ norm ε = 0.0314;
set size = 500). Results clearly show that our SAMMD
test can also work well in this case. It is the existence of
adversarial transferability that can help our SAMMD test
defend against such attacks.

Study of Semantic features. In order to verify that se-
mantic features are better to help measure the distribution
discrepancy between adversarial data and natural data than
raw features, we also test the semantic features (the same
with the SAMMD test) and the Gaussian kernel of the fixed
bandwidth (SAMMD-G in Figure 4l). Experiments in Fig-
ure 4l confirms the importance of semantic features.

The SAMMD test meets adaptive attacks. In the case
where the attacker is aware of our SAMMD kernel, we
evaluate our SAMMD test from the security standpoint.
Compared to other defenses, the advantage of our method
in security is adaptive defense. In our detection mecha-
nism, the semantic-aware deep kernel is trained on part of
unknown data (to be tested), that is to say, for each input
of data in the test, parameters of our semantic-aware deep
kernel can be adaptively trained to be powerful. Therefore,
the target of the adaptive attack can only be the SAMMD-G
mentioned above which has fixed parameters.

First, we use the PGD white-box attack to minimize the
M(ω)/

√
Vλ(ω) in Eq. (10) and obtain examples (kernel-

attack in Figure 5g), and 89.08% of them can fool the pre-
trained ResNet-18. Then, we obtain examples using the
PGD white-box attack to minimize the M(ω)/

√
Vλ(ω) in

Eq. (10) and maximize the cross entropy loss in Eq. (5)
(co-attack in Figure 5g), and 61.34% of them can fool the
pre-trained ResNet-18. The examples acquired by model
attack is the adversarial examples, 100.00% of them can
fool the pre-trained ResNet-18. Experiments in Figure 5g
show that these examples fail to fool our SAMMD test. And
attacking such a statistic test will also reduce the ability of
adversarial data to mislead a well-trained classifier.

Ablation study. To illustrate the effectiveness of seman-
tic features, we compare our SAMMD test with MMD-O
test and MMD-D test after wild bootstrap process (MMD-
O+WB, MMD-D+WB). Experiments results are reported in
Figure 5h, which verifies that semantic features are better to
help measure the distribution discrepancy between adversar-
ial data and natural data than raw features (MMD-O+WB)
and the learned features (MMD-D+WB) (Liu et al., 2020b).

8. Conclusion
Two-sample tests could in principle detect any distributional
discrepancy between two datasets. However, previous stud-
ies have shown that the MMD test, as the most powerful
two-sample test, is unaware of adversarial attacks. In this
paper, we find that previous use of MMD on adversarial data
detection missed three key factors, which significantly limits
its power. To this end, we propose a simple and effective
test that is cooperated with a new semantic-aware kernel—
semantic-aware MMD (SAMMD) test, to take care of the
three factors simultaneously. Experiments show that our
SAMMD test can successfully detect adversarial attacks.

Thus, we argue that MMD is aware of adversarial attacks,
which lights up a novel road for adversarial attack detection
based on two-sample tests. We also recommend practi-
tioners to use our SAMMD test when they wish to check
whether the dataset they acquired contains adversarial data.
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